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Abstract: Engine management system not only involved the manufacturing of engines but also involved the science which provides 
efficient performance of any engine. The mixture experiments play an important role especially when our aim is to increase the octane 
rating of the engine. These experiments involved the empirical prediction of the responses to any mixture of the components when the 
response depends only on proportions of the fuel components but not on the total amount of fuel mixture. In this paper, we present the 
study to show the importance of these experiments in engine management system and diagnosis techniques for leverage and influential 
points for these experiments.  
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1. Introduction  
 
Since the landmark articles by Scheffe (1958, 1963), 
researchers have proposed many criteria for evaluating and 
comparing mixture experiments. The purpose of these 
designs is the empirical prediction of the response to any 
mixture of the components when the response depends only 
on the proportions of the components but not on the total 
amount of mixture. In this type of experiment, the quality of 
the end product depends on the relative proportions of the 
components in the mixture. If we denote the number of 
components in the mixture by � and the proportion 
contributed by �� for the ��� component (� = 1,2, … … , �), 
the following constraints apply to the mixture component 
proportions 

0 ≤ �� ≤ 1 

� ��

�

���

= 1 

The experimental region defined by these by constraints is a 
(� − 1) dimensional simplex. Often further constraints are 
imposed on the mixture components that in a design with the 
shape of a simples. When additional constraints are imposed 
on the component proportional in the form of lower and 
upper bounds 

0 < �� ≤ �� ≤ �� < 1 
or as the linear multicomponent constraints, 

�� ≤ ����� + ����� + … … … + ����� ≤ ��  
where the ���, �� and ��  are scalar constants, these 
additional constraints may alter the shape of the 
experimental region from that of a simplex to one of an 
irregularly shaped convex polyhedron inside the simplex. 
 
Mixture model forms most commonly used fitting mixture 
data are the canonical polynomials introduced by Scheffe 
(1958, 1963). The first degree or liner blending model is  

� = � ����

�

���

+ � 

where� represents the observed value of the response, the 
coefficient �� is the expected response to component � and � 
is the random error in the observed response value having 

expectation zero and variance ��. The second-degree or 
binary nonlinear blending model is  

� = � ����

�

���

+ � � �������
���

+ � 

where��� is a measure of nonlinear blending of components � 
and �.  
 
These mixture models play an important role in engine 
management system especially when we talk about the 
octane rating. It is a standard measure of the performance of 
a motor or aviation fuel. The higher the octane number the 
more compression the fuel can withstand before detonating. 
The motor octane rating or motor octane number (MON) is 
determined at 900 rpm engine speed instead of 600 rpm for 
research octane number (RON). They are determined by 
running the fuel in a test engine with a variable compression 
ratio under controlled conditions and comparing the results 
with these for mixtures of iso-octane. Depending on the 
composition of the fuel, the MON of a modern engine 
gasoline will be about 8 to 12 octane lower than the RON, 
but there is no direct link between RON and MON. These 
engines specifications typically require both a minimum 
RON and minimum MON. 
 
Cornell (2002) mentioned the data for motor octane ratings 
from 12 different blends in an effort to determine the effects 
of the following gasoline blending components with the 
specified ranges 
 
Straight run (��): 0 ≤ �� ≤ 0.21 
Reformate (��): 0 ≤ �� ≤ 0.02 
Thermally cracked naphtha (��): 0 ≤ �� ≤ 0.12 
Catalytically cracked naphtha (��): 0 ≤ �� ≤ 0.62 
Polymer (��): 0 ≤ �� ≤ 0.12 
Alkylate (��): 0 ≤ �� ≤ 0.74 
Natural Gasoline (��): 0 ≤ �� ≤ 0.08 
 
The response values and the component setting are presented 
in the Table 1.1 
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Table 1.1: Gasoline Motor Octane Ratings 
S.No �� �� �� �� �� �� �� y 

1 0.00 0.23 0.00 0.00 0.00 0.74 0.03 98.70 
2 0.00 0.10 0.00 0.00 0.12 0.74 0.04 97.80 
3 0.00 0.00 0.00 0.10 0.12 0.74 0.04 96.60 
4 0.00 0.49 0.00 0.00 0.12 0.37 0.02 92.00 
5 0.00 0.00 0.00 0.62 0.12 0.18 0.08 86.60 
6 0.00 0.62 0.00 0.00 0.00 0.37 0.01 91.20 
7 0.17 0.27 0.10 0.38 0.00 0.00 0.08 81.90 
8 0.17 0.19 0.10 0.38 0.02 0.06 0.08 83.10 
9 0.17 0.21 0.10 0.38 0.00 0.06 0.08 82.40 
10 0.17 0.15 0.10 0.38 0.02 0.10 0.08 83.20 
11 0.17 0.36 0.12 0.25 0.00 0.00 0.06 81.40 
12 0.00 0.00 0.00 0.25 0.00 0.37 0.08 88.10 

 
This situation truly defines the mixture experiment under the 
restricted region (with lower and upper bound restrictions). 
These types of experiments are very common in the field of 
engine management especially when our aim is to increase 
the octane rating of the engine. The octane rating of the 
engine is increased by using proper blending of the 
components. Therefore, it is mandatory that these blending 
should be proper. When, in statistics, we talk about the 
proper blending of component, it means, they should not be 
leverage and/or influential point. 

2. Diagnostics for Leverage and Influence 
 
As we know that each observation in the sample has the 
same weight in determining the outcome. In the regression 
situation, this is not the case. The location of observation in 
�-space may affect the regression coefficients. Therefore, 
our basic aim is too focused on these observations so that 
our fitted model should be adequate. It is generally observed 
that outliers are often identified by unusually large residuals 
and that these observations can also affected the regression 
results. It is important to use diagnostics for leverage and 
influence in conjunction with the residual analysis 
techniques. Sometimes we find that a regression coefficient 
may have a sign that does not make engineering or scientific 
sense, a regressor known to be important may be statistically 
insignificant, or a model that fits the data well and that is 
logical form an application-environment perspectives may 
produce poor predictions. These situations may be the result 
of one or perhaps a few influential observations. Due to the 
importance of leverage and influential observations we use 
different diagnostics here. 
 
For understanding the basic behind the leverage and 
influence point consider the following fingers. 

 

 
 

The point labeled A in Figure 1 is remote in �-space from 
the rest of the sample, but it lies almost on the regression 
line passing through the rest of the sample points. This is an 
example of a leverage point i.e. it has an unusual �-value 
and may control certain model properties. This point does 
not affect the estimates of the regression coefficients but it 
certainly will have a dramatic effect on the model summary 
statistics such as �� and the standard error of the regression 
coefficient. But the point labeled A in Figure 2, this point 
has a moderately unusual �-coordinate and the � value is 
unusual as well. This is an influence point, i.e. it has a 
noticeable impact on the model coefficients in that it pulls 
the regression model in its direction. In an extreme case, the 
parameter estimates may depend more on the influential 
subset of points then on majority of the data. This is 
obviously an undesirable situation we would like for a 
regression model to be representative of all of the sample 
observations not an artifact of few. Consequently, we would 
like to find these influential points are indeed bad values 
then they should be eliminated from the sample. On the 
other hand, there may be nothing wrong with these points, 

but if they control key model properties we would like to 
know it as it could affect the end use of the regression 
model.  
 
As remote points potentially have disproportionate impact 
on the parameter estimates, standard error, predicted value 
and model summary statistics. The hat matrix  

� = �(�′�)���′ 
plays an important role in identifying influential 
observations. The hat matrix � determines the variances and 
covariance of ��and �, since var(��) = ���and var(�) =
��(� − �). The elements ℎ��  of the matrix �, which may be 
given as 

ℎ�� = ��
′ (�′�)���� 

where��
′ is the ��� row of the � matrix. The hat matrix 

diagonal is a standardized measure of the distance of the ��� 
observation from the center of the �-space. Thus, large hat 
diagonals reveal observations that are potentially influential 
because they are remote in �-space from the rest of the 
sample. It turns out that the average size of the hat diagonal 
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is ℎ� = �
�
, because ∑ ℎ��

�
��� = ����(�) = ����(�) = � and 

traditionally assume that any observation for which the hat 
diagonal exceeds twice the average ��

�
 is remote enough 

from the rest of the data to be considered a leverage point. 
 
Cook (1977, 1979) has suggested a way to measure 
influence using a measure of the squared distance between 
the least-squares estimate based on all � points �� and the 
estimate observed by deleting the ��� point, say ��(�). This 
distance measure can be expressed as  

��(�′�, ������) ≡ �� =
���(�) − ���′�′����(�) − ���

������
 

 =
��

�

�
���(���)
���(��)

=
��

�

�
ℎ��

(1 − ℎ��) 

Apart from the constant �, ��  is the product of the square of 
the ���studentized residual and ���

(�����)
. This ration can be 

shown to be the distance from the vector ��to the centroid of 
the remaining data. Thus, ��  is made up of a component that 
measures how well the model fits the ��� observation ��  and 
a component that measures how far that point is from the 
rest of the data. 
 
The magnitude of ��  is usually assessed by comparing it to 
��,�,���. If �� = ��,�,���, then deleting point � would move 
��(�)boundary of an approximate 50% confidence region 
for� based on the complete data set. This is a large 
displacement and indicates that the least-squares estimate is 
sensitive to ��� data point. Since ��,�,��� ≅ 1, we usually 
consider points for which �� > 1 to be influential.  
 
As Cook’s distance measure is a deletion diagnostic, that is, 
it measures the influence of the ��� observation if it is 
removed from the sample. In similar scenario Belsley, kuh 
and Welsch (1980) introduced another measure of deletion 
influence of ��� observation on the predicted or fitted values 
and given by 

������� =
��� − ��(�)

��(�)
� ℎ��

= �
ℎ��

1 − ℎ��
�

�
��

�� 

where��(�) is the fitted value of ��  obtained without the use of 
the ��� observation. The denominator is just standardization, 
since Var(���) = ��ℎ��. Thus �������  is the number of 
standard deviations that the fitted value ��� changes if 
observation � is removed. In fact �������  is nothing but the 
value of �- student (��) multiplied by the leverage of the ��� 

observation� ���
�����

�
�

��
. If the data point has high leverage 

then ℎ��  will be close to unity. However, if ℎ�� ≅ 0, the effect 
of �- student will be moderated. Similarly a near-zero �- 
student combined with a high-leverage point could produce 
a small value of ������� . Thus, �������  is affected by 
both leverage and prediction error. Belsley, kuh and Welsch 
(1980) suggested that any observation for which 

|�������| > 2��
��  warrants attention. 

 
The diagnostics ��  and �������  provide insight about the 
effect of observations on the estimated coefficients ���ted 

values ���. They do not provide any information about 
overall precision of estimation. Since it is fairly common 
practice to use the determinant of the covariance matrix as a 
convenient scalar measure of precision, called the 
generalized variance, which is given as  

������ = ����(��)� = ���(�′�)��� 
To express the role of the ��� observation on the precision of 
estimation, we could define 

��������� =
���(�)

′ �(�)����(�)
� �

(�′�)�������
=

��(�)
� ��

�����
� �

ℎ��

1 − ℎ��
� 

Clearly if ��������� > 1, the ��� observation improves 
the precision of estimation, while ��������� < 1, 
inclusion of the ��� point degrades precision. Also Belsley, 
kuh and Welsch (1980) suggest that if ��������� > 1 +
3�

��  or if ��������� < 1 − 3�
�� , then the ��� point 

should be considered influential. The statistics for the 
leverage and influential observations for the octane ratings 
data are given in the Table 2 
 

Table 2: Statistics Obtain for Octane Rating Data 
Observations ℎ�� 

(a) 
�� 
(b) 

������� 
(c) 

��������� 
(d) 

1 0.628536 0.265038 1.378809 2.2691961 
2 0.472832 0.098846 0.809023 2.6988824 
3 0.492866 0.112731 0.868150 2.6197794 
4 0.740512 0.650773 1.513754 1.8448953 
5 0.961314 38.32691 13.60639 3.9425280 
6 0.699843 0.460353 1.487539 1.7998073 
7 0.276131 0.031705 0.448251 2.6710209 
8 0.254814 0.027668 0.418015 2.6581129 
9 0.255736 0.027793 0.418949 2.6623719 

10 0.268411 0.030251 0.437618 2.6619701 
11 0.900000 0.543591 0.404068 1.9448353 
12 0.949004 21.78343 13.81912 4.0579872 

 
3. Conclusion and Discussion  
 
Engine management system not only involved the 
manufacturing of engines but also involved the science 
which provides efficient performance of any engine. The 
performance of the engine can be measured by their octane 
rating. This rating of engines is totally depends on the 
combination of fuel which is used to run it. The mixture 
experiments play an important role especially when our aim 
is to increase the octane rating. These experiments involved 
the empirical prediction of the responses to any mixture of 
the components when the response depends only on 
proportions of the fuel components but not on the total 
amount of fuel mixture. Because of our aim, it is mandatory 
that fuel blending should be proper. In statistics, the 
blending should be proper, it means, there is no leverage 
and/or influential points. Due to this reason the diagnostic 
for these points should be important so that our fitted model 
should be adequate. The statistics in column b of Table 2 
contains the value of Cook’s measure. The larger values of 
the ��  statistics are ��and ���, which indicate that deletion 
of observation 5 and 12 would move the least square 
estimate. Therefore, we would conclude that observation 5 
and 12 are definitely influential using the cutoff of unity. 
Inspection of column c also reveals that both points 5 and 12 
are influential. Column d contains the values of ���������  
and their cutoff values are 1.75 and 2.75. Note that the 
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values of ��������� and ���������� exceed these 
limits. Both observation tends to improve the precision 
because their�������� > 1. Hence we can say that 
observation 5 and 12 are influential and change our model 
statistics. 
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