
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Management of Large Scale Data

Neha Upadhyaya

M.Tech.(C.S.E)

Abstract: Storage management is important for overall performance of the system. Slow access time of disk storage is crucial for
performance of large scale computer systems. Two important components of storage management are buffer cache and disk layout
management. The buffer cache is used to store disk pages in memory to speed up the access to them. Buffer cache management
algorithms require careful hand-tuning for good performance. Aself-tuning algorithm automatically manages to clean the page activity
in the buffer cache management algorithm by monitoring the I/O activities. Buffer cache management algorithm is used for global data
structure and it is protected by lock. Lock can because contention is helpful in reducing the throughput of the multi-processing system.
Currently used solution for eliminating lock contention will directly degrade hit ratio of the buffer cache will result in poor performance
in the I/O bound. The new approach, multi-region cache eliminates the lock contention without affecting the hit ratio of buffer cache.
Disk layout approach improves the disk I/O efficiency, called Overwrite, and is optimized for sequential me /so from a single file. A new
disk layout approach, called HyLog. HyLog achieves performance comparable to the best of existing disk layout approaches in most
cases.

Keywords: Buffer cache management, performance of large scale computer systems, lockcontention, Different disk layout management
approaches

1. Introduction

Database management system (DBMS) is the important part
for the development of internet and other large scale
systems. Our existence approach of DBMS i.e. rational and
object oriented DMBS has a problem of flexible scaling
required for modern systems. These huge databases could no
longer be contained in one physical system, but should be
run on a distributed system. The CAP theorem states that it
is impossible for a distributed computer system to
simultaneously provide all of consistency, availability, and
partition tolerance. To overcome these limitations a new
approach of NoSQL databases has started. Structured query
language (SQL) is a programming language designed for
relational DBMS. NoSQL databases tend to embrace the
concepts of high availability and eventual consistency.
Storage is an important part of all large computer systems.

Storage is often the performance bottleneck of the system,
especially for large scale systems accessing large amounts of
data, such as storage servers, fileservers, web servers, email
servers, and database servers. Storage servers, such as the
EMC Symmetric series [1], provide disk storage to other
systems. Storage servers often provide raw storage services
to file servers and database servers. FAS series of file
servers of NetApp Inc. [2], provide file services to other
systems. Storage management is used in these systems to
speed up accesses to data on disks. Storage management
employs an in-memory buffer to cache popular disk pages
and also manages how data are placed on disks. The part of
the system controlled by storage management is called the
storage subsystem, whose performance is often crucial to the
performance of the whole system. The goal of this review
research is to investigate techniques to improve the
performance of storage subsystems in large scale systems.
Database workload is an important class of workload in the
storage subsystem. Database systems can be divided into
two categories: on-line transaction processing (OLTP) and
decision support

.

1.1 Motive of this Paper

This thesis studies the storage subsystem on large scale
systems, addressing several performance issues of the buffer
cache layer and the disk layout layer. This includes
analyzing the characteristics of typical workloads running on
large scale systems, identifying the performance bottleneck
of the storage subsystem, modeling and simulating key
components of the storage subsystem and designing and
evaluating new algorithms which can ease the tuning task or
achieve better performance. Direct experimentation, trace-
driven simulation, and mathematical modeling are used in
this study. The main contributions of the thesis are:

 A new algorithm is proposed to automatically tune

parameters of buffer cache management in order to
achieve good performance. Its effectiveness is
comparable to the best manually tuned algorithm.

 The problem of lock contention in buffer cache
management is investigated. A new approach called the
multi-region cache is proposed to eliminate the lock
contention of the buffer cache. This approach can work
together with most buffer cache replacement algorithms.
It does not compromise the overall hit ratio of the buffer
cache and incurs little overhead.

 Different disk layout management approaches are
modeled and their performance characteristics are
analyzed. A new approach called HyLog is proposed.
HyLog achieves performance close to the best of existing
approaches in most configurations.

1.2 Self-Tuning Of Buffer Cache Management

A buffer cache management algorithm in a real system often
has many parameters that need to be tuned for the particular
workload and system configuration at hand. However, such
tuning is often not easy. The buffer cache management
algorithm in IBM's DB2 database management system
employs page cleaners to write the dirty pages in the buffer
cache asynchronously so that Lock Contention of Buffer
Cache Management.

Paper ID: 04081404 232

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Most buffer cache replacement algorithms use a global data
structure to manage all pages in the buffer cache. In large
scale systems with many processors and threads, different
threads may access the buffer cache simultaneously. The
global data structure of the replacement algorithm must be
protected by a lock to avoid corruption. This lock may
become the contention point (called lock contention) and
limit the system throughput. Real systems solve the
contention problem in different ways; depending on their
particular requirements.SQL Server 7.0 uses a CLOCK-
based algorithm to reduce contention [3], since this kind of
algorithm does not modify the global data structure on
buffer cache hits. However, a CLOCK-based algorithm
typically has a lower hit ratio than other replacement
algorithms and may cause poor system performance.
Berkeley DB and ADABAS use different variations of LRU
without global data structures but these approaches either
have high overhead or cannot be applied to other
replacement algorithms. These current practices in buffer
cache management motivate the search for a better approach
to reduce lock contention without compromising the overall
hit ratio. A new buffer cache management approach, called
the multi-region cache, is proposed for this purpose. The
multi-region approach divides the buffer cache into many
fixed-size regions, each of which is managed by an instance
of a replacement algorithm. Each page is mapped into a
unique region. Since lock contention happens only when
pages within the same region are accessed at the same time,
and there are a large number of regions, lock contention
almost never happens in the multi-region cache. Both
analysis and simulation results show that a large buffer
cache with hundreds of thousands of regions has almost the
same overall hit ratio as the traditional approach, and the
overhead is negligible. Multi-region cache can be applied to
most replacement algorithms.

1.3 Disk Layout Management

With a large buffer cache, most disk reads can be resolved in
memory [4].As a result, in many systems, write requests
make up a large portion of the total traffic to the disks.
These write requests are from many users and often scatter
over the disks, which results in low utilization of the disk
transfer bandwidth when the disk layout is managed by the
commonly used Overwrite approach.LFS was designed to
provide good write performance while maintaining
comparable read performance in such systems, but the high
segment cleaning overhead of LFS decreases its
performance dramatically.

The write performance of Overwrite and LFS is modeled
and the impact of changing disk technology on their
performance is investigated. Because of the much faster
improvement in disk transfer bandwidth than disk
positioning time, it is found that LFS significantly
outperforms Overwrite under modern and future disks over a
wide range of system configurations and workloads.LFS
performs worse than Overwrite, however, when the disk
space utilization is very high because of the high segment
cleaning cost. A new approach, the Hybrid Log-structured
(Hilo) disk layout, is proposed to overcome this problem.
HyLog uses a log-structured approach for hot pages to
achieve good write performance, and Overwrite for cold

pages to reduce the segment cleaning cost. An adaptive
separating algorithm is designed to separate hot pages from
cold pages under various workloads and system
configurations. This algorithm works in real time and incurs
little overhead. Simulation results under a range of system
configurations and workloads show that, in most cases, Hilo
performs comparably to the best of the existing disk layout
approaches.

2. Methodology

2.1 Typical Workloads

Understanding the basic workload characteristics of the
storage subsystem is a prerequisite to studying its
performance. The workloads presented to the storage
subsystem can be classified roughly into database workloads
and file server workloads. Since storage servers often sit
below other applications which already employ large buffer
caches, such as database servers or file servers, the requests
to a storage server may already have been filtered by upper
layer buffer caches, and so may exhibit different
characteristics. These three categories of workloads are
discussed separately in the following subsections.

2.1.1 Database Workloads
Database servers support a wide range of applications. They
can be classified roughly into two classes: on-line
transaction processing (OLTP) systems and decision support
systems (DSS). DSSs are also called on-line analytical
processing (OLAP) systems. Real database applications
have the properties of both [5].As a new way of doing
business through the Internee-commerce applications play
an increasingly important role in database applications. The
database workloads in e-commerce applications can be
viewed as a mix of OLTP and decision support workloads
[6].

2.1.1.1 OLTP Workloads
OLTP workload is important in large database systems.
OLTP applications are used in many industries for data entry
and data retrieval transactions. OLTP is the cornerstone by
which a great deal of modern business is done. Most OLTP
transactions are quite simple. The execution time of each
transaction is short (typically within a second),and there are
upper bound requirements for response time. An OLTP
application has many terminals connected to one or more
central database servers through a network as shown in
Figure 2.1.The client/server model is typically used for
OLTP applications. Different terminals initiate various
transactions to the server independently. The database on the
server is updated frequently by these transactions. These
updates are typically small and to random places of the
disks. Because of the I/O-intensive nature of OLTP
applications, the storage subsystem is often the performance
bottleneck. The two major design challenges for the storage
subsystem to achieve good performance for OLTP
applications lie in the buffer cache layer and the disk layout
layer. The buffer cache of the DBMS must be managed
effectively to reduce the number of disk accesses. Since
most reads are absorbed by the buffer cache, random updates
make up a large proportion of requests to disks. The disk
layout must be organized to handle the random updates

Paper ID: 04081404 233

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

efficiently. The TPC-C benchmark [7], which is a standard
benchmark representing OLTP workloads, is used in this
thesis to study the performance of storage management
under OLTP workloads.

Figure 2.1: Architecture of an OLTP Application

2.1.1.2 Decision Support Workloads

In a DSS, users query business data to get answers to critical
business questions. In decision support workloads, complex
queries are used to search a large amount of data in the
database. The execution time of each query is long (from
tens of seconds to several hours), and the queries mainly
read the database sequentially.

2.1.1.3 E-commerce Workloads
E-commerce is a new way of selling products or services
through the Internet. Customers access an e-commerce web
site from their web browsers. A typical e-commerce system
contains a back-end database server and several front-end
servers, including web servers, web caches, and image
servers. Figure 2.2shows a typical structure of an e-
commerce environment. The web servers provide web pages
to browsers. The image servers provide images to browsers.
The web cache servers cache the search results of client
requests to reduce the load on the database server. The back-
end database server stores the information of customers and
products and processes user transactions.

Figure 2.2: E-Commerce Environment

2.2 Tpc-C Workload Characterization

The TPC-C benchmark models the order processing
operations of a wholesale supplier with some geographically
distributed sales districts and associated warehouses. The
business environment is illustrated in Figure2.3.In the TPC-

C benchmark; the number of warehouses is a variable which
determines the scale of the benchmark. Each warehouse has
10 sales districts and each district serves 3000 customers.
The supplier has 100,000 items for sale. The initial size of
one warehouse is about 100M bytes data.

Paper ID: 04081404 234

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2.3: TPC- Business Environment

3. Future Work

There are many open research issues related to this thesis
work. Some possible future research directions may include:

[1] Studying whether the self-tuning page cleaning

algorithm can respond well to workload changes in the
system.

[2] Implementing the self-tuning page cleaning algorithm in
a real DBMS system and evaluating its performance
under real workloads.

[3] Implementing and evaluating the multi-region cache
approach in real systems.

[4] Improving the multi-region cache so that its
performance is more stable when a large number of
regions are used. Simulation results indicate that the hit
ratio of the multi-region cache decreases when there are
too many regions. This is because some regions have
too low hit ratios. If these regions can be identified and
their pages can be rearranged, multi-region cache could

[5] Achieve good performance even when many regions are
used.

[6] Designing new cache replacement algorithms which can
take advantage of full region scan at cache misses using
multi-region cache. Scanning the whole region on a
cache miss incurs little overhead when each region is
small. This relaxes the time complexity from O (1) to O
(n), and thus enables more design choices when
designing replacement algorithms.

References

[1] EMC Corporation
[2] Network Appliance Inc.
[3] Microsoft Corporation. “Microsoft SQL Server 7.0

storage engine capacity planning tips”. MSDN Library,
March 1999.

[4] Dave Anderson, Jim Dykes, and Erik Riedel.” More
than an interface | SCSIvs. ATA”.

[5] Windsor W. Hsu, Alan Jay Smith, and Honesty C.
Young. “Characteristics of production database
workloads and the TPC benchmarks.”

[6] Said S. Ulnar. “A methodology for auto-recognizing
DBMS workloads”.

[7] Transaction processing performance council.
[8] Kevin W.Froese and Richard B. Bunt. “The effect of

client caching on file server workloads”.
[9] Dominic Giampaolo. “Practical File System Design.

Morgan Kaufmann, 1999.”
[10] David Jacobson and John Wilkes. “Disk scheduling

algorithms based on Rotational position”.

Author Profile

Neha Upadhyaya is pursuing Match from Department of
Computer Science & Engineering World College of
Technology And Management& Affiliated To Maharshi
Dayanand University,Haryana, India

Paper ID: 04081404 235

