
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Fault Localization for Client Side Scripting of Web
Application

Swati B. Ghawate

1
, S. M. Shinde

2

1PG Student, Computer Engineering Department, JSPM’s JSCOE, Savitribai Phule University of Pune

2Associate Professor, Computer Engineering Department, JSPM’s JSCOE, Savitribai Phule University of Pune

Abstract: Fault localization techniques are of more interest in recent years. These techniques are based on statistical analysis of

program constructs executed by passing and failing test case executions. Till now Fault Localization techniques are available to locate

fault automatically in server side dynamic web application. Existing system concentrate on fault localization of web application written

in PHP. It shows how the Tarantula, Ochiai, and Jaccard fault localization algorithms can localize faults effectively in web

applications written in PHP. It does not localize client side scripting faults, which plays a very important role in modern web

applications . Fault localization of client side scripting is currently a tedious and mainly manual task. It is dynamic in nature and

asynchronous which make it more error prone and challenging to debug. Our proposed approach is implemented with the help of open

source tool Autoflox ,it present automated technique to localize client side scripting faults based on dynamic analysis of the web

application.

Keywords: Client side scripting ; Fault localization ; JAVASCRIPT ; AutoFlox ; JSP ;

1. Introduction

Background

Software debugging is the costliest and more time consuming
process in software development. Also finding root cause of
a failure is the most difficult process in debugging. So,
techniques to automatically localize fault in software have
come up.

Debugging can be divided into two main parts. The initial
part is to recognize harmful code by using available testing
technique. The next part is for programmers to actually
examine the identified code to decide whether it certainly
contains bugs. In the first part harmful code is prioritized
based on its probability of containing bugs. The next part,
assume that bug detection is perfect and it will direct
programmers to the locate faults with least human
involvement.

Web applications are written using combination of several
languages, such as PHP/JSP on server side with AJAX and
JAVASCRIPT at client. These applications generate output
in the form of dynamically generated HTML. Automatic fault
localization can help more to developer to test and locate
fault of application. Our approach is designing fault
localization model for client side scripting of web application
to automatically locate faults.

Relevance

Understanding the nature of client side scripting in web

application:
Client-side scripting empowers achieving dynamic and
responsive web interfaces in web applications. It provides
rich and dynamic user interface for web application.
JAVASCRIPT, is used for client side scripting of application
. It is dynamic, asynchronous and used to interact with DOM

(Document Object Model) at run time. All these
characteristics of JAVASCRIPT make it error prone and
difficult to debug.

Challenges in Testing of Client Side Scripting:

In traditional programming languages, the goal of fault
localization is to find the faulty lines of code. Due to
JAVASCRIPT’s asynchronous and dynamic characteristic
some additional challenges are faced. The programmer will
not only need to find the Page Layout faulty lines, but also
have to map each executed sequence to the event that
triggered their execution in order to understand the root
cause of the error. In addition, event handlers may overlap, as
a particular piece of JAVASCRIPT code may be used by
multiple event handlers. Thus, manual fault localization in
client-side JAVASCRIPT is a tedious process, especially
when many events are triggered.

Debugging and locating fault of web applications is very
expensive and mostly manual task. When the developers
observe an error in a web program either spotted manually or
through automated testing techniques , the fault-localization
process get started. The developers then try to understand the
root cause of the error by looking at the JAVASCRIPT code
[5], examining the Document Object Model (DOM) tree,
running the application again, and manually going through
the initial series of navigational actions that led to the faulty
state or running the corresponding test case. Manually
isolating a JAVASCRIPT error’s root cause requires
considerable time and effort on the part of the developer.
Thus, an error may propagate undetected in the application
for a long time before finally triggering an exception.
Further, errors may arise due to subtle asynchronous and
dynamic interactions at runtime between the JAVASCRIPT
code and the DOM tree, which make it challenging to
understand their root causes. Finally, errors may arise in
third-party code (e.g., libraries, widgets, advertisements), and

Paper ID: SUB156006 125

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

may be outside the expertise of the web application’s
developer.

Although JAVASCRIPT is syntactically similar to languages
such as Java and C++, it differs from them in two important
ways, which makes fault localization challenging.

Asynchronous Execution: JAVASCRIPT code is executed
asynchronously, and is triggered by the occurrence of user-
triggered events (e.g., click, mouseover), load events, or
events resulting from asynchronous function calls. These
events may occur in different orders; although JAVASCRIPT
follows a sequential execution model, it does not provide
deterministic ordering.

DOM Interactions: In a web application, JAVASCRIPT
code frequently interacts with the DOM, which characterizes
the dynamic HTML structure and elements present in the
web page. As a result, the origin of a JAVASCRIPT fault is
not limited to the JAVASCRIPT code; the JAVASCRIPT
fault may also result from an error in the DOM. With regards
to fault localization, the notion of an “erroneous line” of code
may not apply to JAVASCRIPT because it is possible that
the error is in the DOM rather than the code. This is
particularly true for DOM-related JAVASCRIPT faults
(described in further detail in Section 3), which are defined
as JAVASCRIPT faults that lead to either exceptions or
incorrect DOM element outputs as a result of a DOM access
or update. As a result, for such faults, one needs to formulate
the goal of fault localization to isolate the first line of
JAVASCRIPT code containing a call to a DOM access
function (e.g., getAttribute(), getElementById()) or a DOM
update function/property (e.g., setAttribute(), innerHTML)
that directly causes JAVASCRIPT code to throw an
exception, or to update a DOM element incorrectly. This line
is referred to as the direct DOM interaction.s

The Proposed System

Although fault localization in general has been an active
research topic, automatically localizing web faults has
received very limited attention from the research community.
Automated fault localization for JAVASCRIPT-based web
applications are not completely addressed yet. To make
manual fault localization process easier for client side
scripting of web application, in this paper, we propose an
automated technique based on dynamic backward tracing of
the web application to localize JAVASCRIPT faults. Our
fault localization approach is based on Autoflox and
Invarscope plugin for client side Javascript faults.
The main contributions of this paper include:
 A discussion of the challenges surrounding JAVASCRIPT

fault localization, highlighting the real-world relevance of
the problem and identifying DOM-related JAVASCRIPT
errors as an important sub-class of problems in this space;

 A fully automated technique for localizing DOM-related
JAVASCRIPT faults, based on dynamic analysis and
backward tracing of JAVASCRIPT code;

 Implementing the fault localization technique with help of
crwaljax , Autoflox and Invarscope plugin.

2. Related Work

All We classify related work into two broad categories: Fault
localization of server side scripting and automatic testing of
Client side scripting for web application.

Fault Localization for server side scripting of web

application

The Early work on fault localization relied on the use of
program slicing [12]. Lyle and Weiser [13] introduce,
program dicing, a method for combining the information of
different program slices. Renieris and Reiss [11] use set-
union, set-intersection, and nearest neighbor methods for
fault localization; these all work by comparing execution
traces of passing and failing program runs. Shay Artzi, Julian
Dolby [1] introduce, Tarantula, Ochiai, and Jaccard are
different similarity coefficients that have been used for fault
localization, by computing for each program construct a
suspiciousness rating that reflects the likelihood for that
construct to contribute to a failure. This suspiciousness rating
of a program construct is computed as a function of the ratio
of passing and failing executions that exercise it.

 There have been numerous studies to find errors and
vulnerabilities in web applications through static analysis.
JAVASCRIPT is a difficult language to analyze statically [7],
these techniques typically restrict themselves to a safe subset
of the language. Automated testing of JAVASCRIPT based
web applications is an active area of research [5], S. Artzi, J.
Dolby designed a framework to automatically test
JAVASCRIPT based web application. ATUSA [14] is an
automated technique for enumerating the state space of a
JAVASCRIPT-based web application and finding errors or
invariant violations specified by the programmer. DODOM
[6] dynamically derive invariants for the JAVASCRIPT code
and the DOM respectively. However, none of these
techniques focus on fault localization. Tools such as
Firefox’s Firebug plug-in exist to help JAVASCRIPT
programmers debug their code. However, such tools are
useful only for the bug identification phase of the debugging
process, and not the fault localization phase.

Fault Localization for client side scripting of web

application

Only paper that has explored fault localization in the context
of web applications is by Artzi et al. [1]. However, their work
differs from ours in various aspects: (1) they focus on the
server-side code i.e. PHP, while we focus on the client-side;
(2) they localize HTML validation errors, while our approach
localizes JAVASCRIPT faults; and (3) they have opted for a
spectrum-based approach based on Tarantula, while ours is a
based on Tversky coefficient measure technique . Fault
localization techniques isolate the root cause of a fault based
on the dynamic execution of the application. They can be
classified into Spectrum-based and Slicing-based. Spectrum-
based fault localization techniques include Pinpoint ,
Tarantula and Whither. However, spectrum-based techniques
are difficult to adapt to web applications, as web applications
are rarely deterministic, and hence they may incur false

Paper ID: SUB156006 126

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

positives. Also, it is not straightforward to classify a web
application’s execution as success or failure, as the results
depend on its usage. Our technique is similar to this body of
work in that we also extract the dynamic backward slice of
the JAVASCRIPT statement that throws an exception.

3. Implementation

Overview of the system

Our System attempt to locate Client side faults based on
analysis of Java Script code under test. We are using
following tools for the fault localization purpose.
1. AutoFlox.
2. Crawljax.
3. Invar Scope Plugin which needs to modify to satisfy

project requirements .

Block Diagram

Figure 1: Block diagram consisting all phases of system

Our client side fault localizer consist of two phases:
 Trace Collection
 Trace Analysis

The trace collection phase involves crawling the web
application and gathering traces of executed JAVASCRIPT
statements until the occurrence of the error that halts the
execution. In addition to the trace entries corresponding to
the executed lines of JAVASCRIPT code, three special
markers, called FAILURE, ASYNCCALL and ASYNC, are
added to the trace. The FAILURE marker is used in the trace
analysis phase to determine at which line of JAVASCRIPT
code the exception was thrown; if a line l is marked with the
FAILURE marker, then the value l:failure is set to true. The
ASYNCCALL and ASYNC markers address the
asynchronous nature of JAVASCRIPT execution . After the
traces are collected, they are parsed in the trace analysis
phase to find the direct DOM access.

Trace analysis phase begins after trace of executed
statement is collected. The goal of this phase is to analyse the
trace entries and find the direct DOM access responsible for
the JAVASCRIPT failure. First, the approach partitions the
trace into sequences, where a sequence (l1; l2; :::; ln)
represents the series of JAVASCRIPT statements l1; l2; :::;
ln that were triggered by the same event (e.g., a page load).
Each sequence corresponds to exactly one event. After
partitioning the trace into sequences, the algorithm looks for
the sequence that contains the direct DOM access. This is
called the relevant sequence. The relevant sequence is the

sequence that contains the FAILURE marker. Once the
relevant sequence has been found, the algorithm starts
locating the direct DOM access within that sequence. To do
so, it analyzes the backward slice of the variable in the line
marked with the FAILURE marker.

4. Result

Our fault localization approach consists of two sections : (1)
trace collection, and (2) trace analysis. The trace collection
phase involves crawling the web application and gathering
traces of executed JAVASCRIPT statements until the
occurrence of the error that halts the execution. After the
traces are collected, they are parsed in the trace analysis
phase to find the direct DOM access.

The output of our client side scripting approach will be the
direct DOM access corresponding to the error to be localized
and has following aspects
1) The function containing the direct DOM access.
2) The line umber of the direct DOM access relative to this

function,
3) The JAVA SCRIPT file containing the direct DOM access.

Following table shows the result of testing one small web
application :

Table I

Where

Type 1 - Code-terminating DOM-related
Type 2 - Output DOM-related
Type 3 - Unknown DOM-related

Result of the study on bug reports from testing web

application and website:

Figure 2: A sample line graph using colors which contrast

well both Bug type and Total bugs

5. Conclusion

Paper ID: SUB156006 127

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Till now Fault Localization techniques are available to
automatically locate fault in server side dynamic web
application. In this paper, we introduce a fault-localization
approach for client side scripting of web applications. Our
approach is based on trace collection and trace analysis of
web application. It addresses the two main problems of client
side scripting that are asynchronous execution and DOM
interactions. We focus on JAVASCRIPT errors as we find
that about 80% of the JAVASCRIPT errors reported in
online bug databases of web applications pertain to the
DOM. We have implemented our approach as an automated
tool to localize faults of complete web application based
client side script.

The current work focuses on code-terminating JAVASCRIPT
faults, i.e., faults that lead to an exception thrown by the web
application. However, not all DOM-related faults belong to
this category. The design will therefore be extended to
include a more automated technique for localizing non-code
terminating JAVASCRIPT faults. This is also an avenue for
future work.

6. Acknowledgement

It is with deep sense of gratitude that authors acknowledge
the sincere help of concerned people for providing very
constructive suggestions to improve the method.

References

[1] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia

“ Fault Localization For Dynamic Web Applica-tion “ ,
IEEE Int’l Conf. Software Eng., vol. 38, in 2012.

[2] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical
Fault Localization for Dynamic Web Applications,”
Proc. 32nd ACM IEEE Int’l Conf . Software Eng., vol.
1, pp. 265-274, 2010.

[3] Wenhong S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D.
Dig, A. Paradkar, and M.D. Ernst, “Finding Bugs in
Dynamic Web Applications,” Proc. Int’l Symp.
Software Testing and Analysis, pp. 261-272, 2008.

[4] Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.
Paradkar, and M.D. Ernst, IBM Fault localization Re-
search, in 2008.

[5] Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip, “A
Framework for Automated Testing of JavaScript Web
Applications,” in Intl. Conference on Software
Engineering (ICSE). ACM, 2011.

[6] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging
DOM Invariants for Web 2.0 Application Robustness
Testing,” in IEEE Intl. Symposium on Software
Reliability Engineering (ISSRE). IEEE Computer
Society,2010.

[7] Y. Zheng, T. Bao, and X. Zhang, “Statically locating
web application bugs caused by asynchronous calls,” in
Intl. Conference on the World-Wide Web (WWW).
ACM, 2011.

[8] Yong R. Abreu, P. Zoeteweij, and A.J.C. van Gemund,
“An Evaluation of Similarity Coefficients for Software
Fault Localization,” Proc. 12th Pacific Rim Int’l Symp.
Dependable Computing, pp. 39-46, 2006.

[9] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed
Test Generation for Effective Fault Localization,”
Proc. 19th Int’l Symp. SoftwareTesting and Analysis,
pp. 49-60, 2010.

[10] Y. Zheng, T. Bao, and X. Zhang, “Statically locating
web application bugs caused by asynchronous calls,” in
Intl. Conference on the World- Wide Web (WWW).
ACM, 2011, pp. 805–814.

[11] M. Renieris and S. Reiss, “Fault localization with
nearest neighbor queries,” in Proceedings of the 18th
International Conference on Automated Software
Engineering (ASE). IEEE Computer Society , 2003

[12] F. Tip, “A Survey of Program Slicing Techniques,” J.
Programming Languages, vol. 3, no. 3 pp. 121-189,
1995

[13] J. Lyle and M. Weiser, “Automatic Bug Location by
Program Slicing,” Proc. Second Int’l Conf. Computers
and Applications 2007.

[14] A . Mesbah and A. van Deursen, “Invariant-based
automatic testing of AJAX user interfaces,” in Intl.
Conference on Software Engineering (ICSE). IEEE
Computer Society , 2012

[15] S.Artzi ,J . Dolby, S. Jensen, A . Moller , and F . Tip ,
“ A Framework for Automated Testing of JavaScript
Web Applications ,” in Intl. Conference on software
Engineering (ICSE) .ACM 2011 , pp.-571 -580 .

Paper ID: SUB156006 128

