
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

Implementation of an Arithmetic Logic Unit using
Area Efficient Carry Look-Ahead Adder and

Booth’s Multiplier

Sarwagya Chaudhary

Suresh Gyan Vihar University, Dept. of Electronics and Communication Engineering, Jaipur, India

Abstract: An arithmetic logic unit acts as the basic building block or cell of a central processing unit of a computer. It is a digital
circuit, comprised of the basic electronic components, which is used to perform various arithmetic, logic and integral operations. .The
purpose of this work is to propose the design of an 8-bit ALU which supports 4-bit multiplication. The functionalities of the ALU in this
study consist of addition, subtraction, increment, decrement, AND, OR, NOT, XOR, NOR, two’s complement generation, multiplication.
The adder in the ALU is implemented using a Carry Look Ahead adder joined by a ripple carry approach. The design of the multiplier is
achieved using the Booth’s Algorithm. The proposed ALU can be designed by using Verilog or VHDL and can also be designed on
Cadence Virtuoso Platform.

Keywords: Arithmetic Logic Unit, Booth Multiplier, Carry Look-Ahead Adder, VLSI

1. Introduction

A conventional ALU can be used to perform basic
arithmetic and logic operations such as AND, OR, NOT,
ADD, Subtract. The ALU takes two operands and performs
the desired operation between them. A control signal is used
to select the output from the operations that have been
performed. The control unit is designed by using a
multiplexer which selects the required operation. All the
operations are performed in one cycle but only the one that
is required in the output is selected by the multiplexer. An
ALU does not perform multiplication between two operands.
Extra circuitry is required along with the ALU which
increases the chip area. In this paper we propose the design
of an ALU which supports multiplication. The multiplier is
designed using the Booth’s algorithm Booth’s multiplication
algorithm is a multiplication algorithm that multiplies two
signed binary numbers by using two’s complement notation.
Conventional array multiplier requires a large number of
devices. Thus the complexity of the circuit increases.
Implementing the booth’s algorithm is a more efficient
approach. It performs signed multiplication and the circuit
complexity is considerably lower than any other type of
multiplier circuit. Thus it contributes in building a faster
logic circuit with a lower area requirement. The adder unit is
constructed by using a Carry look-ahead adder. A
conventional ripple-carry adder introduces a considerable
amount of delay. The Carry look-ahead adder takes care of
the problem and is thus better equipped to perform faster
operations.

2. Previous Work

2.1 Adder

There have been various adder circuits used in previous
designs and other ALUS to perform the addition operation.
Conventional ripple-carry adders have been used while
designing logic circuits. When two individual operands are
applied as inputs to the adder, it takes some time before
giving out the valid output. This happens because each full

adder in the combination introduces a certain delay. If one
full adder introduces a delay of time ‘t’ then for an ‘n’ bit
circuit the total delay after which Cout is obtained is ‘(n-1)t’.
The delay incurred depends on the size of the operands.
Thus when higher bit numbers are used the delay becomes
highly unacceptable. [1]

Figure 1: Ripple carry adder

2.2 Multiplier

Multiplication of two four-bit unsigned binary numbers
X3X2X1X0 and Y3Y2Y1Y0 by using an array multiplier is
shown in Fig. 2. [2]. Full Adder block is the basic building
block and total number of full adder blocks required is
4x3=12. Output generated by the full adder block is (a)
SUM = X XOR Y XOR CI. (b) Carry Out= X.Y + Y.CI +
CI.X. The partial products are realized using an AND Gate.

Figure 2: Array multiplier

264

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

3. Arithmetic Logic Unit supporting Booth
Multiplication

Functionalities performed by the proposed Arithmetic Logic
Unit are NOT, NAND, NOR, AND, OR, Exor, Addition,
Increment, Two’s complement generation, Subtraction,
Decrement, Multiplication. The Inverter, NAND and NOR
blocks can be realized in the conventional manner. The
inverter circuit consists of a PMOS and an NMOS transistor
where the drain of the pmos is connected to the supply
voltage and the nmos source is grounded. The inverter
output is taken between the pmos source and nmos drain. An
n-bit inverter can be designed from the single bit inverter.
The NAND and NOR circuits, both, constitute a pull-up and
pull-down framework for output generation. The pull-up
block in both the logic circuits is made up of PMOS
transistors whereas NMOS transistors make up the pull-
down block. The drains of the pmos are connected together
which, in turn, are connected to the supply voltage. The
source of both nmos transistors are connected to the ground.
The output is taken between the source of the pull-up block
and the drain of the pull-down block. The pull-up network of
NAND gate consists of two PMOS transistors connected in
parallel with each other and the pull-down consists of two
NMOS transistors connected in series with each other.
Similarly the NOR circuit’s pull-up network has two PMOS
transistors in series and the pull-down network has which
are connected to two NMOS transistors in parallel. An n-bit
NOT, NAND and NOR block can be erected from these
three circuits. [3]. The AND and the OR block can be
derived from the NAND and NOR blocks by utilizing the
inverter. This prevents hardware complexity thus reducing
the total Area thereby making the ALU more efficient.

3.1 Adder

In digital adders the speed of addition is limited by the time
required to propagate the carry signal through the adder. In
an elementary adder the generation of sum for each bit
position takes place in a sequentially only after the
preceding bit position has been summed and a carry is
propagated into the next position. A carry look-ahead helps
us in eliminating the delay caused by the propagation of the
Carry signal in a binary adder. The delay caused in the
addition operation is because of the carry signal. The
expression for the carry signal of a ripple carry adder is [4]
Ci+1 = AiBi + AiCi + BiCi (1)
This can be written as
Ci+1 = AiBi + Ci(Ai + Bi) (2)
Ci+1 = Gi + PiCi (3)
The value of function Gi is equal to 1 when both Ai and Bi
are 1. Gi is independent of Ci and is guaranteed to generate
an output so it is known as the generate function. The value
of function Pi is equal to 1 when either Ai or Bi or both are
1. A carry out is produced when Ci is equal to 1. This leads
to the carry in of 1 propagating through the ith stage. Thus
Pi is termed as the propagate function. On expansion of the
expression for the carry signal we get
Ci+1 = Gi + Pi(Gi-1 + Pi-1Ci-1) (4)
Ci+1 + Gi + PiGi-1 + PiPi-1Ci-1 (5)
If we stretch this expansion to the 0th stage then we get the
following expression.
Ci+1 = Gi + PiGi-1 + PiPi-1Gi-2 + ….+ PiPi-1..P2P1G0
+PiPi-1…P1P0C0 (6)

This expression is the representation of a two level AND-
OR combination which can calculate the value of Ci+1 at a
much higher speed. It defines the functioning of the carry
look-ahead adder.

3.2 Multiplier

Latency, area, design complexity, throughput are some of
the factors which help us to choose. The booth multiplier
algorithm accelerates multiplication [5]. Let’s take an
example where we see the results of the algorithm for signed
and unsigned multiplication. Considering two operands x
and y which are the multiplier and the multiplicand
respectively. The values of x and y are varied in three cases
and the result of the multiplication is checked using the
algorithm.
Case 1 x = 3, y = 5. Product = +15
Case 2 x = -3, y = -5. Product = +15
Case 3 x = -3, y = 5. Product = -15
1> Read x, y
2> i = 0, z = 0, E = 0

E = x(i)
i = i+1
i<n Product
Three parameters will remain constant for all the cases.
i = 0, E = 0, z = 00000000
E is he bit which demonstrates multiplication. Z stores the
value after each loop.

Case 1(Unsigned multiplication)
x = (3)10, y = (5)10.
Product, P = x.y =(15)10
x = (0011)2, y = (0101)2
let y1 be the two’s complement of y, therefore y1 = -y =
therefore y1 = -y = (1011)2

Step 1. {x(0),E} = {1,0}
z = z – y = z + y1
The bits of y or y1 are added from the MSB of z.
00000000
+1011
10110000
After Arithmetic Right shift, z = 11011000
i = i + 1= 0 + 1 = 1
E = x(0) = 1
Step 2. {x(1),E} = {1,1}After arithmetic right shift , z =
11101100
i = i + 1 = 1 + 1 = 2
E = x(1) = 1

265

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

Step 3. {x(2),e} = {0,1}
z = z + y
 11101100
+ 0101
 00111100

After Arithmetic Right shift, z = 00011110
i = i + 1 = 2 + 1 = 3
E = x(2) = 0

Step 4. {x(3),E} = {0,0}
Result after arithmetic right shift
z = (00001111)2
z = (15)10, which is equal to the product of the two
operands.

Case 2 (Signed Multiplication)
x = (-3)10, y = (-5)10.
Product, P = x.y = (15)10
x = (1101)2, y = (1011)2
let y1 be the two’s complement of y
 therefore y1 = -y = (0101)2

Step 1. {x(0),E} = {1,0}
 z = z – y = z + y1
 The bits of y or y1 are added from the MSB of z.
 00000000
 +0101
 01010000
After Arithmetic Right shift, z = 00101000
i = i + 1= 0 + 1 = 1
E = x(0) = 1

Step 2. {x(1),E} = {0,1}
z = z + y
 00101000
+ 1011
 110 11000

Result after arithmetic right shift
z = 11101100

i = i + 1 = 1 + 1 = 2
E = x(1) = 0

Step 3. {x(2),e} = {1,0}
z = z + y
 11101100
+ 1011
 00011100

After Arithmetic Right shift, z = 00011110
i = i + 1 = 2 + 1 = 3
E = x(2) = 1

Step 4. { x(3),E} = {1,1}
Result after arithmetic right shift
z = (00001111)2
z = (15)10, which is equal to the product of the two
operands.

Case 3 (Signed multiplication)
x = (-3)10, y = (5)10.
Product, P = x.y = (-15)10

x = (1101)2, y = (0101)2
let y1 be the two’s complement of y,
 therefore y1 = -y = (1011)2

Step 1. {x(0),E} = {1,0}
 z = z – y = z + y1
 The bits of y or y1 are added from the MSB of z.
 00000000
 +1011
 10110000
After Arithmetic Right shift, z = 11011000

i = i + 1= 0 + 1 = 1
E = x(0) = 1

Step 2. {x(1),E} = {0,1}
z = z + y
 11011000
+ 0101
 001 01000

Result after arithmetic right shift
z = 00010100

i = i + 1 = 1 + 1 = 2
E = x(1) = 0

Step 3. {x(2),e} = {1,0}
z = z – y = z + y1
 00010100
+ 1011
 11000100

After Arithmetic Right shift, z = 11100010
i = i + 1 = 2 + 1 = 3
E = x(2) = 1

Step 4. { x(3),E} = {1,1}
Result after arithmetic right shift
z = (11110001)2
z = (-15)10, which is equal to the product of the two
operands.

Thus the booth’s multiplication algorithm helps us perform
multiplication much faster than any other conventional
multiplier. It reduces hardware complexity. It requires fewer
devices than an array multiplier.

3.4 Subtractor

We construct the subtractor circuit by implementing the
carry look-ahead adder and an inverter. For an n-bit number
a complement wrt 2N is what the two’s complement means.
The result obtained after we subract the number by 2N . The
two’s complement exhibits the behaviour of the negative of
the original number. [6]

3.5 Incrementer and Decrementer unit

The incrementer and decrementer units are built using the
adder and subtractor units. For incrementer one of the
addends is given the input value logic ‘1’. For decrementer
unit the subtrahend of the subtractor is provided with logic
‘1’ value.

266

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
www.ijsr.net

3.6 Two’s complement generation

The two’s complement generator circuit is achieved by using
an inverter and an incrementer. The input operand is passed
through an inverter which inverts its digits. The output of the
inverter is given as input to the incrementer. The
incrementer adds logic 1 to the inverted bits. Thus the output
generated is the two’s complement of the input bit.
Fig. 3 shows the block diagram for the proposed ALU. The
multiplexer is used to select the desired output. All
operations are performed in a single cycle but only the
required operation is selected by the multiplexer. Figure 3
shows the block diagram of the proposed arithmetic logic
unit.

Figure 3: Block diagram of ALU

Operation Opcode Operation Opcode
AND 0 SUM 110
OR 1 Decrement 111

Subtract 10 Increment 1000
NAND 11 NOT 1001
NOR 10 Two’s Compliment 1010
XOR 101 Multiply 1111

Table 1: Operations and their Opcodes

4. Conclusion

The need for smaller-sized integrated circuits is evolving at
a very fast rate. The VLSI field requires logic circuits with
reduced complexity and circuit area and a higher processing
rate. The proposed ALU consists of an adder circuit which
provides lesser delay than a conventional adder. The Booth’s
multiplication algorithm reduces the hardware complexity
and provides the output faster than other multipliers. The
AND and OR units are realized using NAND and NOR
blocks thereby minimizing the area required by the logic
circuit. Less area and faster operation makes the ALU ideal
for an efficient logic circuit. It can be coded using Verilog or

VHDL. We can also design it using the Cadence Virtuoso
platform.

References

[1] Akbar Bemana, A new Simulation if a 16 bit Ripple-

Carry Adder and a 16-bit skip Carry Adder,
International Journal of Scientific and Technology
Research, Volume 1, Issue 2, March 2012

[2] U.Sreenivasulu & T.Venkata Sridhar, Implementation
of a four bit ALU using Low Power and Area efficient
Carry Select Adder, International Conference on
Electronics and Communication Engineering, 20th May
2012, Bangalore

[3] Neil H.E Weste, Cmos VLSI Design: A circuit and
Systems Perspective(Pearson Education India, 1 Sep
2006)

[4] Mousam Halder, Jagannath Samanta, Performance
Analysis of High Speed Low Power Carry-Look Ahead
Adder Using Different Logic Styles, International
Journal of Soft Computing and Engineering, Vol 2,
Issue 6 Jan-2013

[5] Fazal Noorbasha, VLSI Implementation of 200 MHz, 8
bit, 90nm CMOS Arithmetic and Logical Unit
Processor, Leonardo Electronic Journal of Practices and
Technologies 19 July-December 2011.

[6] Michael Andrew Lai, Arithmetic Units for a high
performance Digital signal processor, University of
California, Davis, 2002

267

