
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

Basic Concepts of Expert System Shells and an
Efficient Model for Knowledge Acquisition

Emmanuel C. Ogu1, Adekunle, Y.A.2

1, 2Department of Computer Science,
Babcock University, Ilishan-Remo, Ogun State, Nigeria

1ecoxd1@hotmail.com, 2adekunleya@gmail.com

Abstract: An Expert System is an intelligent computer program that employs knowledge and inference procedures to solve problems
that are considered difficult enough to require significant human expertise for their solutions [12]. Since the implementation of the first
expert systems (the DENDRAL, MYCIN, Dipmeter Advisor, XCON, to mention but a few.) in the early 1970s, and the successes that
followed, coupled with the advantages that humankind benefited from these early expert systems and their successors; one would expect
that four decades later, there would have been a boom in the use of expert systems to perform more specialized tasks in different specific
domains and application areas. The reasons for this could stem, asides other non-intrinsically-technical factors (such as financial
implication, cultural and religious beliefs and restrictions surrounding the implementation of Expert Systems especially in third-world
African Countries), either from a lack of adequate knowledge of the existence of Expert System Shells and/or the facilities, utilities and
tools they provide that make the development of new expert systems sort of a “pretty easy endeavour”. This paper lays emphasis on the
basic concept of Expert System Shells with the aim of highlighting their basic usage and creating some form of in-depth generic exposé
into some of the component facilities and utilities they provide; proposing a more efficient model for Knowledge Acquisition – which
would make the Knowledge Acquisition Bottleneck of developing Expert Systems a thing of no more concern – as well as highlight the
functions performed by Expert System Shells, in a bid to emphasize their reusability across different other specific application areas
either within or outside the same domain.

Keywords: Knowledge-Based Expert Systems, Expert Domain Areas, Domain Application Areas, Symbolic Information and Reasoning,
Knowledge Acquisition.

1. Introduction

[1], [2] What is an Expert System?
Many definitions exist for Expert Systems, some of the most
popular of these being:
 An expert system is computer program that contains a

significant portion of the specialized knowledge of a
human expert in a specific, narrow domain, and emulates
the decision-making ability of the human expert in that area
[22].

 An expert system is a program intended to make reasoned
judgements or give assistance in a complex area in which
human skills are fallible or scarce [6].

 An expert system is a program designed to solve problems
at a level comparable to that of a human expert in a given
domain [3].

 An expert system is a computer program (or system) that
operates by applying an inference mechanism to a body of
specialist expertise represented in the form of “knowledge”
[4].

One of the most widely acceptable definitions of expert
systems, however, was given by Edward Feigenbaum of
Stanford University. He defined an Expert System as “an
intelligent computer program that employs knowledge and
inference procedures to solve problems that are considered
difficult enough to require significant human expertise for
their solutions [12].”

Before proceeding, the following terms must also be
understood:
 Language: is basically the translator of a command written

in a specific syntax. The Expert System Language provides

an Inference Engine to execute the statements of the
Language.
 Tool: this refers to the Language plus associated utility

software for debugging, developing, and deploying
computer applications. Examples: text editors, (cross)
compilers, code generators (which can generate code from
tables e.g. XTRAN and similar others). Some tools may
also be integrated with all its utility programs into a single
integrated user interface.

Typically, an Expert System is composed of two major parts:
the Knowledge-base, and the Expert System Shell. The
diagram below shows the typical Expert System
Architecture:

Figure 1: Generic Expert System Architecture [10].

2. Current Model for Knowledge Acquisition

The process of building an expert system is commonly
referred to as knowledge engineering. This essentially
implies knowledge acquisition from a human expert or other
source(s) and then coding / representing such knowledge in

554

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

the knowledge base of the expert system. The main phases in
the process of Knowledge Acquisition are [9]:
 The dialog process which involves the knowledge

engineer acquiring knowledge from the human expert in
the domain and explicitly coding it into the expert system
knowledge base (the process known as Knowledge
Engineering).

 After the coding, the human expert evaluates the expert
system and gives feedback or criticisms to the knowledge
engineer.

 The knowledge engineer then modifies the knowledge
base to reflect the human expert’s comments

The knowledge engineering process is illustrated in the
diagram below:

Figure 2: The Knowledge Engineering Process [9]

3. Review of Related Researches

Sener (1991) observed that though humans long(ed) to be
able to have the experts they desire at their disposal through
the use of Expert Systems, expert system applications have
mostly remained in the domain of those who are highly
skilled in programming [14]. In 1992, Susan M. Land
conducted a research on Expert System Design Shells with a
primary focus on its role in solving problems in the field of
Education and Learning [16]. In 1995, L.K. Woolery, D.S.
Harr & D.L. Harr developed an object oriented expert system
shell called “The Gestation Predictor” for use on pregnant
women by clinical professionals during their preterm birth
screening [5]. In 2002, MD Salim, A. Villavicencio, & M. A.
Timmerman described a variant of the Function Point
Analysis Methodology (developed by Albrecht in 1979) – for
assessing a software package that can measure both the
accuracy and user friendliness of an Expert System Shell –
for the evaluation of Expert System Shells in Industrial
Technology Pedagogy [7]. In 2012, M.N.K. Boulos
demonstrated the feasibility of using expert system shells for
rapid clinical decision support module development in which
an expert system shell was used to build a simple rule-based
system for the crude diagnosis of vaginal discharge [8]. In
January 2013, Samawi, et al observed that many expert
system programmers suffer from knowledge acquisition
complications; adding that Expert System shells contain
facilities that can simplify knowledge acquisition in such a
way that domain experts (human experts) themselves are
responsible for knowledge engineering [19]. They went
further to develop an Arabic Expert System Shell (AESS)
which was capable of diagnosing diseases based on Natural
Language. The system comprises two phases. In the first

phase, automatic acquisition of the human expert knowledge
in Natural Arabic is done and the knowledge acquired is
analyzed using an Arabic morphological system which
analyzes the given Arabic phrase and finds the required
keywords (roots). The system contains the built-in required
domain dictionary to be used by the Arabic morphological
system. In the second phase, the major concern is with the
design of the inference engine along with the user interface
(based also on natural language) which uses a backward
chaining method (end-user interface).

The Knowledge Acquisition Subsystem is of the AESS is
given below:

Figure 3: The Knowledge Acquisition Subsystem of the

AESS [19]

When the system was tested by experts and end users alike, it
was found to have a very exact performance in Knowledge-
Base (KB) construction and problem diagnosis (with a
diagnostic ability of 99%). They concluded hence, that the
merging of a morphological system with knowledge
acquisition is a very effective method for constructing target
KBs without duplicate or inconsistent rules; further stating
that the same technique could be employed in building
expert system shells based on other natural languages – (such
as English, French, Spanish, amongst others) – with the only
difference being to build a suitable morphological system for
that language along with the required domain dictionary
[19]; a fact in line with which I align the context of this
research – 100%. All these are but a “tiny nibble in the cake”
when compared to the very extensive research and articles
that have been undertaken and published (respectively)
regarding the need for Expert System Shells in various
specific domains, some of which resulted in the creation of
these domain specialized ES Shells.

4. The Concept of an Expert System Shell

The Expert System Shell is essentially a special purpose tool
that is built in line with the requirements and standards of
particular domain or expert-knowledge area applications. It
may be defined as a software package that facilitates the
building of knowledge-based expert systems by providing a
knowledge representation scheme and an inference engine
[13]. The Shell refers to the software module containing an
interface, an inference engine, and a structured skeleton of a
knowledge base (in its empty state) with the appropriate
knowledge representation facilities. In layman terms, it can
be viewed as an empty bowl that is yet to be filled with the

555

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

expert knowledge elements that along with the inference
engine may be used to process user requests to generate
solutions to user problems [20]; In essence, any Computer
Program which when supplied with a particular knowledge
base yields an expert system is termed an Expert System
Shell [11].

As was observed by Trollip & Lippert, (1987), Expert
system shells provide methods of building expert systems
without extensive knowledge of programming through
mechanisms that:
1) Input the decisions, questions and rules that are followed;
2) Structure / Develop a knowledge database that can be

manipulated by subsequent parts of the system;
3) Verify possible violations of surface validity; and
4) Operate the "inference engine" that operates on the rules,

poses the questions to the users, and determines whether
a particular decision is valid [18].

The Expert System Shell is responsible for managing and
processing input and service requests from users and
generating output; supporting the creation and modification
of inference rules by knowledge engineers; translating the
inference rules created into machine-readable forms;
processing the information given by the user and the
application layer modules, and relating such information to
the concepts contained in the knowledge base through the
inference rules; providing solutions for particular problems
within the scope of its integrated knowledge domain;
providing facilities for uncertain reasoning; providing
facilities for knowledge representation (the knowledge
representation knowledge) and editing the content of the
knowledge base (knowledge base editor); and providing low-
level support to expert system components (such as
retrieving metadata from and saving metadata to the
knowledge base, building Abstract Syntax Trees during the
translation of inference rules, and other similar functions.)
[11]. In essence, the system shell is indifferent to the rules it
executes. This distinction is very important, because it means
that the expert system shell can be applied to many different
problem domains with little or no change. It also means that
editing (adding or modifying) the rules of an expert system
can implement some changes in the way the program
behaves, without necessarily affecting the underlying
(controlling component) – the shell.

One of the ways of building an expert system asides building
it from scratch is that it can be built using a piece of an
already developed software system which is known as a
"tool", "skeleton" or "shell". Using these software systems,
Expert Systems can be built that contain useful methods for
solving problems without any domain-specific knowledge.

5. Components of an Expert System Shell

Some generic components of an Expert System Shell are
given below:

Figure 4: Generic Components of an Expert System Shell
[22].

1. Knowledge Base: This is a store of factual and
heuristic knowledge. An Expert System shell provides
one or more knowledge representation schemes (in the
form of knowledge bases) for expressing knowledge
about the application domain. Some shells employ both
Frames (objects) and IF-THEN rules in their knowledge
base design. However, in PROLOG, the knowledge in
the knowledge base is represented as logical statements.

2. Reasoning or Inference Engine: This refers to the
Inference mechanisms that are used for manipulating
the symbolic information and knowledge contained in
the knowledge base in order to form a reasoning path
towards the solution of a problem. The inference
mechanism can range from simple modus ponens (a
way that affirms by affirming) backward or forward
chaining of IF-THEN rules to more complex case-based
reasoning.

3. Knowledge Acquisition Subsystem: This is a
subsystem that helps experts to build knowledge bases.
It contains the Knowledge Representation Language.
The process of collecting the relevant domain
knowledge needed to solve problems and building
(coding) the knowledge base (knowledge engineering)
continues to present the biggest bottleneck in building
expert systems.

4. Explanation Subsystem: This is a subsystem that
explains the system's actions by trying to give reasons
why a certain cause of action or a certain conclusion
was chosen by an Expert System. The explanation can
range from how the final or intermediate solutions were
arrived at to justifying the need for additional data.

5. User Interface: This represents the means of
communication with the user. The user interface is
usually not a generic part of the Expert System
technology, and was not given much attention in the
early years of the development of Expert Systems.
However, it is now widely accepted that the user
interface can make a critical difference in the perceived
utility of an Expert System regardless of the system's
performance. The users enters a request in Natural
Language, and the Expert System processes the Request
to provide a result by using an Inference rule(s) to
select the appropriate solution from a Knowledge Base.

Other Components may include:
6. Trace Facility: This is a component of an expert-

system shell that allows following and inspecting the
inference process [11].

The use of shells in designing Expert Systems carries with it
many advantages. A system can be built to perform a unique
task by programming the shell to contain all the necessary
knowledge about a specific task domain. The inference
engine which applies the knowledge to the task at hand

556

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

(may) already have been built into the shell. If the program is
not too complex and the expert has had some training in the
use of a shell, the expert can program the knowledge into the
shell by himself, because every expert system shell or builder
tool offers a formal language – a format for declarative
knowledge in the knowledge base, known as the knowledge-
representation formalism, for encoding the domain
knowledge into the knowledge base [21].

6. An Efficient Model For Knowledge

Acquisition

As was rightly observed by Sener (1991) that though humans
long(ed) to be able to have the experts they desire at their
disposal through the use of Expert Systems, expert system
applications have mostly remained in the domain of those
who are highly skilled in programming. The Knowledge
Acquisition bottleneck has remained over the years because
the gap between the Knowledge Engineer and the Human
Expert has constantly increased. The Knowledge Engineer is
perceived to always be some sort of expert programmer with
a lot of specialized programming skills while the Human
Expert has constantly been perceived (in most cases) to be an
intrinsic IT-phobic, and as such, knowledge and inference
rules could get into the knowledge base only through the
Knowledge Engineer who in turn had to sit down for months
(and sometimes years) to understand try to understand the
skill(s) and technical language(s) of the Human Expert so
that they could be adequately and accurately represented in
the Knowledge Base using the correct set of inference rules
and with minimal errors. This gap can only be closed when
the Human Expert ceases to be an entire novice alien to the
process and technique of Knowledge Engineering using
Expert System Shells and the easy-to-use functionality and
modules provided by these Shells. In addition, if Expert
System Knowledge-representation formalisms could employ
a formal language that tends to model very closely the
Natural Language of man, such that most (or all) Expert
System Shells would be able to provide a form of ultra-high
level programming language abstraction – as a form of
standardization that would be adhered to when creating these
shells – which would conceal the explicit details of the
underlying source codes and programming language (be it
PROLOG, LISP or any of their variants), that power the
shell, then humanity would experience the boom in the
development, implementation and use of Expert Systems it
has always longed for. I thus propose a model that
emphasizes that with the above mentioned suggestions and
standards in place, and with better understanding of the ease
of programming expert systems using already developed
shells in specific domain or application areas, the human
experts would actually be able to carry out the process of
Knowledge Engineering themselves, thus eliminating the
Knowledge Acquisition Bottleneck in (a short) time to come,
and resulting in a boom in the development and use of expert
systems. This model is illustrated in the diagram below:

Figure 5: An Efficient Model for Knowledge Acquisition

7. Conclusion

Stylianou, Madey, and Smith (1992), noted that the selection
of an adequate Expert System Shell is often the difference
between a successful and an unsuccessful industrial
application [15]. But then also, in two articles by Van Name
and Catchings (1990), they observed that due to the large
number of Expert System Shell packages on the market –
and the lack of standardized means for describing the
features and capabilities provided by these products –
selecting an appropriate Shell package for an application can
be “herculean task” even for experienced users.

There exist a lot of commercial and freeware shells today,
generally ranging in size from shells on small PCs and
workstations, to shells on larger mainframe computers;
likewise ranging in complexity from the simple, forward-
chained or backward-chained, rule-based systems requiring
just a few days of training to those so complex that only
highly trained knowledge engineers can use them to
advantage; and in scope from general-purpose shells to
custom shells tailored to perform a specific class of tasks,
such as financial planning and auditing or process control in
real-time.

Despite the fact that most Expert System Shells in use today
help to simplify the task of programming expert systems
(which is essentially the “heck” with producing Expert
Systems), they generally do very little to help with
knowledge acquisition and its associated bottleneck, which is
a different concern entirely. Knowledge acquisition further
refers to the task (or process) of furnishing expert systems
with knowledge, a task that is currently performed by
knowledge engineers alone. The choice of the reasoning
method, or the shell, is quite important, but it may not be as
important as the task of accumulating high-quality
knowledge required in Expert Systems. The power of an
expert system lies in its store of knowledge about the specific
task domain because the more the knowledge an expert
system has, the more competent it becomes.

Stylianou, Madey, and Smith (1992) further identified the
following eight (8) categories of criteria for evaluating
Expert System Shells: End User Interface, Developer
Interface, System Interface, Inference Engine, Knowledge
Base, Data Interface, Cost, and other Vendor-Related aspects
[15].

In summary, generically, Expert System Shells can be
reusable across many other application areas as soon as its
knowledge base is emptied – as was the case with the
MYCIN in which the knowledge base was emptied to form

557

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

the EMYCIN (Empty MYCIN) shell (the very first expert
system shell – was created in 1970). This made the shell
more useable across other application areas within the same
domain. The implementation of the MYCIN Shell in other
areas of the medical diagnosis domain gave rise to the PUFF
System (for diagnosing pulmonary diseases), the
CADUCEUS / INTERNIST (also for diagnosing bacterial
infections), CASNET – Causal ASsociative NETwork (for
diagnosing and suggesting treatments for the various types of
glaucoma), to mention but a few, in which cases rules were
just added to a knowledge-base by subject matter experts
(domain experts) using text or graphical editors that were
then integrated into the system shell. It must also be noted
that Expert System shells are mostly useful for domains
similar to the one the shell was originally written for.

Some other common examples of Expert System Shells or
Tools include: CLIPS (for Rule-Based Expert Systems, built
by NASA in 1985), JESS, AION-DS, Guru (USA), Personal
Consultant plus (USA), Nexpert Object (developed by
Neuron Data, California), Zeicon (developed by researchers
at the University of Kent and Deakins University), Genesia
(developed by Electricité de France, France), VP Expert
(USA), EXPERTECH and EXPERTECH Xi Plus, KAS,
KRITON, OPS (built by Forgy in 1977), ROSIE, ART, KEE
(built by Intellicorp in 1983), LOOPS, Teiresias (built by
Davis in 1973), HEARSAY III, AGE, RITA, AGNESS
(developed by researchers at the University of Minnesota in
1986), Gestation Predictor [5] (1995) amongst others [17].

Furthermore, the Knowledge Acquisition bottleneck has
remained through the years largely due to the fact that the
Knowledge Engineers have remained the only interface
between the Human Experts and the Knowledge Base of the
Expert Systems at the development and engineering phases,
coupled with the fact that the Knowledge Engineers in
majority of (if not all) cases are novices in the domain areas
which knowledge they’re trying to Engineer (as illustrated in
figure 5 below).

Figure 6: Expert System Architecture illustrating the current

Knowledge Acquisition Process [19]

With this proposed new model for Knowledge Acquisition,
Human Experts can be able to reuse these Expert System
Shells and program (encode) their domain expertise directly
into the Knowledge Base without the bottleneck associated
with the Knowledge Engineers as the only interface between
the Knowledge Base and the Human Expert at the
development phases of the Expert System.

8. Suggestions for Further Studies

Research could be carried out in the area of the Knowledge
Representation Language Formalisms of Expert System
Shells in a bid to develop a higher level form of the
Language, such that they are closer to Human Natural
Language. Enhanced Data Type Abstractions, methods
and/or classes could be developed and added to some of the
existing High Level Programming Languages such that they
could be more useful for core logic-based programming.

References

[1] Alan Garnham. Artificial Intelligence: An Introduction.

London, United Kingdom. (1987).
[2] Bryan S. Todd. An Introduction to Expert Systems.

Oxford University, Oxford, England. (1992).
[3] Cooper GF. Current Research Directions in the

Development of Expert Systems Based on Belief
Networks. Applied Stochastic Models and Data
Analysis. (1989).

[4] Goodall A. The Guide to Expert Systems. Learned
Information: Oxford, New Jersey. (1985).

[5] L.K. Woolery, D.S. Harr & D.L. Harr, “An Expert
System Shell as a Cost-Effective Tool for Predicting
Preterm Birth Risk.” Journal of the American Medical
Informatics Association, P (986). (1995).

[6] Lauritzen SL, Spiegelhalter DJ, “Local Computation
with Probabilities on Graphical Structures and Their
Application to Expert Systems.” Journal of the Royal
Statistical Society (Series B) (1988) (50) (ii) (157-224).
(1988).

[7] MD Salim, A. Villavicencio, & M. A. Timmerman, “A
Method for Evaluating Expert System Shells for
Classroom Instruction.” Journal of Industrial
Technology Volume 19, Number 1. (2002).

[8] Maged N. Kamel Boulos “Expert System Shells for
Rapid Clinical Decision Support Module Development:
An ESTA Demonstration of a Simple Rule-Based
System for the Diagnosis of Vaginal Discharge.”
Journal of Healthcare Informatics Research. 18(4):
252–258. (2012).

[9] Ovidiu S. Noran. The Evolution of Expert Systems.
Griffith University, School of Computing and
Information Technology, Queensland, Australia.
(2003).

[10] PerfectLogic Corporation (2013), “Artificial
Intelligence and Expert Systems.” [Online]. Available:
[http://www.perfectlogic.com/articles/AI/ExpertSystem
s/ExpertSystems.html]. Accessed: April, 2013.

[11] Peter Lucas (2007), “Expert Systems.” An introductory
scientific paper about knowledge-based expert systems,
written for UNESCO. [Online]. Available:
[http://www.cs.ru.nl/~peterl/eolss.pdf]. Accessed: April
2012.

[12] R. S. Engelmore & E. Feigenbaum, “Knowledge-Based
Systems in Japan.” Loyola
College in collaboration with the Japanese Technology
Evaluation Center. Maryland, USA. (1993).

[13] Robin, “What Is Expert System?” (2010). Articles on
Artificial Intelligence. [Online]. Available:
[http://intelligence.worldofcomputing.net/ai-
branches/expert-systems.html]. Accessed: April, 2013.

558

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

[14] Sener, E. “Using microcomputers and an expert system
shell for soil classification.” Collegiate Microcomputer,
9 (1), 7-12. (1991).

[15] Stylianou, A. C., Madey, G. R., & Smith, R. D.
“Selection Criteria for Expert System Shells: A Socio-
technical Framework.” Communications of the ACM,
35 (10), 30-48. (1992).

[16] Susan M. Land (1992). “Expert System Design Shells:
A Critical Analysis.” Penn State University.
Instructional Technology Research Online. [Online].
Available:
[http://www2.gsu.edu/~wwwitr/docs/esshells/], June,
2010. Accessed: April, 2013.

[17] “The Development of Expert Systems Technologies.”
[Online]. Available:
[http://blue.cs.ksi.edu/dl/video/cis509/ch01aa.html].
Accessed: April, 2013.

[18] Trollip, S. & Lippert, R. “Constructing knowledge
bases: A promising instructional tool.” Journal of
Computer-based Instruction 14(2), 44-48. (1987).

[19] Venus Samawi, Akram Mustafa & Abeer Ahmad
“Arabic Expert System Shell.” The International Arab
Journal of Information Technology, Vol. 10, No. 1,
January 2013. (2013).

[20] WISEGEEK. “What Are Expert System Shells?”
[Online]. Available: [http://www.wisegeek.com/what-
are-expert-system-shells.htm]. Accessed: April 2012.

[21] [Online].Available:[http://www.aiartificialintelligence.c
om/index.php?title=Expert_System]. Accessed: April
2012.

[22] [Online].Available:[http://www.wtec.org/loyola/kb/c3_
s2.htm]. Accessed: April 2012.

Author Profile

Emmanuel C. Ogu received the B.Sc. degree in
Computer Science (Technology) from Babcock
University in 2011. He has been dynamically involved
in the Training of ICT Professionals who has served in
various areas of industry and academia since 2007. He

shows special interest in researches relating to Artificial
Intelligence and Neural Networks, Wireless Communications
Technology and Systems, Information Security Systems and
Cryptography. He is currently pursuing a Master of Science degree
in Computer Science at Babcock University, Ilishan-Remo, Ogun
State. Nigeria.

559

