
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Selective Jamming Attacks Prevented By Packet-
Hiding Methods

Sontam Sunil Kumar Reddy1, K. Raghavendra Rao2

1M. Tech student, Department of CSE, Anurag Group of Institutions, Hyderabad, India

2Assistant Professor, Department of CSE, Anurag Group of Institutions, Hyderabad, India

Abstract: The open nature of the wireless medium leaves it vulnerable to intentional interference attacks, typically referred to as
jamming. This intended interference with wireless transmissions can be used as a launchpad for increasing Denial-of-Service attacks on
wireless networks. in general, jamming has been addressed under an external threat model. Though, adversaries with internal
knowledge of protocol specifications and network secrets can launch low-effort jamming attacks that are difficult to detect and counter.
In this, we address the problem of selective jamming attacks in wireless networks and in these attacks, the adversary is active only for a
less period of time, selectively targeting messages which are highly importance. We illustrate the advantages of selective jamming in
terms of network performance degradation and adversary effort by presenting two case studies; a selective attack on TCP and one on
routing. In this we show that selective jamming attacks can be launched by performing real-time packet classification at the physical
layer. To moderate these attacks, we develop three schemes that prevent real-time packet classification by combining cryptographic
primitives with physical-layer attributes. Analyzing the security of our methods and evaluate their computational and communication
overhead.

Keywords: Selective Jamming, Denial-of-Service, Wireless Networks, Packet Classification.

1. Introduction

Wireless networks rely on the uninterrupted availability of
the wireless medium to interconnect participating nodes.
Still, the open nature of this medium leaves it helpless to
multiple security threats and anyone with a transceiver can
listen in on wireless transmissions, inject false messages, or
jam genuine ones. While eavesdropping and message
injection can be prevented using cryptographic methods,
where jamming attacks are much harder to counter. They
have been shown to make reality of severe Denial-of-
Service. Typically, jamming attacks have been considered
under an external threat model in which jammer is not part of
the network. In this model, jamming strategies include the
continuous or random transmission of high-power
interference signals [9], [16]. However, adopting an “always-
on” strategy has several disadvantages. First, the opponent
has to expend a significant amount of energy to jam
frequency bands of interest. Second, the nonstop presence of
unusually high interference levels makes this type of attacks
easy to detect.

Conventional anti-jamming techniques rely on spread-
spectrum communications.[9], or some form of jamming
evasion (e.g., slow frequency hopping, or spatial retreats []).
SS techniques provide bit-level protection by spreading bits
according to a secret pseudo-noise (PN) code, known only to
the communicating parties. These methods can only defend
wireless transmissions under the external threat model.
Possible disclosure of secrets due to node compromise
neutralizes the gains of SS. The broadcast communications
are particularly vulnerable under an internal threat model
because all intended receivers must be aware of the secrets
used to protect transmissions. Hence, the compromise of a
single receiver is sufficient to reveal relevant cryptographic
information.

To launch selective jamming attacks, the opponent must be
capable of implementing a “classify-then-jam” strategy
before the completion of a wireless transmission. Such plan
can be actualized either by classifying transmitted packets
using protocol semantics [1], [13], or by decoding packets on
the fly In the latter method, the jammer may translate the
first few bits of a packet for recovering useful packet
identifiers such as packet type, source and the destination
address. After classification, the opponent must induce a
sufficient number of bit errors so that the packet cannot be
recovered at the receiver []. Selective jamming requires an
intimate knowledge of the physical (PHY) layer, as well as
of the specifics of upper layers.

2. Literature Survey

Set M. Strasser, C. Popper, and S. Capkun [12] proposed a
Uncoordinated Frequency Hopping (UFH), a new spread-
spectrum anti-jamming technique that does not rely on secret
keys A major limitation of common anti-jamming techniques
(such as FHSS and DSSS) is their dependency on a secret
shared by the sender and the receiver; the secret is required
to coordinate the used frequency channels or code sequences
and must not be known to an attacker. This dependency
precludes the application of common anti-jamming
techniques in scenarios where the parties cannot resort to
shared secrets; these include anti-jamming key establishment
and anti-jamming broadcast to a (partially) unknown or un-
trusted group of receivers. Uncoordinated Frequency
Hopping (UFH), a new spread-spectrum antijamming
technique that does not rely on shared secret keys. With
UFH, two communicating nodes hop among a set of known
frequency channels in an uncoordinated and random manner.

 M. Cagalj, S. Capkun, and J.P. Hubaux [2] proposed how
the sensor nodes can exploit channel diversity in order to
create wormholes that lead out of the jammed region, during
which an alarm can be transmitted to the network operator.

Paper ID: SEP1444 18

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

we investigate an attack where the attacker masks the event
(event masking) that the sensor network should detect by
stealthily jamming an appropriate subset of the nodes. In this
way, the attacker prevents the nodes from reporting what
they are sensing to the network operator. Timely detection of
such stealth attacks is particularly important in scenarios in
which sensors use reactive schemes to communicate events
to the network sink. Event masking attacks result in a
coverage paradox: Even if an event is sensed by one or
several nodes (and the sensor network is otherwise fully
connected), the network operator cannot be up to date on
time about the event.

Guolong Lin Guevara Noubir [6] investigated and analyzed
the performance of combining a cryptographic interleaver
with various coding schemes to improve the robustness of
wireless LANs for IP packets transmission [1]. A
concatenated code that is simple to decode and can maintain
a low Frame Error Rate (FER) under a jamming effort ratio
of 15%. We argue that LDPC codes will be very suitable to
prevent this type of jamming.

 Ronald L. Rivest [7] proposed a new mode of encryption for
block ciphers, we this call all-or-nothing encryption. This
mode has the interesting major property that one must
decrypt the entire ciphertext before one can determine even
one message block. This way that Brute-force searches
against all-or-nothing encryption are slowed down by a
factor equal to the number of blocks in the ciphertext. We
give a exact way of implementing all-or-nothing encryption
using a” package transform” as a pre-processing step to a
ordinary encryption mode.

 Wenyuan Xu, Wade Trappe, Yanyong Zhang and Timothy
Wood [15] examined radio interference attacks from both
sides of the issue: first, they studied the problem of
conducting radio interference attacks on wireless networks,
and second they examine the critical issue of diagnosing the
presence of jamming attacks. Specifically, they proposed
four different jamming attack models that can be used by an
adversary to disable the operation of a wireless network, and
estimate their effectiveness in terms of how each method
affects the ability of a wireless node to send and receive
packets. Then they discuss different measurements that serve
as the basis for detecting a jamming attack, and discover
scenarios where each measurement by itself is not enough to
reliably classify the presence of a jamming attack.

Wireless communication is susceptible to radio interference,
which prevents the response of communications. While
evasion strategies have been proposed, such strategies are
costly or unsuccessful against broadband jammers.

Wenyuan Xu, Wade Trappe and Yanyong Zhang proposed
[16] an alternative to evasion strategies that involves the
establishment of a timing channel that exists in spite of the
existence of jamming. The timing channel is built using
failed packet reception times. We show that it is possible to
detect failed packet events in spite of jamming. We then
explore single sender and multi-sender timing channel
constructions that may be used to build a low-rate overlay
link-layer. We talk about implementation issues that we have
overcome in constructing such jamming resistant timing

channel, and current the results of validation efforts using the
MICA2 platform. To finish, we examine additional error
correction and authentication mechanisms that may be used
to cope with adversaries that both jam and seek to corrupt
our timing channel.

3. Real-Time Packet Classification

In this section, we describe how the adversary can classify
packets in real time, prior to the packet transmission is
completed. Once a packet is classified, the opponent may
choose to jam it depending on his strategy.

 Consider the generic communication system depicted in
Fig.2. At the PHY layer, a packet m is encoded, interleaved,
and changes before it is transmitted over the wireless
channel. At receiver, the signal is demodulated, de-
interleaved, and decoded, to get better the original packet m.

Figure 2: A generic communication system
diagram

The adversary’s ability in classifying a packet m depends on
the implementation of the blocks in Fig.2. The channel
encoding block expands the original bit sequence m, adding
required redundancy for protecting m against channel errors.
For ex, an α/β-block code may protect m from up to e errors
per block. Instead, an α/β-rate convolutional encoder with a
constraint the length of Lmax, and a free distance of ebits
provides similar protection. For our purposes, we think that
the rate of the encoder is α/β. At next block, interleaving is
applied to protect m from burst errors. For ease, we consider
a block interleaver that is defined by a matrix The de-
interleaver is simply the transpose of A. At last, the digital
modulator maps the received bit stream to symbols of length
q, and change them into suitable waveforms for transmission
over the wireless channel. Typical modulation techniques
include BPSK,OFDM,16(64)-QAM, and CCK.

In order to recover any bit of m, the beneficiary must collect
d.β bits for de-interleaving. Then the d.β de-interleaved bits
are then passed during the decoder. Ignoring any propagation
and decoding delays, the delay in anticipation of decoding
the first block of data is symbol durations. As an ex,
in the 802.11a standard, an operating at the lowest rate of 6
Mbps, and the data is passed via a 1/2-rate encoder before it
is mapped to an OFDM symbol of q = 48 bits. In this case,
decoding of one symbol provides 24 bits of data. At highest
data rate of 54 Mbps, 216 bits of data are improved per
symbol.

From our analysis, it is evident that intercepting the first few
symbols of a packet is sufficient for obtaining relevant

Paper ID: SEP1444 19

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

header information. For ex, consider the transmission of a
TCP-SYN packet used for establishing a TCP connection at
the transport layer. Suppose an 802.11a PHY layer with a
transmission rate of 6 Mbps. At PHY layer, a 40-bit header
and a 6-bit tail are appended to the MAC packet carrying the
TCP-SYN packet. At the next stage, the 1/2-rate
convolutional encoder maps the packet to a sequence of
1,180 bits. In order, the output of the encoder is split into 25
blocks of 48 bits each and interleaved on a per-symbol basis.
At last, each of the blocks is modulated as an OFDM symbol
for transmission. The information enclosed in each of the 25
OFDM symbols is as follows:
• Symbols 1-2 contain the PHY-layer header and the first

byte of MAC header. And the PHY header reveals the
length of the packet, transmission rate, and
synchronization information. The 1st byte of the MAC
header reveals the protocol version and the type and
subtype of the MAC frame (e.g., DATA, ACK).

• Symbols 3-10 have the source and destination MAC
addresses, and the length of the IP packet header.

• Symbols 11-17 contain the source and destination IP
addresses and the size of the TCP datagram carried by the
IP packet, and the other IP layer information. The first 2
bytes of the TCP datagram reveal the source port.

• Symbols 18-23 hold the TCP destination port, sequence
number, acknowledgment number, TCP flags, window
size, and the header checksum.

• Symbols 24-25 contain the MAC CRC code.

Our example illustrates that a packet can be classified at
different layers and in different ways. MAC layer
classification is achieved by receiving the first 10 symbols.
IP layer categorization is achieved by receiving symbols 10
and 11, as TCP layer classification is achieved by symbols
12-19. Perceptive solution to selective jamming would be the
encryption of transmitted packets (including headers) with a
static key. Though, for broadcast communications, this
standing decryption key must be known to all intended
receivers and therefore, is susceptible to compromise. An
adversary in possession of the decryption key can start
decrypting as early as the reception of the first ciphertext
block. For ex, consider the cipher-block chaining (CBC)
mode of encryption. To encrypt a message m with a key k
and an initialization vector IV, message m is split into x
blocks m1, m2, . . .mx, and each ciphertext block , is
generated as:

where Ek(m) denotes the encryption of m with key k. The
plaintext is recovered by:

Note from (2) that reception of ci+1 is sufficient to recover
mi if k is known (c1 = IV is also known). So, real-time
packet classification is still possible.

One solution to the key compromise problem would be to
update the static key whenever it is compromised. Also, such
a solution is not useful if the compromised node obtains the
new key. This is avoided if there is a mechanism by which
the set of compromised nodes can be identified. Such a job is
non-trivial when the leaked key is shared by multiple nodes.
Any node that have the shared key is a candidate malicious

node. Also, even if the encryption key of a hiding scheme
were to remain secret, the fixed portions of a transmitted
packet could potentially lead to packet classification. This is
because for computationally-capable encryption methods
such as block encryption and the encryption of a prefix
plaintext with the same key yields a static ciphertext prefix.
Therefore, an adversary who is aware of the underlying
protocol specifics (structure of the frame) can use the static
ciphertext portions of a transmitted packet to classify it.

4. Impact of Selective Jamming

In this section, we illustrate the impact of selective jamming
attacks on the network performance. We used OPNET
Modeler 14.5 to implement selective jamming attacks in two
multi-hop wireless network scenarios. In the first scenario,
the attacker targeted a TCP connection established over a
multi-hop wireless route. In the second scenario, the jammer
targeted network-layer control messages transmitted during
the route establishment process.

Figure 3: (a) Average application delay E[D], (b) average
effective throughput E[T], (c) number of packets jammed,

(d) fraction of time the jammer is active, (e) number of
connections established in the network, (f) fraction of time

the jammer is active. R p: random jammer with probability p;
Con.: constant jammer; Sel.: selective jammer.

5. Hiding Based on Commitments

In this section, we explain that the problem of real-time
packet classification can be mapped to the hiding property of
commitment schemes, and propose a packet-hiding scheme
based on commitments.

5.1 Mapping to Commitment Schemes

Commitment schemes are cryptographic primitives that
allow an entity A, to assign to a value m, to an entity V while
keeping m hidden. assurance schemes are formally defined
as follows.

Commitment Scheme: A commitment scheme is a two-
phase interactive protocol defined as a triple {X,M, E}. Set
X = {A, V} denotes two probabilistic polynomial-time
interactive parties, anywhere A is known as the committer
and V as the verifier; set M denotes the message space, and

Paper ID: SEP1444 20

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

set E = {(ti, fi)} denotes the events occurring at protocol
stages ti (i = 1, 2), as per functions fi (i = 1, 2). During
commitment stage t1, A uses a commitment function f1 =
commit() to generate a pair (C, d) = commit(m), where (C, d)
is called the commitment/de-commitment pair. At the end of
stage t1, A releases the assurance C to V. In the open stage
t2, A releases the opening value d. Upon reception of d, V
opens the assurance C, by applying function f2 = open(), thus
obtaining a value of m′ = open(C, d). This stage culminates
in either acceptance (m′ = m) or rejection of the
commitment by V. Commitment schemes assure the
following two fundamental properties:

Hiding: For every polynomial-time party V interacting with
A, there is no (probabilistic) polynomially efficient algorithm
that would allow V to associate C with m and C′ with m′,
without access to the de-commitment values d or d′
respectively, and with non-negligible probability.

Binding: For every polynomial-time party A interacting with
V, there is no (probabilistic) polynomially efficient algorithm
that would allow A to generate a triple (C, d, d′), such that V
accepts the commitments (C, d) and (C, d′), with non-
negligible probability.

In our context, the role of the committer is assumed by the
transmitting node S. The function of the verifier is assumed
by any receiver R, including the jammer J. The dedicated
value m is the packet that S wants to correspond to R. To
transmit m, the sender computes the corresponding
commitment/de-commitment pair (C, d), and broadcasts C.
The hiding property ensures that m is not revealed during the
broadcast of C. To reveal m, the sender releases the de-
commitment value d, in which case m is obtained by all
receivers, as well as J. Note that the hiding property, as
defined in assurance schemes, does not consider the partial
release of d and its implications on the partial reveal of m. In
fact, a common way of opening commitments is by releasing
the committed value itself [3].

For most applications, partial reveal of m with the partial
release of d does not constitute a security risk. After all, the
committer intends to expose m by exposing d. Though, in
our context, a partial reveal of m while d is being transmitted
can lead to the classification of m before the transmission of
d is completed. Therefore, the jammer has the opportunity to
jam d instead of C once m has been classified. To avoid this
scenario, we introduce the strong hiding property:

Strong Hiding: For each polynomial-time party V
interacting with A and possessing pairs (C, dpart) and (C′,
d′part), there is no (probabilistic) polynomially efficient
algorithm that would allow V associate C with m and C′ with
m′, with non-negligble probability. Here, dpart and d′part are
partial releases of d and d′, respectively, and the remaining
parts of d and d′ are assumed to be secret.

In the above definition, it is easily seen that the release of
dpart must be limited to a fraction of d, in order for m to
remain hidden. If a major part of d becomes known to the
verifier, the trivial attacks, such as brute forcing the
unknown bits of d, turn into possible.

5.2 A Strong Hiding Commitment Scheme (SHCS)

We propose a strong hiding commitment scheme (SHCS),
which is based on symmetric cryptography. Our main
inspiration is to satisfy the strong hiding property while
keeping the computation and communication overhead to a
minimum. Assume that the sender S has a packet m for R.
First, S constructs (C, d) = commit(m), where,

Here, the commitment function Ek() is an off-the-shelf
symmetric encryption algorithm (e.g., DES or AES [27]), π1
is a publicly known permutation, and k ∈ {0, 1}s is a
randomly selected key of some desired key length s (the
length of k is a security parameter). The sender broadcasts
(C||d), where “||” denotes the concatenation operation. Upon
reaction of d, any receiver R computes

where denotes the inverse permutation of . To
satisfy the strong hiding property, the packet transport d is
formatted so that all bits of d are modulated in the last few
PHY layer symbols of the packet. To get better d, any
receiver must receive and decode the last symbols of the
transmitted packet, thus preventing early exposé of d. We
now present the implementation details of SHCS.

5.3 Implementation Details of SHCS

The proposed SHCS requires the joint consideration of the
MAC and PHY layers. To reduce the overhead of SHCS, the
de-commitment value d (i.e., the decryption key k) is carried
in the same packet as the dedicated value C. This saves the
extra packet header needed for transmitting d individually.
To get the strong hiding property, a sub-layer called the
“hiding sub-layer” is inserted between the MAC and the
PHY layer. This sub-layer is responsible for formatting m
before it is processed by the PHY layer. The functions of the
defeat sub-layer are outlined in Fig. 4.

Consider a frame m at the MAC layer delivered to the hiding
sub-layer. Frame m consists of a MAC header and payload,
followed by the clip containing the CRC code. At first, m is
permuted by applying a publicly known permutation π1. The
reason of π1 is to randomize the

Figure 4: Processing at the hiding layer

input to the encryption algorithm and delay the reception of
critical packet identifiers such as headers. Once the

Paper ID: SEP1444 21

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

permutation, π1(m) is encrypted using a random key k to
produce the commitment value C = Ek(π1(m)). Although the
random permutation of m and its encryption with a random
key k seemingly achieve the same goal (i.e., the
randomization of the ciphertext), in Section 5.4 we show that
both are essential to achieve packet hiding.

In the next step, a padding function pad() appends pad(C)
bits to C, production of a multiple of the symbol size.
Finally, C||pad(C)||k is permuted by applying a publicly
known permutation π2. The reason of π2 is to ensure that the
interleaving function applied at the PHY layer does not
disperse the bits of k to other symbols. We now there the
padding and permutation functions in detail.
Padding–The purpose of padding is to ensure that k is
modulated in the minimum number of symbols needed for its
transmission. This is essential for minimizing the time for
which parts of k become exposed. Let ℓ1 denote the number
of bits padded to C. For ease, assume that the length of C is a
multiple of the block length of the symmetric encryption
algorithm and hence, has the same length ℓ as the original
message m. Let also ℓ2 denote the length of the header added
at the PHY layer The frame carrying (C, d) before the
encoder has a length of (ℓ + ℓ1 + ℓ2+s) bits. Assuming that
the rate of the encoder is α/β the output of the encoder will

be of length, (ℓ + ℓ1 + ℓ2 + s). For the last symbol of

transmission to include q bits of the key k, it must embrace
that,

Permutation–The hiding layer applies two publicly known
permutations π1 and π2 at different processing stages.
Permutation π1 is applied to m before it is encrypted. The
purpose of π1 is twofold. First, it distributes significant
frame fields which can be used for packet classification
across multiple plaintext blocks. So, to reconstruct these
fields, all equivalent ciphertext blocks must be received and
decrypted. Also, header information is pushed at the end of
π1(m). This prevents early reception of the corresponding
ciphertext blocks.

Figure 5: Application of permutation π1 on m1

 For example, consider the transmission of a MAC frame of
length 2,336 bytes which take a TCP data packet. MAC
header is 28 bytes long and has a total of 18 distinct fields.
TCP header is 20 bytes long (assuming no optional fields)
and has 17 distinct fields. Suppose the encryption of a fixed
block of 128 bits. Packet π1(m) is partitioned to 146
plaintext blocks {p1, p2, . . . , p146}, and is encrypted to
produce 146 ciphertext blocks C = c1||c2|| . . . ||c146. Each
field of the TCP and MAC headers is distributed bit-by-bit

from the most significant bit (MSB) to the least significant
bit (LSB) to each of the plaintext blocks in the reverse block
order. This procedure is depicted in Fig. 5.

For fields longer than one bit, bits are numbered from the
LSB to the MSB and are placed in reverse order to each
plaintext block. To recover any field i that is ℓi bits long, the
last ℓi ciphertext blocks must be received and decrypted. If
ℓi>ℓb, where ℓb denotes the ciphertext block length, the bit
position process continues in a round-robin fashion. The
second goal of the permutation π1 is to randomize the
plaintext blocks. presumptuous a chance payload, the
permutation distributes the payload bits to all plaintext
blocks processed by the encryption function, therefore
randomizing each ciphertext block.

Permutation π2 is applied to reverse the effects of
interleaving on the bits of k, so that k is contain at the packet
trailer. Interleaving can be applied transversely multiple
frequencies on the same symbol (e.g., in OFDM), or it may
span multiple symbols. For example, consider a d×β block
interleaver. with no loss of generality, assume that β = q, and
let the last n rows of the last block passed via the interleaver
correspond to the encoded version of the random key k.
Permutation π2 rearranges the bits of k at the interleaver
matrix A d×β in such a way that all bits of k appear in the
last n columns. So, the bits of k will be modulated as the last
n symbols of the transmitted packet. Note that this action
affects only the interleaver block(s) that carries k. For rest of
the packet, the interleaving function is performed normally,
accordingly preserving the benefits of interleaving. For the
PHY layer implementations in which interleaving is applied
on a per symbol basis (e.g, 802.11a and 802.11g), the
application of permutation π2 is not necessary.

5.4 Resource Overhead of SHCS

In this part we analyze the per-packet communication and
computational overhead of SHCS.
1) Communication Overhead–For each packet m, a

random key k of length s is appended. Also, (ℓb − (ℓ mod
ℓb)) bits of overhead are added by the encryption
algorithm, to convert a plaintext of length ℓ to a multiple
of the encryption block. therefore, the communication
overhead of SHCS is equal to s + (ℓb − (ℓ mod ℓb)), per
packet. now, we do not account for the padding string
pad(C), since the addition of pad(C) does not increase the
number of transmitted symbols.

2) Computation Overhead–The computation overhead of
SHCS is one symmetric encryption at the sender and one
symmetric decryption at the receiver. Since the header
information is permuted as a trailer and encrypted, all
receivers in the district of a sender must receive the entire
packet and decrypt it, by the packet type and destination
can be determined. Though, in wireless protocols such as
802.11, the whole packet is received at the MAC layer
before it is decided if the packet must be discarded or be
further processed [4]. If some parts of the MAC header
are deemed not to be useful information to the jammer,
they can stay unencrypted in the header of the packet,
hence avoiding the decryption operation at the receiver.

Paper ID: SEP1444 22

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Hiding Based On Cryptographic Puzzles

In this section, we present a packet hiding scheme based on
cryptographic puzzles. The main idea after such puzzles is to
force the recipient of a puzzle execute a pre-defined set of
computations before he is able to extract a secret of attention.
The time required for obtaining the solution of a puzzle
depends on its hardness and the computational ability of the
solver [5]. The advantage of the puzzlebased scheme is that
its security does not rely on the PHY layer parameters.
Though, it has higher computation and communication
overhead.

Figure 6: The cryptographic puzzle-based hiding scheme.

In our context, we use cryptographic puzzles to temporary
hide transmitted packets. A packet m is encrypted with a by
chance selected symmetric key k of a attractive length s. The
key k is blinded using a cryptographic puzzle and sent to the
receiver. For a computationally bounded opponent, the
puzzle carrying k cannot be solved before the transmission of
the encrypted version of m is completed and the puzzle is
received. Hence, the opponent cannot classify m for the
purpose of selective jamming.

6.1 Cryptographic Puzzle Hiding Scheme (CPHS)

Let a sender S have a packet m for transmission. The sender
selects a random key k ∈ {0, 1}s, of a desired length. S
generates a puzzle P = puzzle(k,tp), where puzzle() denotes
the puzzle generator function, and tp indicate the time
required for the solution of the puzzle. Parameter tp is
considered in units of time, and it is directly reliant on the
assumed computational capability of the opponent, denoted
by N and measured in computational operations per second.
After creating the puzzle P, the sender broadcasts (C, P),
where C = Ek(π1(m)). At the receiver side, any receiver R
solves the received puzzle P′ to recover key k′ and then
computes m′ = π−1(Dk′ (C′)). If the decrypted packet m′ is
meaningful (i.e., is in the proper format, has a valid CRC
code, and is within the situation of the receiver’s
communication), the receiver accepts that m′ = m. Else, the
receiver discards m′. Fig. 6 shows the details of CPHS.

6.2 Implementation Details of CPHS

In this section, we consider several puzzle schemes as the
basis for CPHS. For each scheme, we analyze the execution
details which impact security and concert. Cryptographic
puzzles are primitives originally suggested by Merkle as a
method for establishing a secret over an insecure channel.
They find a wide range of request from preventing DoS
attacks to providing broadcast authentication and key escrow
schemes.

Time-lock Puzzles–Rivest et al. proposed a construction
called time-lock puzzles, which is based on the iterative
request of a precisely controlled number of modulo
operations. Time-lock puzzles have several smart features
such as the fine granularity in controlling tp and the
sequential nature of the computation. Moreover, the puzzle
creation requires significantly less computation compared to
puzzle solving.

In a time-lock puzzle, the puzzle constructor generates a
composite modulus g = u ・ v, where u and v are two large
random prime numbers. Then, he picks a random a, 1 < a < g
and hides the encryption key in Kh = k + a2t mod g, where t
= tp ・ N, is the amount of time required to solve for k. now,
it is assumed that the solver can perform N squarings modulo
g per second. Note that Kh can be computed proficiently if
φ(g) = (u − 1)(v − 1) or the factorization of g are known, or
else a solver would have to perform all t squarings to recover
k. The puzzle consists of the values P = (g, Kh, t, a).

In our setup, the value of the modulus g is known a priori
and need not be communicated (may change periodically).
The sender expose the rest of the puzzle information in the
order (Kh, t, a). Note that if any of t, a are unidentified, any
value of k is possible [8].

Puzzles based on hashing–Computationally limited
receivers can incur significant delay and energy consumption
when dealing with modulo arithmetic. In this case, CPHS
can be implementing from cryptographic puzzles which
employ computationally efficient cryptographic primitives.
Client puzzles proposed in [5], use one-way hash functions
with partially disclosed inputs to force puzzle solvers search
through a space of a precisely controlled size. In our context,
the sender select a random key k with k = k1||k2. The lengths
of k1 and k2 are s1, and s2, correspondingly. He then
computes C = Ek(π1(m)) and transmits (C, k1, h(k)) in this
particular order. To get k, any receiver has to perform on
average 2s2−1 hash operations (assuming perfect hash
functions). since the puzzle cannot be solved before h(k) has
been received, the challenger cannot classify m before the
completion of m’s transmission.

6.3 Resource Overhead of CPHS

Communication Overhead–The per-packet communication
overhead of CPHS is equal to the length of P, in count to the
padding added by the encryption function. If the puzzle is
recognized using time-locks, the length of P is equivalent to
the lengths of Kh, a, and t. The value Kh is calculated
modulo g and has the same length as g. Similarly, has a
length equal to the length of g. The size of t is potentially
lesser than a, g, and Kh, and depends on the computational
capability of the opponent. The security of time locks
depends on the difficulty in factoring g or finding φ(g),
where φ() denotes the Euler φ−function. Typical values of g
are in the order of 1,024 bits. Since messages need to stay
hidden for only a short period of time, the modulo can be
selected to be of much smaller size and be periodically
refreshed. In the container of hash-based puzzles, the
communication transparency is equal to the transmission of
the key k1 which is of length s1 and the hash value h(k). The
distinctive length of hash function is 160 bits.

Paper ID: SEP1444 23

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Computation Overhead–In time-lock puzzles, the sender
has to relate one permutation on m, do one symmetric
encryption, and one modulo squaring process to hide k. On
the receiver side, the receiver has to present t modulo
squaring action to recover k, one symmetric decryption to
recover π1(m), and relate the inverse permutation. In the
container of hash-based puzzles, the modulo squaring
operation is alternate by, on average, 2s2−1 hashing
operations.

7. Hiding Based On All-Or-Nothing

Transformations

In this section, we propose a solution based on All-Or-
Nothing Transformations (AONT) that introduces a modest
communication and calculation overhead. Such
transformations were originally proposed by Rivest to slow
down brute force attacks against block encryption algorithms
[7]. An AONT serves as a publicly known and completely
invertible pre-processing step to a plaintext before it is
passed to an ordinary block encryption algorithm. A
transformation f, mapping message m = {m1, . . . ,mx} to a
sequence of pseudo-messages m′ = {m′ 1, . . . ,m′ x′}, is an
AONT if [7]: (a) f is a bijection, (b) it is computationally
infeasible to get any part of the original plaintext, if one of
the pseudo-messages is indefinite, and (c) f and its inverse
f−1 are efficiently computable.

When a plaintext is pre-processed by an AONT before
encryption, all ciphertext blocks must be acknowledged to
obtain any part of the plaintext. So, brute force attacks are
slowed down by a factor equal to the number of ciphertext
blocks, without any alter on the size of the secret key. Note
that the inventive AONT proposed in [7] is computationally
secure. Several AONT schemes have been anticipated that
extend the definition of AONT to undeniable security [10].
Under this model, all plaintexts are equiprobable in the
absence of at least one pseudo-message.

7.1 An AONT-based Hiding Scheme (AONT-HS)

In our context, packets are pre-processed by an AONT
before transmission but remain unencrypted. The jammer
cannot do packet classification until all pseudo-messages
corresponding to the original packet have been received and
the inverse transformation has been applied. Packet m is
separation to a set of x input blocks m = {m1, . . . ,mx},
which serve as an input to an AONT f : {Fu}x → {Fu}x′ .
Here, Fu denotes the alphabet of blocks mi and x′ denotes the
number of output pseudo-messages with x′ ≥ x. The set of
pseudo-messages m′ = {m′ 1, . . . ,m′ x′} is transmitted over
the wireless medium. At the recipient, the inverse
transformation f−1 is applied after all x′ pseudo-messages are
received, in arrange to recover m.

7.2 Implementation details of the AONT-HS

In this section, we explain two AONTs which can be
employed in AONT-HS; a linear transformation [10], and the
original package transformation [7].

Linear AONT–In [10], Stinson showed how to construct a
linear AONT when the alphabet of the input blocks is a finite

field Fu, with the order u being a prime power. Clarify that if
an invertible matrix
exists, then the transformation f(m) = mM−1 is a linear
AONT. He also provides a method for constructing such M
which is as follows. Let u = vi, where v is prime and i is a
positive integer. Choose λ ∈ Fu such that λ /∈ {n−1 (mod
v), n−2 (mod v)} and define the linear AONT LT to be,

Note from (6), (7) that if any of the {m′i} is missing, all
values of mi are possible, for each i. Thus, the linear AONT
provides undeniable security.

Fig.7. The AONT-Based Hiding Scheme(AONT-HS)

The Package Transform–In the package transform, given a
message m, and a unsystematic key k′, the output pseudo-
messages are computed as follows:

where ei = Ek0 (m′i ⊕i), for i = 1, 2, . . . , x, and k0 is a
fixed publicly-known encryption key. With the response of
all pseudo-messages message m is recovered as follows:

Note that if any m′i is unknown, any value of k′ is possible,
because the corresponding ei is not known. Hence, Ek′ (i)
cannot be improved for any i, creating it infeasible to obtain
any of the mi.

Hiding Sub layer Details–AONT-HS is implemented at the
hiding sub layer residing between the MAC and the PHY
layers. In the 1st step, m is padded by applying function pad()
to adjust the frame length so that no padding is needed at the
PHY layer, and the length of m becomes a compound of the
length of the pseudo-messages m′ i. This will ensure that all
bits of the transmitted packet are part of the AONT. In the

Paper ID: SEP1444 24

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 9, September 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

next step, m||pad(m) is partitioned to x blocks, and the
AONT f is applied. Message m′ is delivered to the PHY
layer. At the recipient, the inverse transformation f−1 is
applied to obtain m||pad(m). The padded bits are removed
and the original message m is improved. The steps of
AONT-HS are shown in Fig. 7.

7.3 Resource Overhead of the AONT-HS

Communication Overhead–In AONT-HS, the inventive set
of x messages is transformed to a set of x′ pseudo-messages,
with x′ ≥ x. Additionally, the function pad() appends (ℓb −
(ℓ mod ℓb)) bits in order to make the length of m a multiple
of the length ℓb of the pseudo-messages m′. Hence, the
communication overhead introduced is (ℓb(x′−x)+ℓb− (ℓ
mod ℓb)) bits. For the linear AONT, x = x′, and therefore,
only the padding statement overhead is introduced. For the
package change, the overhead is equal to the length of one
pseudo-message (x′ = x + 1).

Computation Overhead–The linear AONT requires only
elementary arithmetic operations such as string addition and
multiplication, making it mainly fast due to its linear nature.
The package transform requires x′ symmetric encryptions at
the sender and an equal amount of symmetric decryptions at
the receiver. Note that the extent of the plaintext for the x′
encryptions is relatively small compared to the length of
message m (indexes 1, . . . , x are encrypted). So, only one
ciphertext block is produced per pseudo-message.
pretentious a pseudo-message block size equal to the
ciphertext block size ℓb, the computational overhead of the
x′ encryptions required by the package transform is
equivalent to the overhead of one encryption of a message of
length ℓ + ℓb.

8. Conclusion

The problem of selective jamming attacks in wireless
networks. An internal adversary model in which the jammer
is part of the network under attack, thus being aware of the
protocol stipulation and shared network secrets. The jammer
can categorize transmitted packets in real time by decoding
the first few symbols of an ongoing transmission. The
contact of selective jamming attacks on network protocols
such as TCP and routing. Our findings illustrate that a
selective jammer can significantly impact performance with
very low attempt. We developed three schemes that
transform a selective jammer to a random one by preventing
real-time packet classification. Our schemes unite
cryptographic primitives such as obligation schemes,
cryptographic puzzles, and all or-nothing transformations
(AONTs) with physical layer characteristics. It analyzed the
security of our schemes and quantified their computational
and communication overhead.

References

[1] T. X.Brown, J. E.James, and A.Sethi. Jamming and

sensing of encrypted wireless ad hoc networks. In
Proceedings of MobiHoc, pages 120–130, 2006.

[2] M.Cagalj, S.Capkun, and J.-P.Hubaux. Wormhole-based
antijamming techniques in sensor networks. IEEE

Transactions on Mobile Computing, 6(1):100–114,
2007.

[3] O. Goldreich. Foundations of cryptography: Basic
applications. Cambridge University Press, 2004.

[4] IEEE. IEEE 802.11 standard.
http://standards.ieee.org/getieee802/ download/802.11-
2007.pdf, 2007.

[5] A.Juels and J.Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In
Proceedings of NDSS, pages 151–165, 1999.

[6] G. Noubir and G. Lin. Low-power DoS attacks in data
wireless lans and countermeasures. Mobile Computing
and Communications Review, 7(3):29–30, 2003.

[7] R. Rivest. All-or-nothing encryption and the package
transform. Lecture Notes in Computer Science, pages
210–218, 1997.

[8] R. Rivest, A. Shamir, and D. Wagner. Time-lock
puzzles and timed release crypto. Massachusetts
Institute of Technology, 1996.

[9] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K.
Levitt. Spread Spectrum Communications Handbook.
McGraw-Hill, 2001.

[10] D. Stinson. Something about all or nothing (transforms).
Designs, Codes and Cryptography, 22(2):133–138,
2001.

[11] D. Stinson. Cryptography: theory and practice. CRC
press, 2006.

[12] M. Strasser, C. Popper, S. Capkun, and M. Cagalj.
Jamming resistant key establishment using
uncoordinated frequency hopping. In Pro-ceedings of
IEEE Symposium on Security and Privacy, 2008.

[13] D. Thuente andM. Acharya. Intelligent jamming in
wireless networks with applications to 802.11 b and
other networks. In Proceedings of the IEEE Military
Communications Conference MILCOM, 2006.

[14] M. Wilhelm, I. Martinovic, J. Schmitt, and V. Lenders.
Reactive jamming in wireless networks: How realistic is
the threat? In Proceedings of WiSec, 2011.

[15] W. Xu, W. Trappe, and Y. Zhang. Anti-jamming timing
channels for wireless networks. In Proceedings of
WiSec, pages 203–213, 2008.

[16] W. Xu, W. Trappe, Y. Zhang, and T.Wood. The
feasibility of launching and detecting jamming attacks in
wireless networks. In Proceedings of MobiHoc, pages
46–57, 2005.

[17] W. Xu, T.Wood,W. Trappe, and Y. Zhang. Channel
surfing and spatial retreats: defenses against wireless
denial of service. In Proceedings of the 3rd ACM
workshop on Wireless security, pages 80–89, 2004.

Author Profile

Sontam Sunil Kumar Reddy received the B.Tech
degree in computer science and Engineering from
JNTU Anantapur in 2012 and pursuing M.tech. degree
in Computer science and Engineering from JNTU

Hyderabad.

K. Raghavendra Rao working as assistant professor
in Computer Science Engineering from CVSR College
of Engineering from Anurag Group of Institutions
Venkatapur(V), Ghatkesar(M), Ranga Reddy District,
Hyderabad-500088, Telangana State.

Paper ID: SEP1444 25

