
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Random Walk through the Dark Side of NoSQL
Databases in Big Data Analytics

Kudakwashe Zvarevashe1, Tatenda Trust Gotora2

1M Tech Student, Department of CSE, Jawaharlal Nehru Technological University, Hyderabad, India
500085, Kukatpally, Hyderabad, Andhra Pradesh, India

2M Tech Student, Department of Software Engineering, Jawaharlal Nehru Technological University, Hyderabad, India
500085, Kukatpally, Hyderabad, Andhra Pradesh, India

Abstract: The massive growth of technology has greatly stimulated the need to generate data. Every day people and companies
generate enormous amounts of data and this data may be structured, unstructured, semi-structured or a combination of all. This has
called for the need to design databases which can store this type and volume of data and NoSQL databases have been the antidote
crafted and designed to alleviate this problem. However, the NoSQL solution to this Big Data problem has also lead to several other
problems therefore this paper seeks to reveal this problem taking a walkthrough into the structure of NoSQL databases. In addition, the
paper also makes a sneak preview of the discovered mainstream (MongoDB vs. Cassandra) NoSQL database security features analysis.

Keywords: NoSQL, big data, structured data, unstructured data, semi-structured data, MongoDB, Cassandra.

1. Introduction

The manner at which today's data is scaling is getting more
and more difficult to predict. Data is growing at an
exponential rate such that it is believed that almost 90% of
the world's data was generated over the last two years. Most
business transactions are now being processed over the web,
social networks have become the common man's factory of
data where large amounts of data is being created, processed
and stored. This data has become so big that traditional
technologies like relational databases cannot handle its
complexity as far as distributed storage and processing is
concerned. This has since led to the introduction of NoSQL
databases to the technological world.

In the years building up to 2004 [1] Google embarked on a
project to set up their very own proprietary database which
they named [3]"Big Table". Big Table was an instant hit and
it solved many of the problems with relational databases. In
2006 Yahoo built the first prototype called Hadoop and in
2008 they went commercial. Amongst the companies that
started implementing this technology, Facebook was the first
to join followed by Twitter and the others.

The term NoSQL can easily mislead a lot of intellectuals
because it sounds as if it means no SQL is allowed in this
technology. In actual fact, NoSQL stands for [2]"Not Only
SQL" which is an admission that the main aim here is not to
reject SQL but rather to compensate for the technical
limitations that are associated with relational databases.

2. Motivation

The continuous development of the Internet and cloud
computing has stimulated a number of demands which have
been big motivators behind NoSQL databases. Figure 1
below shows a list of these motivating factors.[4],[5]

Figure1: Illustration of NoSQL Motivating Factors

 High Scalability and availability:
Due to the increase in the number of concurrent requests
and data, there is need for the databases to have strong
support easy expansions without interrupting the services
being offered.

 Slow reading and writing
As the data increases relational databases become prone to
deadlocks and concurrency issues and this has lead to a
rapid decline in reading and writing.

 Limited Capacity
The existing relational databases cannot support Big Data
in search engines, SNS or Big System. The data needs of
companies like Facebook, Google, Yahoo etc cannot be
totally supported by relational databases.

 Efficient Big Data storage and access requirements
Large applications such as SNS search engines need
databases that meet the efficient storage (Petabytes level)
and which properly responds to the needs of millions of

Paper ID: 02014188 506

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

traffic.
 Expansion Difficulty

Relational databases have poor scalability in terms of
expansion due to multi-table correlation mechanism.

 High Concurrency of reading and writing with low latency
Relational databases have low concurrencies with high
latency which is the complete opposite of the required
expectations in this data laden world. In order to satisfy
the needs of customers, the database driven applications
will have to respond quickly.

The following is a list of areas where NoSQL is currently
being used.
 Social Networks
 Search engines
 Geospatial analysis
 Molecular modeling
 Data Warehousing
 Caching

3. The CAP Theorem

When designing a distributed system it is very important to
understand the concept of CAP Theorem and NoSQL
databases are no exceptions when it comes to these issues. In
2000, Professor Eric Brewer conjectured that a distributed
system cannot simultaneously provide all three of the
following desirable properties:

 Consistency: A read sees all previously completed writes.
 Availability: Reads and writes always succeed.
 Partition tolerance: Guaranteed properties are maintained

even when network failures prevent some machines from
communicating with others.

Therefore NoSQL databases can be classified using the CAP
Theorem. The entire current NoSQL database follow the
different combinations of the C, A, P from the CAP theorem.
Here is the brief description of three combinations CA, CP,
AP:

i)Consistency with Availability
These types of data bases are mainly concerned with
consistency and availability. Systems concern the CA are:
the traditional relational database, Vertica (Column-
oriented), Aster Data (Relational) , Greenplum (Relational)
and so on.

Figure2: Illustration of the CAP Theorem
ii)Consistency with Partition Tolerance
Such a database system stores data in the distributed nodes,
but also ensures the consistency of the data, but it does not
have good support for availability. Example of databases
which employ the CP system are: BigTable (Column-
oriented), Hypertable (Column-oriented), HBase(Column-
oriented),MongoDB(Document),Terrastore(Document),Redi
s(Key-value),Scalaris(Key-value),MemcacheDB(Key-
value), Berkeley DB (Key-value).

iii)Availability with Partition Tolerance
Such systems ensure availability and partition tolerance
primarily by achieving consistency, AP's system: Voldemort
(Key-value), Tokyo Cabinet (Keyvalue), KAI (Key-value),
CouchDB (Documentoriented), SimpleDB (Document-
oriented), Riak(Document-oriented).

4. Top Challenges of NoSQL databases

The promise of the NoSQL database has generated a lot of
enthusiasm, but there are many obstacles to overcome before
they can appeal to mainstream enterprises [6]. The
challenges of NoSQL databases can be grouped into a five
letter achronym: BEAMS.

 Business Intelligence and Analytics
 Expertise
 Administration
 Maturity
 Support

i)Maturity
RDBMS systems have been around for a long time. NoSQL
advocates will argue that their advancing age is a sign of
their obsolescence, but for most CEOs, the maturity of the
RDBMS is reassuring. For the most part, RDBMS systems
are stable and richly functional. In comparison, most NoSQL
alternatives are in pre-production versions with many key
features yet to be implemented. Living on the technological
leading edge is an exciting prospect for many developers,
but enterprises should approach it with extreme caution [6].

Paper ID: 02014188 507

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: Top Challenges of NoSQL Databases

ii)Support
Enterprises want the reassurance that if a key system fails,
they will be able to get timely and competent support. All
RDBMS vendors go to great lengths to provide a high level
of enterprise support.

In contrast, most NoSQL systems are open source projects,
and although there are usually one or more firms offering
support for each NoSQL database, these companies often are
small start-ups without the global reach, support resources,
or credibility of an Oracle, Microsoft, or IBM[6].

iii)Business Intelligence and Analytics
NoSQL databases have evolved to meet the scaling demands
of modern Web 2.0 applications. Consequently, most of their
feature set is oriented toward the demands of these
applications. However, data in an application has value to
the business that goes beyond the insert-read-update-delete
cycle of a typical Web application. Businesses mine
information in corporate databases to improve their
efficiency and competitiveness, and business intelligence
(BI) is a key IT issue for all medium to large companies.

NoSQL databases offer few facilities for ad-hoc query and
analysis. Even a simple query requires significant
programming expertise, and commonly used BI tools do not
provide connectivity to NoSQL.

Some relief is provided by the emergence of solutions such
as HIVE or PIG, which can provide easier access to data
held in Hadoop clusters and perhaps eventually, other
NoSQL databases. Quest Software has developed a product -
- Toad for Cloud Databases -- that can provide ad-hoc query
capabilities to a variety of NoSQL databases.

iv) Administration
The design goals for NoSQL may be to provide a zero-
admin solution, but the current reality falls well short of that
goal. NoSQL today requires a lot of skill to install and a lot
of effort to maintain.

5. Data Security Challenges of NoSQL
databases

Lior Ohkman et al in [7] reviewed two of the most popular
NoSQL databases (Cassandra and MongoDB) and outlined
their main security features and problems.

A. Overview of Cassandra and MongoDB

1) Cassandra

Cassandra is a database management system designed to
handle very large amounts of data which is distributed across
several servers while providing a highly available service
with no single point of failure. Its characteristics are:

 The schema is very flexible and does not require the
designing of a database schema first and then add and
delete fields are very convenient.

 Supports range queries
 It has high scalability such that a single point of failure

does not affect the whole cluster and it supports linear
expansion.

The security features of Cassandra were summarized into a
tabular format in Table1 below:

Table 1: Security Features in Cassandra

2) MongoDB

MongoDB (from”humongous”) is a schema-free, document-
oriented database written in the C++ programming language.
The database is document-oriented in that it manages
collections of schema-less JSON-like documents. This
allows data to be nested in complex hierarchies and still be
query-able and indexable[8]. Its features are:

Paper ID: 02014188 508

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Flexibility
MongoDB stores data in JSON documents (which we
serialize to BSON). JSON provides a rich data model that
seamlessly maps to native programming language types,
and the dynamic schema makes it easier to evolve your
data model than with a system with enforced schemas such
as a RDBMS [8].

 Power
MongoDB provides a lot of the features of a traditional
RDBMS such as secondary indexes, dynamic queries,
sorting, rich updates, upserts (update if document exists,
insert if it doesn’t), and easy aggregation. This gives you
the breadth of functionality that you are used to from an
RDBMS, with the flexibility and scaling capability that the
non-relational model allows [8].

 Speed/Scaling
By keeping related data together in documents, queries can
be much faster than in a relational database where related
data is separated into multiple tables and then needs to be
joined later. MongoDB also makes it easy to scale out
your database. Autosharding allows you to scale your
cluster linearly by adding more machines. It is possible to
increase capacity without any downtime, which is very
important on the web when load can increase suddenly and
bringing down the website for extended maintenance can
cost your business large amounts of revenue [8].

 Ease of use
MongoDB works hard to be very easy to install, configure,
maintain, and use. To this end, MongoDB provides few
configuration options, and instead tries to automatically do
the “right thing” whenever possible [8]. This means that
MongoDB works right out of the box, and you can dive
right into developing your application, instead of spending
a lot of time fine-tuning obscure database configurations.
The security features of MongoDB were summarized into
a tabular format in Table2 below:

Table1: Security Features in MongoDB

6. Conclusion and Future work

In this paper we have managed to combine several problems
discovered by several researches in NoSQL databases. We
have also managed to reveal the security issues associated
with NoSQL databases using a case study of Cassandra and
MongoDB which was discovered by Lior Ohkman et al in
[7]. The main problems they discovered common to both
systems include lack of encryption support for the data files,
weak authentication both between the client and the servers
and between server members, very simple authorization
without support for RBAC or fine-grained authorization, and
vulnerability to SQL injection and Denial of Service attacks.
For our future work we would like to design an
authentication system that is production ready for cassandra
an to design an API that counters the issues of Injections in
NoSQL databases.

References

[1] Bill Vorhies, "A Brief History of Big Data
Technologies from SQL to NoSQL to Hadoop and
Beyond",para.4, Oct 31, 2013 http://data-
magnum.com/a-brief-history-of-big-data-technologies-
from-sql-to-nosql-to-hadoop-and-beyond/

[2] https://www.usenix.org/legacy/publications/login/2011-
10/openpdfs/Burd.pdf

[3] Google BigTable: http://labs .google
.com/papers/bigtable .html

[4] Kai Fan, "Survey on NoSQL", Programmer, 2010(6):
pp 76-78

[5] Jing Han, Meina Song, and Junde Song, A Novel
Solution of Distributed Memory NoSQL Database for
Cloud Computing", in ICIS 2011, 10th IEEE/ACIS
International Conference on Computer and Information
Science, 2011

[6] Guy Harrison "Ten Things You Should Know About
NoSQL Databases", para.7, Aug 26, 2010
http://www.techrepublic.com/blog/10-things/10-things-
you-should-know-about-nosql-databases/

[7] Lior Okman, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes,
Jenny Abramov, "Security Issues in NoSQL Databases"
2011 International Joint Conference IEEE.

[8] http://www.mongodb.org/about/introduction/

Author Profile

Kudakwashe Zvarevashe: Attained his BSc degree in
Information Systems at MSU, Zimbabwe in 2010. He
is currently doing M Tech IT final year at JNTUH,
India. He is a HIT staff development research fellow.
His research interests are in the area of big data,

information security, cloud computing and web services.

Tatenda Trust Gotora: Attained his BSc degree in
Computer Science at MSU, Zimbabwe in 2011. He is
currently doing M Tech SE final year at JNTUH,
India. He is a HIT staff development research fellow.

His research interests are in the area of mobile computing, big data,
information security and web services.

Paper ID: 02014188 509

