
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhanced Way Tagged Cache Design Using Partial
Tag Bloom Filter for Low Level (L2) Cache

Shaima Ibrahim

1
, Sumi Babu

2

1PG Scholar,ICET

2Assistant Professor, ICET

Abstract: High-performance microprocessors utilize cache write-through policy for performance improvement, at the same time

achieving good tolerance to soft errors in on-chip caches. Write-through policy also consumes large power due to the increased access to

caches in different level during write operation. The objective of this paper is to improve the energy efficiency of write-through caches as

well as improving the access time with a new cache architecture referred as way tagged cache. Many high performance microprocessor

designs have chosen the write-through policy by maintaining the way tags of L2 cache in the L1 cache during read operations, proposed

method uses L2 cache to work in an equivalent direct-mapping manner during write hits, which account for the majority of L2 cache

accesses. During read operation, the way tag of the L2 cache information is available in L1 cache. In the proposed method, partial tag

partially matches the incoming address with the cache line address. If the partial tag gives matches then full tag comparison will be

performed. If no match is found, then the cache line(s) is not associated with the incoming address. Due to this the way-tag technique

enables L2 cache to work in an equivalent direct mapping manner during write hits when the cache data compared with the input data,

and it leads to reduce the significant energy without performance degradation and the access time. While the corresponding way tag

information is not available in the way-tag arrays for read misses, therefore all the ways in the L2 cache are activated simultaneously

under read misses.

Keywords: Multi level Cache, write-through policy, write- back policy

1. Introduction

On-chip cache has been used in microprocessor and it
achieves high memory performance and low energy
consumption. There are two operations associated with a
cache memory-read and write operation. In memory
hierarchy write-through and write back polices are
commonly used. In a write back policy, if the data is updated
to the cache, those data‟s are not immediately updated to the
main memory. Those data will be updated to the main
memory only when the data is replaced from the cache. In
write through policy, if the data is written (or) updated to the
cache, immediately the same data will be updated to the
main memory. Due to this during the life time execution the
write-through policy keep the identical data copies.

High-performance microprocessors employ cache write-
through policy for performance improvement at the same
time achieving good tolerance to soft errors in on-chip
caches. Due to the increased access to caches in different
level during write operation write-through policy also
consumes large power. Here an efficient cache design
referred to as way-tagged cache with partial tag comparison
which minimizes the access time without any performance
degradation.

2. Cache Memory Basics

The memory hierarchy of a processor that includes the
processor core, cache memory, RAM, hard disk and other
lower levels of memory. Cache memory is called CPU
memory, is a RAM (Random Access Memory) that can
access the data more quickly as compared to the regular
RAM. Sometimes it is typically integrated directly with the
CPU chip or placed on a separate chip and connected with
the CPU through a separate bus interconnect.

The cache is a smaller, faster memory which stores the
replicated copies of the data from the frequently used main
memory locations. The fast access to these instructions
increases the overall speed of the program. Traditionally, it
is categorized as "levels" that describe its closeness and
accessibility to the processor: Level 1 (L1) cache, Level 2
(L2) cache, L3 and other lower levels; etc. L1 cache is
relatively small but extremely fast, usually embedded in the
CPU. L2 cache is larger as compared with L1; it may be
located on the CPU or on a separate chip. L1 cache has data
cache and instruction cache. L2 cache that has copies of all
the data in the L1 cache. L3 cache is specialized memory to
improve the performance of L1 and L2, has double the speed
RAM. In the case of multicore processors, each core may
have its own dedicated L1 and L2 cache, but share a
common L3 cache. When an instruction is referenced in the
L3 cache, it is typically elevated to a higher tier cache.

In two level cache system (i.e.: L1 and L2).If the write-back
policy is adapted in L1 cache, it does not required to access
the L2 cache. But if the write through policy is adapted in
L1 cache, then for every write operation both two level
cache (L1&L2 cache) needs to be accessed. Therefore write-
through policy uses more write access in the L2 cache, and
thereby increases more energy consumption of cache and
which is the major issues in the caches.

3. Previous Work

To reduce the cache access time and energy consumption
many techniques have been developed.

A. Traditional Cache Search Technique

Whenever the processor needs to fetch a data from the
memory, it first looks into the cache memory. All the data in
L1 cache that have a replica in L2 cache also. If the data is
found in L1 then the location of the same data in L2 is found
only through search all the data entries in L2. Thereby

Paper ID: 08101501 910

http://searchdatacenter.techtarget.com/definition/multi-core-processor

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

access time is large enough in the case of finding the
location of the same data.

B. Way Tagged Cache

Under the write-through policy, the way-tagged cache
improves the efficiency of energy and increases the
performance. In a two level cache hierarchy, whatever the
data is residing in the L1 cache, the same data will be
available in the L2 cache and the location of those data‟s in
the L2 cache will change only when they are deleted (or)
removed from the L2 cache. When the L1 data cache reads a
data from the L2 cache and in each way of L2, the way-tag
is attached. So the way-tag of the data will be sent to the L1
cache and it will be updated (or) copied in a way-tag arrays.
By doing these, the way-tag of information‟s is provided for
the successive write accesses to the L2 cache. For every read
and write operations in the L1 cache, L2 cache need to be
accessed. In which, the way-tag cache performs different
operations for read and write access. The correct locations
(or) ways are available in L2 cache, for all the data in the L1
cache. During the write hit in the L1 cache, by using the
way-tag technique the way-tag of the data copy can be
accessed in the L2 cache and it access the L2 cache. . If there
is write hit in the L1 cache, the L2 cache selects only one
way and that will be activated. Because the way-tag is
attached in each way of L2, due to this it provides
information to the way-tag array. From the way-tag array,
we can get the desired way of data. If there is write-miss in
the L1 cache means, the requested data is not available with
the L1 cache (i.e.) if the data is not there in the L1 cache the
desired information will not be available in way-tag arrays.

So, under the write miss in all the ways the L2 cache can be
accessed simultaneously. Due to this it consumes more
energy consumption. During the read hit, the requested data
is available in the L1 cache, therefore L2 cache need not to
be accessed. If there is read miss, the requested data is not
available in the L1 cache. Therefore, the L2 cache needs to
be accessed simultaneously in all the ways.

4. Proposed Design

In the previous work-way tagged cache, the access time and
efficiency have become much better which when compared
with the traditional cache search technique.

Figure 1: Proposed Way Tagged Cache Architecture

In the proposed design, way tagged cache architecture with
partial tag matching, uses Count Bloom Filter (CBF). By
using the proposed way-tag cache, under the write operation
it access only fewer ways and it reduces the memory energy
consumption.

The way tag architecture includes many new components,
shown in Fig.1. - way tag array, way decoder, way tag
buffer, and way register. To each way in the cache line the
tag is attached and this tag information of L2 cache are
updated in the way tag array, located in the L1 data cache.
Write buffer uses both write through and write back policies
to enhance the performance. Registers are used as a storage
device and way registers are used for storing the way tags.

C. Way Tag Array

In the way-tagged cache, each cache line in the L1 cache
keeps its L2 way tag information in the corresponding entry
of the way-tag array. The way tag of the data is written into
the way-tag array whenever a data is loaded from the L2
cache to the L1 cache .At a later time whenever the data is
updated with the L1 cache, the corresponding replica in the
L2 cache wants to be updated under the write-through
policy. The way tag stored in the way-tag array is read out
and together with the data from the L1 data cache the data is
forwarded to the way- tag buffer. In the proposed design,
each cache line in the L1 cache keeps its L2 way tag
information in the corresponding entry of the way-tag arrays,
as shown in Fig. 4, where only one L1 data array and the
associated way-tag array are shown for simplicity. When a
data is loaded from the L2 cache to the

Paper ID: 08101501 911

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Way Tag Array

L1 cache, the way tag of the data is written into the way-tag
array. At a later time when updating this data in the L1 data
cache, the corresponding copy in the L2 cache needs to be
updated as well under the write-through policy. The way tag
stored in the way-tag array is read out and forwarded to the
way-tag buffer together with the data from the L1 data
cache. Note that the data arrays in the L1 data cache and the
way-tag arrays share the same address as the mapping
between the two is exclusive. The write/read signal of way-
tag arrays, WRITEH_W, is generated from the write/read
signal of the data arrays in the L1 data cache as shown in
Fig. 2.

A control signal referred to as UPDATE is obtained from the
cache controller. When the write access to the L1 data cache
is caused by a L1 cache miss, UPDATE will be asserted and
allow WRITEH_W to enable the write operation to the way-
tag arrays (WRITEH=1, UPDATE=1, see TABLE I). If a
STORE instruction accesses the L1 data cache, UPDATE
keeps invalid and WRITE_W indicates a read operation to
the way-tag arrays (WRITEH=1, UPDATE=0). During the
read operations of the L1 cache, the way-tag arrays do not
need to be accessed and thus are deactivated to reduce
energy overhead. To achieve this, the word line selection
signals generated by the decoder are disabled by WRITEH
(WRITEH=0, UPDATE=1/0) through AND gates. The
above operations are summarized in Table I.

To avoid performance degradation, the way-tag arrays are
operated in parallel with the L1 data cache. Due to their
small size, the access delay is much smaller than that of the
L1 cache. On the other hand, the way-tag arrays share the
address lines with the L1 data cache. Therefore, the fan-out
of address lines will increase slightly. This effect can be
well-managed via careful floor plan and layout during the
physical design. Thus, the way-tag arrays will not create new
critical paths in the L1 cache.

Table 1: Operation of Way Tag Array
Write Update Operation

1 1 Write into Way Tag Array
1 0 Read from Way tag Array
0 x No Access

D. Way Tag Buffer
Way tag buffers temporarily stores the way tag information
from the way-tag array. Way-tag array and way-tag buffer
shares the same control signal and both have the same

number of entries. Way-tag buffer has n+1 bi t for each entry
and in which n is the line size of way-tag arrays. Status bit is
used to determine the operation in the current entry is a
write-miss on the L1 data cache. The way-tag information is
not available in the way-tag array in the case of write miss
and therefore all the ways of the way-tags will be activated.

Similar to the write buffer of the L2 cache, the way-tag
buffer has separate write and read logic in order to support
parallel write and read operations. The write operations in
the way-tag buffer always occur one clock cycle later than
the corresponding write operations in the write buffer. This
is because the write buffer, L1 cache, and way-tag arrays are
all updated at the same clock cycle when a STORE
instruction accesses the L1 data cache (see Fig. 2). Since the
way tag to be sent to the way-tag buffer comes from the
way-tag arrays, this tag will be written into the way-tag
buffer one clock cycle later. Thus, the write signal of the
way-tag buffer can be generated by delaying the write signal
of the write buffer by one clock cycle, as shown in Fig. 3.

Figure 3: Way Tag Buffer

Figure 4: Way Decoder

E. Way Decoder

The way decoder is used to decode the way tags and selects
only the correct way in the L2 cache. The way tag array of
the line size is n=log 2 N bits. If there is write hit in the L2
cache the way decoder decodes the way tags and activates
only in one way. In L2 cache tag and data arrays are decoded
by the way decoder and it can be decoded at the same time.
If there is write miss (or) read miss in the L1 cache, all the
ways of the L2 cache is need to be selected. The operation
mode of the way decoder can be determined by the read
miss/write miss of the two signals. If the read access is sent
to the L2 cache, then read signal will be „1‟.

Paper ID: 08101501 912

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The way decoder operates simultaneously with the decoders
of the tag and data arrays in the L2 cache. For a write miss
or a read miss in the L1 cache, we need to assert all way-
enable signals so that all ways in the L2 cache are activated.
To achieve this, the way decoder can be implemented by the
circuit shown in Fig. 4. Two signals, read and write miss,
determine the operation mode of the way decoder. Signal
read will be “1” when a read access is sent to the L2 cache.
Signal write miss will be “1” if the write operation accessing
the L2 cache is caused by a write miss in the L1 cache.

F. Way Register

The way tag register stores the way tags and their
information for the way tag array. In L2 cache four way tag
arrays are available. The tag arrays can be indicated as
“00”,”01”,”10”,”11”,these are available in way register.
When the data is loaded from the L2 cache to L1 cache,
according to the way-tag in the register stored in the way-tag
array.

G. Partial Tag Bloom Filter

Partial tag compares the part of the incoming address with
the Cache lines in the corresponding address. If there is no
match then the corresponding cache address is not

Figure 5: Partial Tag Comparison

associated with incoming address. If the comparison of
partial tag gives match, then full tag comparison will be
performed.

Before the tag structure enter into each cache way is
accessed, first the Bloom filter per cache way is looked up.
If the Bloom filter indicates zero, then tag comparison for
the cache way is avoided. Due to this we can reduce the
most of the energy consumption during the tag comparison.
Due to this during the tag comparison operation, it reduces
the energy consumption.
If the partial tag matches then only the full tag comparison
will be performed. If the full tag comparison then the read
hit is obtained. If the partial tag does not match then no need
to check the entire bits of the cache data. So the access time
can be reduced along with the energy consumption.

5. Results

Several cache search techniques were introduced. The
proposed design is utilized in the case of a large number of
cache entries, it is easier to search and with less access time
and energy implemented in VHDL, simulated with
ModelSim and synthesized with Xilinx. In order to evaluate
the improvement of the proposed design, the energy

consumption and latency are compared with the traditional
designs. The proposed design uses only one third of energy
of the conventional way tagged cache architecture. The
proposed design does not need to check the entire address of
all cache data in the case of cache miss, which increases
more energy and time.

Table 2: Comparison Results

 Way Tagged
Cache

Cache with Partial
Tag Comparison

Energy n*Energy for
1 bit search

Energy for 1 bit
search

Maximum combinational path
delay

26.487ns

24.36ns

6. Simulation Results

The proposed Way Tagged Cache with Partial Tag
Comparison is simulated with ModelSim and synthesized
with Xilinx. The simulation results for different inputs.

Figure 6: Read operation and data HIT in L1

Figure 7: Read operation and data MISS in L1 and found in

L2

Paper ID: 08101501 913

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Write Operation into L1 and L2 with tag

information

7. Conclusion

The improved architecture design and implementation for
the way tagged cache architecture has been proposed.
Several critical design issues for the proposed way tagged
cache architecture- with partial tag comparison includes area
and complexity but these issues are resolved with
performance enhancement and time access, since the
proposed design requires less time access without any
performance degradation.

References

[1] J. Dai and L. Wang, “Way-tagged cache: An energy

efficient L2 cache architecture under write through
policy,” in Proc. Int. Symp. Low Power Electron. Design,
2009, pp. 159–164.

[2] X. Vera, J. Abella, A. Gonzalez, and R. Ronen,
“Reducing soft error vulnerability of data caches,”
presented at the Workshop System Effects Logic Soft
Errors, Austin, TX, 2007.

[3] Vineeta Vasudevan Nair, “Way-Tagged L2 Cache
Architecture in Conjunction with Energy Efficient Datum
Storage”, in International Journal of Electronics

Communication and Computer Technology (IJECCT)
2014, volume 4, pp. 543-548.

[4] C. Zhang, F. Vahid, and W. Najjar, “A highly-
configurable cache architecture for embedded systems,”
in Proc. Int. Symp. Comput. Arch., 2003, pp. 136–146.

Paper ID: 08101501 914

