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Abstract: The open nature of the wireless medium leaves it vulnerable to intentional interference attacks, typically referred to as 
jamming. This intended interference with wireless transmissions can be used as a launchpad for increasing Denial-of-Service attacks on 
wireless networks. in general, jamming has been addressed under an external threat model. Though, adversaries with internal 
knowledge of protocol specifications and network secrets can launch low-effort jamming attacks that are difficult to detect and counter. 
In this, we address the problem of selective jamming attacks in wireless networks and in these attacks, the adversary is active only for a 
less period of time, selectively targeting messages which are highly importance. We illustrate the advantages of selective jamming in 
terms of network performance degradation and adversary effort by presenting two case studies; a selective attack on TCP and one on 
routing. In this we show that selective jamming attacks can be launched by performing real-time packet classification at the physical 
layer. To moderate these attacks, we develop three schemes that prevent real-time packet classification by combining cryptographic 
primitives with physical-layer attributes. Analyzing the security of our methods and evaluate their computational and communication 
overhead. 
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1. Introduction 
 
Wireless networks rely on the uninterrupted availability of 
the wireless medium to interconnect participating nodes. 
Still, the open nature of this medium leaves it helpless to 
multiple security threats and anyone with a transceiver can 
listen in on wireless transmissions, inject false messages, or 
jam genuine ones. While eavesdropping and message 
injection can be prevented using cryptographic methods, 
where jamming attacks are much harder to counter. They 
have been shown to make reality of severe Denial-of-
Service. Typically, jamming attacks have been considered 
under an external threat model in which jammer is not part of 
the network. In this model, jamming strategies include the 
continuous or random transmission of high-power 
interference signals [9], [16]. However, adopting an “always-
on” strategy has several disadvantages. First, the opponent 
has to expend a significant amount of energy to jam 
frequency bands of interest. Second, the nonstop presence of 
unusually high interference levels makes this type of attacks 
easy to detect. 
 
Conventional anti-jamming techniques rely on spread-
spectrum communications.[9], or some form of jamming 
evasion (e.g., slow frequency hopping, or spatial retreats []). 
SS techniques provide bit-level protection by spreading bits 
according to a secret pseudo-noise (PN) code, known only to 
the communicating parties. These methods can only defend 
wireless transmissions under the external threat model. 
Possible disclosure of secrets due to node compromise 
neutralizes the gains of SS. The broadcast communications 
are particularly vulnerable under an internal threat model 
because all intended receivers must be aware of the secrets 
used to protect transmissions. Hence, the compromise of a 
single receiver is sufficient to reveal relevant cryptographic 
information. 
 

To launch selective jamming attacks, the opponent must be 
capable of implementing a “classify-then-jam” strategy 
before the completion of a wireless transmission. Such plan 
can be actualized either by classifying transmitted packets 
using protocol semantics [1], [13], or by decoding packets on 
the fly In the latter method, the jammer may translate the 
first few bits of a packet for recovering useful packet 
identifiers such as packet type, source and the destination 
address. After classification, the opponent must induce a 
sufficient number of bit errors so that the packet cannot be 
recovered at the receiver []. Selective jamming requires an 
intimate knowledge of the physical (PHY) layer, as well as 
of the specifics of upper layers.  
 
2. Literature Survey 
 
Set M. Strasser, C. Popper, and S. Capkun [12] proposed a 
Uncoordinated Frequency Hopping (UFH), a new spread-
spectrum anti-jamming technique that does not rely on secret 
keys A major limitation of common anti-jamming techniques 
(such as FHSS and DSSS) is their dependency on a secret 
shared by the sender and the receiver; the secret is required 
to coordinate the used frequency channels or code sequences 
and must not be known to an attacker. This dependency 
precludes the application of common anti-jamming 
techniques in scenarios where the parties cannot resort to 
shared secrets; these include anti-jamming key establishment 
and anti-jamming broadcast to a (partially) unknown or un-
trusted group of receivers. Uncoordinated Frequency 
Hopping (UFH), a new spread-spectrum antijamming 
technique that does not rely on shared secret keys. With 
UFH, two communicating nodes hop among a set of known 
frequency channels in an uncoordinated and random manner. 
 
 M. Cagalj, S. Capkun, and J.P. Hubaux [2] proposed how 
the sensor nodes can exploit channel diversity in order to 
create wormholes that lead out of the jammed region, during 
which an alarm can be transmitted to the network operator. 
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we investigate an attack where the attacker masks the event 
(event masking) that the sensor network should detect by 
stealthily jamming an appropriate subset of the nodes. In this 
way, the attacker prevents the nodes from reporting what 
they are sensing to the network operator. Timely detection of 
such stealth attacks is particularly important in scenarios in 
which sensors use reactive schemes to communicate events 
to the network sink. Event masking attacks result in a 
coverage paradox: Even if an event is sensed by one or 
several nodes (and the sensor network is otherwise fully 
connected), the network operator cannot be up to date on 
time about the event. 
 
Guolong Lin Guevara Noubir [6] investigated and analyzed 
the performance of combining a cryptographic interleaver 
with various coding schemes to improve the robustness of 
wireless LANs for IP packets transmission [1]. A 
concatenated code that is simple to decode and can maintain 
a low Frame Error Rate (FER) under a jamming effort ratio 
of 15%. We argue that LDPC codes will be very suitable to 
prevent this type of jamming. 
 
 Ronald L. Rivest [7] proposed a new mode of encryption for 
block ciphers, we this call all-or-nothing encryption. This 
mode has the interesting major property that one must 
decrypt the entire ciphertext before one can determine even 
one message block. This way that Brute-force searches 
against all-or-nothing encryption are slowed down by a 
factor equal to the number of blocks in the ciphertext. We 
give a exact way of implementing all-or-nothing encryption 
using a” package transform” as a pre-processing step to a 
ordinary encryption mode. 
 
 Wenyuan Xu, Wade Trappe, Yanyong Zhang and Timothy 
Wood [15] examined radio interference attacks from both 
sides of the issue: first, they studied the problem of 
conducting radio interference attacks on wireless networks, 
and second they examine the critical issue of diagnosing the 
presence of jamming attacks. Specifically, they proposed 
four different jamming attack models that can be used by an 
adversary to disable the operation of a wireless network, and 
estimate their effectiveness in terms of how each method 
affects the ability of a wireless node to send and receive 
packets. Then they discuss different measurements that serve 
as the basis for detecting a jamming attack, and discover 
scenarios where each measurement by itself is not enough to 
reliably classify the presence of a jamming attack. 
 
Wireless communication is susceptible to radio interference, 
which prevents the response of communications. While 
evasion strategies have been proposed, such strategies are 
costly or unsuccessful against broadband jammers. 
 
Wenyuan Xu, Wade Trappe and Yanyong Zhang proposed 
[16] an alternative to evasion strategies that involves the 
establishment of a timing channel that exists in spite of the 
existence of jamming. The timing channel is built using 
failed packet reception times. We show that it is possible to 
detect failed packet events in spite of jamming. We then 
explore single sender and multi-sender timing channel 
constructions that may be used to build a low-rate overlay 
link-layer. We talk about implementation issues that we have 
overcome in constructing such jamming resistant timing 

channel, and current the results of validation efforts using the 
MICA2 platform. To finish, we examine additional error 
correction and authentication mechanisms that may be used 
to cope with adversaries that both jam and seek to corrupt 
our timing channel. 
 
3. Real-Time Packet Classification 
 
In this section, we describe how the adversary can classify 
packets in real time, prior to the packet transmission is 
completed. Once a packet is classified, the opponent may 
choose to jam it depending on his strategy. 
 
 Consider the generic communication system depicted in 
Fig.2. At the PHY layer, a packet m is encoded, interleaved, 
and changes before it is transmitted over the wireless 
channel. At receiver, the signal is demodulated, de-
interleaved, and decoded, to get better the original packet m. 

 

 
 

Figure 2: A generic communication system 
diagram 

 
The adversary’s ability in classifying a packet m depends on 
the implementation of the blocks in Fig.2. The channel 
encoding block expands the original bit sequence m, adding 
required redundancy for protecting m against channel errors. 
For ex, an α/β-block code may protect m from up to e errors 
per block. Instead, an α/β-rate convolutional encoder with a 
constraint the length of Lmax, and a free distance of ebits 
provides similar protection. For our purposes, we think that 
the rate of the encoder is α/β. At next block, interleaving is 
applied to protect m from burst errors. For ease, we consider 
a block interleaver that is defined by a matrix  The de-
interleaver is simply the transpose of A. At last, the digital 
modulator maps the received bit stream to symbols of length 
q, and change them into suitable waveforms for transmission 
over the wireless channel. Typical modulation techniques 
include BPSK,OFDM,16(64)-QAM, and CCK. 
 
In order to recover any bit of m, the beneficiary must collect 
d.β bits for de-interleaving. Then the d.β de-interleaved bits 
are then passed during the decoder. Ignoring any propagation 
and decoding delays, the delay in anticipation of decoding 
the first block of data is  symbol durations. As an ex, 
in the 802.11a standard, an operating at the lowest rate of 6 
Mbps, and the data is passed via a 1/2-rate encoder before it 
is mapped to an OFDM symbol of q = 48 bits. In this case, 
decoding of one symbol provides 24 bits of data. At highest 
data rate of 54 Mbps, 216 bits of data are improved per 
symbol.  

 
From our analysis, it is evident that intercepting the first few 
symbols of a packet is sufficient for obtaining relevant 

Paper ID: SEP1444 19



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

header information. For ex, consider the transmission of a 
TCP-SYN packet used for establishing a TCP connection at 
the transport layer. Suppose an 802.11a PHY layer with a 
transmission rate of 6 Mbps. At PHY layer, a 40-bit header 
and a 6-bit tail are appended to the MAC packet carrying the 
TCP-SYN packet. At the next stage, the 1/2-rate 
convolutional encoder maps the packet to a sequence of 
1,180 bits. In order, the output of the encoder is split into 25 
blocks of 48 bits each and interleaved on a per-symbol basis. 
At last, each of the blocks is modulated as an OFDM symbol 
for transmission. The information enclosed in each of the 25 
OFDM symbols is as follows: 
• Symbols 1-2 contain the PHY-layer header and the first 

byte of MAC header. And the PHY header reveals the 
length of the packet, transmission rate, and 
synchronization information. The 1st byte of the MAC 
header reveals the protocol version and the type and 
subtype of the MAC frame (e.g., DATA, ACK). 

• Symbols 3-10 have the source and destination MAC 
addresses, and the length of the IP packet header. 

• Symbols 11-17 contain the source and destination IP 
addresses and the size of the TCP datagram carried by the 
IP packet, and the other IP layer information. The first 2 
bytes of the TCP datagram reveal the source port. 

• Symbols 18-23 hold the TCP destination port, sequence 
number, acknowledgment number, TCP flags, window 
size, and the header checksum. 

• Symbols 24-25 contain the MAC CRC code.  
 

Our example illustrates that a packet can be classified at 
different layers and in different ways. MAC layer 
classification is achieved by receiving the first 10 symbols. 
IP layer categorization is achieved by receiving symbols 10 
and 11, as TCP layer classification is achieved by symbols 
12-19. Perceptive solution to selective jamming would be the 
encryption of transmitted packets (including headers) with a 
static key. Though, for broadcast communications, this 
standing decryption key must be known to all intended 
receivers and therefore, is susceptible to compromise. An 
adversary in possession of the decryption key can start 
decrypting as early as the reception of the first ciphertext 
block. For ex, consider the cipher-block chaining (CBC) 
mode of encryption. To encrypt a message m with a key k 
and an initialization vector IV, message m is split into x 
blocks m1, m2, . . .mx, and each ciphertext block , is 
generated as: 

 
where Ek(m) denotes the encryption of m with key k. The 
plaintext  is recovered by: 

 
Note from (2) that reception of ci+1 is sufficient to recover 
mi if k is known (c1 = IV is also known). So, real-time 
packet classification is still possible. 
 
One solution to the key compromise problem would be to 
update the static key whenever it is compromised. Also, such 
a solution is not useful if the compromised node obtains the 
new key. This is avoided if there is a mechanism by which 
the set of compromised nodes can be identified. Such a job is 
non-trivial when the leaked key is shared by multiple nodes. 
Any node that have the shared key is a candidate malicious 

node. Also, even if the encryption key of a hiding scheme 
were to remain secret, the fixed portions of a transmitted 
packet could potentially lead to packet classification. This is 
because for computationally-capable encryption methods 
such as block encryption and the encryption of a prefix 
plaintext with the same key yields a static ciphertext prefix. 
Therefore, an adversary who is aware of the underlying 
protocol specifics (structure of the frame) can use the static 
ciphertext portions of a transmitted packet to classify it. 
 
4. Impact of Selective Jamming 
 
In this section, we illustrate the impact of selective jamming 
attacks on the network performance. We used OPNET 
Modeler 14.5 to implement selective jamming attacks in two 
multi-hop wireless network scenarios. In the first scenario, 
the attacker targeted a TCP connection established over a 
multi-hop wireless route. In the second scenario, the jammer 
targeted network-layer control messages transmitted during 
the route establishment process. 
 

 
Figure 3: (a) Average application delay E[D], (b) average 
effective throughput E[T ], (c) number of packets jammed, 

(d) fraction of time the jammer is active, (e) number of 
connections established in the network, (f) fraction of time 

the jammer is active. R p: random jammer with probability p; 
Con.: constant jammer; Sel.: selective jammer. 

 
5. Hiding Based on Commitments 

 
In this section, we explain that the problem of real-time 
packet classification can be mapped to the hiding property of 
commitment schemes, and propose a packet-hiding scheme 
based on commitments. 
 
5.1 Mapping to Commitment Schemes 
 
Commitment schemes are cryptographic primitives that 
allow an entity A, to assign to a value m, to an entity V while 
keeping m hidden. assurance schemes are formally defined 
as follows. 
 
Commitment Scheme: A commitment scheme is a two-
phase interactive protocol defined as a triple {X,M, E}. Set 
X = {A, V} denotes two probabilistic polynomial-time 
interactive parties, anywhere A is known as the committer 
and V as the verifier; set M denotes the message space, and 
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set E = {(ti, fi)} denotes the events occurring at protocol 
stages ti (i = 1, 2), as per functions fi (i = 1, 2). During 
commitment stage t1, A uses a commitment function f1 = 
commit() to generate a pair (C, d) = commit(m), where (C, d) 
is called the commitment/de-commitment pair. At the end of 
stage t1, A releases the assurance C to V. In the open stage 
t2, A releases the opening value d. Upon reception of d, V 
opens the assurance C, by applying function f2 = open(), thus 
obtaining a value of m′ = open(C, d). This stage culminates 
in either acceptance (m′ = m) or rejection of the 
commitment by V. Commitment schemes assure the 
following two fundamental properties: 
 
Hiding: For every polynomial-time party V interacting with 
A, there is no (probabilistic) polynomially efficient algorithm 
that would allow V to associate C with m and C′ with m′, 
without access to the de-commitment values d or d′ 
respectively, and with non-negligible probability. 
 
Binding: For every polynomial-time party A interacting with 
V, there is no (probabilistic) polynomially efficient algorithm 
that would allow A to generate a triple (C, d, d′), such that V 
accepts the commitments (C, d) and (C, d′), with non-
negligible probability.  
 
In our context, the role of the committer is assumed by the 
transmitting node S. The function of the verifier is assumed 
by any receiver R, including the jammer J. The dedicated 
value m is the packet that S wants to correspond to R. To 
transmit m, the sender computes the corresponding 
commitment/de-commitment pair (C, d), and broadcasts C. 
The hiding property ensures that m is not revealed during the 
broadcast of C. To reveal m, the sender releases the de-
commitment value d, in which case m is obtained by all 
receivers, as well as J. Note that the hiding property, as 
defined in assurance schemes, does not consider the partial 
release of d and its implications on the partial reveal of m. In 
fact, a common way of opening commitments is by releasing 
the committed value itself [3].  
 
For most applications, partial reveal of m with the partial 
release of d does not constitute a security risk. After all, the 
committer intends to expose m by exposing d. Though, in 
our context, a partial reveal of m while d is being transmitted 
can lead to the classification of m before the transmission of 
d is completed. Therefore, the jammer has the opportunity to 
jam d instead of C once m has been classified. To avoid this 
scenario, we introduce the strong hiding property: 
 
Strong Hiding: For each polynomial-time party V 
interacting with A and possessing pairs (C, dpart) and (C′, 
d′part), there is no (probabilistic) polynomially efficient 
algorithm that would allow V associate C with m and C′ with 
m′, with non-negligble probability. Here, dpart and d′part are 
partial releases of d and d′, respectively, and the remaining 
parts of d and d′ are assumed to be secret.  
 
In the above definition, it is easily seen that the release of 
dpart must be limited to a fraction of d, in order for m to 
remain hidden. If a major part of d becomes known to the 
verifier, the trivial attacks, such as brute forcing the 
unknown bits of d, turn into possible. 

 

5.2 A Strong Hiding Commitment Scheme (SHCS) 
 
We propose a strong hiding commitment scheme (SHCS), 
which is based on symmetric cryptography. Our main 
inspiration is to satisfy the strong hiding property while 
keeping the computation and communication overhead to a 
minimum. Assume that the sender S has a packet m for R. 
First, S constructs (C, d) = commit(m), where, 

 
Here, the commitment function Ek() is an off-the-shelf 
symmetric encryption algorithm (e.g., DES or AES [27]), π1 
is a publicly known permutation, and k ∈ {0, 1}s is a 
randomly selected key of some desired key length s (the 
length of k is a security parameter). The sender broadcasts 
(C||d), where “||” denotes the concatenation operation. Upon 
reaction of d, any receiver R computes 

 
where denotes the inverse permutation of . To 
satisfy the strong hiding property, the packet transport d is 
formatted so that all bits of d are modulated in the last few 
PHY layer symbols of the packet. To get better d, any 
receiver must receive and decode the last symbols of the 
transmitted packet, thus preventing early exposé of d. We 
now present the implementation details of SHCS. 
 
5.3 Implementation Details of SHCS 

 
The proposed SHCS requires the joint consideration of the 
MAC and PHY layers. To reduce the overhead of SHCS, the 
de-commitment value d (i.e., the decryption key k) is carried 
in the same packet as the dedicated value C. This saves the 
extra packet header needed for transmitting d individually. 
To get the strong hiding property, a sub-layer called the 
“hiding sub-layer” is inserted between the MAC and the 
PHY layer. This sub-layer is responsible for formatting m 
before it is processed by the PHY layer. The functions of the 
defeat sub-layer are outlined in Fig. 4.  
 
Consider a frame m at the MAC layer delivered to the hiding 
sub-layer. Frame m consists of a MAC header and payload, 
followed by the clip containing the CRC code. At first, m is 
permuted by applying a publicly known permutation π1. The 
reason of π1 is to randomize the 

 

 
Figure 4: Processing at the hiding layer 

 
input to the encryption algorithm and delay the reception of 
critical packet identifiers such as headers. Once the 
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permutation, π1(m) is encrypted using a random key k to 
produce the commitment value C = Ek(π1(m)). Although the 
random permutation of m and its encryption with a random 
key k seemingly achieve the same goal (i.e., the 
randomization of the ciphertext), in Section 5.4 we show that 
both are essential to achieve packet hiding.  
 
In the next step, a padding function pad() appends pad(C) 
bits to C, production of a multiple of the symbol size. 
Finally, C||pad(C)||k is permuted by applying a publicly 
known permutation π2. The reason of π2 is to ensure that the 
interleaving function applied at the PHY layer does not 
disperse the bits of k to other symbols. We now there the 
padding and permutation functions in detail. 
Padding–The purpose of padding is to ensure that k is 
modulated in the minimum number of symbols needed for its 
transmission. This is essential for minimizing the time for 
which parts of k become exposed. Let ℓ1 denote the number 
of bits padded to C. For ease, assume that the length of C is a 
multiple of the block length of the symmetric encryption 
algorithm and hence, has the same length ℓ as the original 
message m. Let also ℓ2 denote the length of the header added 
at the PHY layer The frame carrying (C, d) before the 
encoder has a length of (ℓ + ℓ1 + ℓ2+s) bits. Assuming that 
the rate of the encoder is α/β the output of the encoder will 

be of length, (ℓ + ℓ1 + ℓ2 + s). For the last symbol of 

transmission to include q bits of the key k, it must embrace 
that, 

 
Permutation–The hiding layer applies two publicly known 
permutations π1 and π2 at different processing stages. 
Permutation π1 is applied to m before it is encrypted. The 
purpose of π1 is twofold. First, it distributes significant 
frame fields which can be used for packet classification 
across multiple plaintext blocks. So, to reconstruct these 
fields, all equivalent ciphertext blocks must be received and 
decrypted. Also, header information is pushed at the end of 
π1(m). This prevents early reception of the corresponding 
ciphertext blocks. 

 
Figure 5: Application of permutation π1 on m1 

 
 For example, consider the transmission of a MAC frame of 
length 2,336 bytes which take a TCP data packet. MAC 
header is 28 bytes long and has a total of 18 distinct fields. 
TCP header is 20 bytes long (assuming no optional fields) 
and has 17 distinct fields. Suppose the encryption of a fixed 
block of 128 bits. Packet π1(m) is partitioned to 146 
plaintext blocks {p1, p2, . . . , p146}, and is encrypted to 
produce 146 ciphertext blocks C = c1||c2|| . . . ||c146. Each 
field of the TCP and MAC headers is distributed bit-by-bit 

from the most significant bit (MSB) to the least significant 
bit (LSB) to each of the plaintext blocks in the reverse block 
order. This procedure is depicted in Fig. 5. 
 
For fields longer than one bit, bits are numbered from the 
LSB to the MSB and are placed in reverse order to each 
plaintext block. To recover any field i that is ℓi bits long, the 
last ℓi ciphertext blocks must be received and decrypted. If 
ℓi>ℓb, where ℓb denotes the ciphertext block length, the bit 
position process continues in a round-robin fashion. The 
second goal of the permutation π1 is to randomize the 
plaintext blocks. presumptuous a chance payload, the 
permutation distributes the payload bits to all plaintext 
blocks processed by the encryption function, therefore 
randomizing each ciphertext block.  
 
Permutation π2 is applied to reverse the effects of 
interleaving on the bits of k, so that k is contain at the packet 
trailer. Interleaving can be applied transversely multiple 
frequencies on the same symbol (e.g., in OFDM), or it may 
span multiple symbols. For example, consider a d×β block 
interleaver. with no loss of generality, assume that β = q, and 
let the last n rows of the last block passed via the interleaver 
correspond to the encoded version of the random key k. 
Permutation π2 rearranges the bits of k at the interleaver 
matrix A d×β in such a way that all bits of k appear in the 
last n columns. So, the bits of k will be modulated as the last 
n symbols of the transmitted packet. Note that this action 
affects only the interleaver block(s) that carries k. For rest of 
the packet, the interleaving function is performed normally, 
accordingly preserving the benefits of interleaving. For the 
PHY layer implementations in which interleaving is applied 
on a per symbol basis (e.g, 802.11a and 802.11g), the 
application of permutation π2 is not necessary. 
 
5.4  Resource Overhead of SHCS 
 
In this part we analyze the per-packet communication and 
computational overhead of SHCS. 
1) Communication Overhead–For each packet m, a 

random key k of length s is appended. Also, (ℓb − (ℓ mod 
ℓb)) bits of overhead are added by the encryption 
algorithm, to convert a plaintext of length ℓ to a multiple 
of the encryption block. therefore, the communication 
overhead of SHCS is equal to s + (ℓb − (ℓ mod ℓb)), per 
packet. now, we do not account for the padding string 
pad(C), since the addition of pad(C) does not increase the 
number of transmitted symbols. 

2) Computation Overhead–The computation overhead of 
SHCS is one symmetric encryption at the sender and one 
symmetric decryption at the receiver. Since the header 
information is permuted as a trailer and encrypted, all 
receivers in the district of a sender must receive the entire 
packet and decrypt it, by the packet type and destination 
can be determined. Though, in wireless protocols such as 
802.11, the whole packet is received at the MAC layer 
before it is decided if the packet must be discarded or be 
further processed [4]. If some parts of the MAC header 
are deemed not to be useful information to the jammer, 
they can stay unencrypted in the header of the packet, 
hence avoiding the decryption operation at the receiver. 
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6. Hiding Based On Cryptographic Puzzles 
 
In this section, we present a packet hiding scheme based on 
cryptographic puzzles. The main idea after such puzzles is to 
force the recipient of a puzzle execute a pre-defined set of 
computations before he is able to extract a secret of attention. 
The time required for obtaining the solution of a puzzle 
depends on its hardness and the computational ability of the 
solver [5]. The advantage of the puzzlebased scheme is that 
its security does not rely on the PHY layer parameters. 
Though, it has higher computation and communication 
overhead.  

 
Figure 6: The cryptographic puzzle-based hiding scheme. 

 
In our context, we use cryptographic puzzles to temporary 
hide transmitted packets. A packet m is encrypted with a by 
chance selected symmetric key k of a attractive length s. The 
key k is blinded using a cryptographic puzzle and sent to the 
receiver. For a computationally bounded opponent, the 
puzzle carrying k cannot be solved before the transmission of 
the encrypted version of m is completed and the puzzle is 
received. Hence, the opponent cannot classify m for the 
purpose of selective jamming. 
 
6.1 Cryptographic Puzzle Hiding Scheme (CPHS) 
 
Let a sender S have a packet m for transmission. The sender 
selects a random key k ∈ {0, 1}s, of a desired length. S 
generates a puzzle P = puzzle(k,tp), where puzzle() denotes 
the puzzle generator function, and tp indicate the time 
required for the solution of the puzzle. Parameter tp is 
considered in units of time, and it is directly reliant on the 
assumed computational capability of the opponent, denoted 
by N and measured in computational operations per second. 
After creating the puzzle P, the sender broadcasts (C, P), 
where C = Ek(π1(m)). At the receiver side, any receiver R 
solves the received puzzle P′ to recover key k′ and then 
computes m′ = π−1(Dk′ (C′)). If the decrypted packet m′ is 
meaningful (i.e., is in the proper format, has a valid CRC 
code, and is within the situation of the receiver’s 
communication), the receiver accepts that m′ = m. Else, the 
receiver discards m′. Fig. 6 shows the details of CPHS. 
 
6.2 Implementation Details of CPHS 

 
In this section, we consider several puzzle schemes as the 
basis for CPHS. For each scheme, we analyze the execution 
details which impact security and concert. Cryptographic 
puzzles are primitives originally suggested by Merkle as a 
method for establishing a secret over an insecure channel. 
They find a wide range of request from preventing DoS 
attacks to providing broadcast authentication and key escrow 
schemes. 

Time-lock Puzzles–Rivest et al. proposed a construction 
called time-lock puzzles, which is based on the iterative 
request of a precisely controlled number of modulo 
operations. Time-lock puzzles have several smart features 
such as the fine granularity in controlling tp and the 
sequential nature of the computation. Moreover, the puzzle 
creation requires significantly less computation compared to 
puzzle solving. 
 
In a time-lock puzzle, the puzzle constructor generates a 
composite modulus g = u ・ v, where u and v are two large 
random prime numbers. Then, he picks a random a, 1 < a < g 
and hides the encryption key in Kh = k + a2t mod g, where t 
= tp ・ N, is the amount of time required to solve for k. now, 
it is assumed that the solver can perform N squarings modulo 
g per second. Note that Kh can be computed proficiently if 
φ(g) = (u − 1)(v − 1) or the factorization of g are known, or 
else a solver would have to perform all t squarings to recover 
k. The puzzle consists of the values P = (g, Kh, t, a). 
 
In our setup, the value of the modulus g is known a priori 
and need not be communicated (may change periodically). 
The sender expose the rest of the puzzle information in the 
order (Kh, t, a). Note that if any of t, a are unidentified, any 
value of k is possible [8]. 
 
Puzzles based on hashing–Computationally limited 
receivers can incur significant delay and energy consumption 
when dealing with modulo arithmetic. In this case, CPHS 
can be implementing from cryptographic puzzles which 
employ computationally efficient cryptographic primitives. 
Client puzzles proposed in [5], use one-way hash functions 
with partially disclosed inputs to force puzzle solvers search 
through a space of a precisely controlled size. In our context, 
the sender select a random key k with k = k1||k2. The lengths 
of k1 and k2 are s1, and s2, correspondingly. He then 
computes C = Ek(π1(m)) and transmits (C, k1, h(k)) in this 
particular order. To get k, any receiver has to perform on 
average 2s2−1 hash operations (assuming perfect hash 
functions). since the puzzle cannot be solved before h(k) has 
been received, the challenger cannot classify m before the 
completion of m’s transmission. 
 
6.3 Resource Overhead of CPHS 
 
Communication Overhead–The per-packet communication 
overhead of CPHS is equal to the length of P, in count to the 
padding added by the encryption function. If the puzzle is 
recognized using time-locks, the length of P is equivalent to 
the lengths of Kh, a, and t. The value Kh is calculated 
modulo g and has the same length as g. Similarly,  has a 
length equal to the length of g. The size of t is potentially 
lesser than a, g, and Kh, and depends on the computational 
capability of the opponent. The security of time locks 
depends on the difficulty in factoring g or finding φ(g), 
where φ() denotes the Euler φ−function. Typical values of g 
are in the order of 1,024 bits. Since messages need to stay 
hidden for only a short period of time, the modulo can be 
selected to be of much smaller size and be periodically 
refreshed. In the container of hash-based puzzles, the 
communication transparency is equal to the transmission of 
the key k1 which is of length s1 and the hash value h(k). The 
distinctive length of hash function is 160 bits. 

Paper ID: SEP1444 23



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 9, September 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Computation Overhead–In time-lock puzzles, the sender 
has to relate one permutation on m, do one symmetric 
encryption, and one modulo squaring process to hide k. On 
the receiver side, the receiver has to present t modulo 
squaring action to recover k, one symmetric decryption to 
recover π1(m), and relate the inverse permutation. In the 
container of hash-based puzzles, the modulo squaring 
operation is alternate by, on average, 2s2−1 hashing 
operations. 
 
7. Hiding Based On All-Or-Nothing 

Transformations 
 
In this section, we propose a solution based on All-Or-
Nothing Transformations (AONT) that introduces a modest 
communication and calculation overhead. Such 
transformations were originally proposed by Rivest to slow 
down brute force attacks against block encryption algorithms 
[7]. An AONT serves as a publicly known and completely 
invertible pre-processing step to a plaintext before it is 
passed to an ordinary block encryption algorithm. A 
transformation f, mapping message m = {m1, . . . ,mx} to a 
sequence of pseudo-messages m′ = {m′ 1, . . . ,m′ x′}, is an 
AONT if [7]: (a) f is a bijection, (b) it is computationally 
infeasible to get any part of the original plaintext, if one of 
the pseudo-messages is indefinite, and (c) f and its inverse 
f−1 are efficiently computable. 

 
When a plaintext is pre-processed by an AONT before 
encryption, all ciphertext blocks must be acknowledged to 
obtain any part of the plaintext. So, brute force attacks are 
slowed down by a factor equal to the number of ciphertext 
blocks, without any alter on the size of the secret key. Note 
that the inventive AONT proposed in [7] is computationally 
secure. Several AONT schemes have been anticipated that 
extend the definition of AONT to undeniable security [10]. 
Under this model, all plaintexts are equiprobable in the 
absence of at least one pseudo-message. 
 
7.1  An AONT-based Hiding Scheme (AONT-HS) 

 
In our context, packets are pre-processed by an AONT 
before transmission but remain unencrypted. The jammer 
cannot do packet classification until all pseudo-messages 
corresponding to the original packet have been received and 
the inverse transformation has been applied. Packet m is 
separation to a set of x input blocks m = {m1, . . . ,mx}, 
which serve as an input to an AONT f : {Fu}x → {Fu}x′ . 
Here, Fu denotes the alphabet of blocks mi and x′ denotes the 
number of output pseudo-messages with x′ ≥ x. The set of 
pseudo-messages m′ = {m′ 1, . . . ,m′ x′} is transmitted over 
the wireless medium. At the recipient, the inverse 
transformation f−1 is applied after all x′ pseudo-messages are 
received, in arrange to recover m. 

 
7.2 Implementation details of the AONT-HS 

 
In this section, we explain two AONTs which can be 
employed in AONT-HS; a linear transformation [10], and the 
original package transformation [7]. 
 
Linear AONT–In [10], Stinson showed how to construct a 
linear AONT when the alphabet of the input blocks is a finite 

field Fu, with the order u being a prime power. Clarify that if 
an invertible matrix
exists, then the transformation f(m) = mM−1 is a linear 
AONT. He also provides a method for constructing such M 
which is as follows. Let u = vi, where v is prime and i is a 
positive integer. Choose λ ∈ Fu such that λ /∈ {n−1 (mod 
v), n−2 (mod v)} and define the linear AONT LT to be, 

 
 

Note from (6), (7) that if any of the {m′i} is missing, all 
values of mi are possible, for each i. Thus, the linear AONT 
provides undeniable security. 

 
Fig.7. The AONT-Based Hiding Scheme(AONT-HS) 

 
The Package Transform–In the package transform, given a 
message m, and a unsystematic key k′, the output pseudo-
messages are computed as follows: 

 
where ei = Ek0 (m′i ⊕i), for i = 1, 2, . . . , x, and k0 is a 
fixed publicly-known encryption key. With the response of 
all pseudo-messages message m is recovered as follows: 

 
Note that if any m′i is unknown, any value of k′ is possible, 
because the corresponding ei is not known. Hence, Ek′ (i) 
cannot be improved for any i, creating it infeasible to obtain 
any of the mi. 
 
Hiding Sub layer Details–AONT-HS is implemented at the 
hiding sub layer residing between the MAC and the PHY 
layers. In the 1st step, m is padded by applying function pad() 
to adjust the frame length so that no padding is needed at the 
PHY layer, and the length of m becomes a compound of the 
length of the pseudo-messages m′ i. This will ensure that all 
bits of the transmitted packet are part of the AONT. In the 
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next step, m||pad(m) is partitioned to x blocks, and the 
AONT f is applied. Message m′ is delivered to the PHY 
layer. At the recipient, the inverse transformation f−1 is 
applied to obtain m||pad(m). The padded bits are removed 
and the original message m is improved. The steps of 
AONT-HS are shown in Fig. 7. 
 
7.3 Resource Overhead of the AONT-HS 
 
Communication Overhead–In AONT-HS, the inventive set 
of x messages is transformed to a set of x′ pseudo-messages, 
with x′ ≥ x. Additionally, the function pad() appends (ℓb − 
(ℓ mod ℓb)) bits in order to make the length of m a multiple 
of the length ℓb of the pseudo-messages m′. Hence, the 
communication overhead introduced is (ℓb(x′−x)+ℓb− (ℓ 
mod ℓb)) bits. For the linear AONT, x = x′, and therefore, 
only the padding statement overhead is introduced. For the 
package change, the overhead is equal to the length of one 
pseudo-message (x′ = x + 1). 
 
Computation Overhead–The linear AONT requires only 
elementary arithmetic operations such as string addition and 
multiplication, making it mainly fast due to its linear nature. 
The package transform requires x′ symmetric encryptions at 
the sender and an equal amount of symmetric decryptions at 
the receiver. Note that the extent of the plaintext for the x′ 
encryptions is relatively small compared to the length of 
message m (indexes 1, . . . , x are encrypted). So, only one 
ciphertext block is produced per pseudo-message. 
pretentious a pseudo-message block size equal to the 
ciphertext block size ℓb, the computational overhead of the 
x′ encryptions required by the package transform is 
equivalent to the overhead of one encryption of a message of 
length ℓ + ℓb. 
 
8. Conclusion 
 
The problem of selective jamming attacks in wireless 
networks. An internal adversary model in which the jammer 
is part of the network under attack, thus being aware of the 
protocol stipulation and shared network secrets. The jammer 
can categorize transmitted packets in real time by decoding 
the first few symbols of an ongoing transmission. The 
contact of selective jamming attacks on network protocols 
such as TCP and routing. Our findings illustrate that a 
selective jammer can significantly impact performance with 
very low attempt. We developed three schemes that 
transform a selective jammer to a random one by preventing 
real-time packet classification. Our schemes unite 
cryptographic primitives such as obligation schemes, 
cryptographic puzzles, and all or-nothing transformations 
(AONTs) with physical layer characteristics. It analyzed the 
security of our schemes and quantified their computational 
and communication overhead. 
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