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Abstract: In this paper we have generated the algorithm to find the value of Mobius function for any positive number n and define 
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abelian group. 
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1. Introduction 
 
There exist many number theoretic functions, which includes 
Divisor function τ(n) [1], Sigma function σ(n) [1], Euler phi 
function υ(n) [2] and Mobius function μ(n) [2]. All these 
functions play very important role in the field of number 
theory [3]. Mobius function is a special number theoretic 
function which satisfies some special properties and is useful 
in the formation of group in the field of abstract algebra [4]. 
 
2. Mobius Function 
 
The Mobius function μ(n) is defined for all positive integers 
n and has its values in {−1, 0, 1} depending on the 
factorization of n into prime factors. It is defined as follows: 
 
1, if n is a square-free positive integer with  
an even number of prime factors. 

 
2.1 Program of Mobius Function 

 
import java.io.*; 
classmobius 
{ 

public static void main(String args[]) throws IOException 
{ 

InputStreamReader reader=new 
InputStreamReader(System.in); 
BufferedReader input=new BufferedReader(reader); 

 
intn,i,j,c=0,p; 
boolean flag=true; 
int a[]=new int[100]; 

 
System.out.println("Enter any number...."); 
n=Integer.parseInt(input.readLine()); 
p=n; 

 
if(n==1) 

System.out.println("mobius(1)=1"); 
else 
{ 

do 
{ 

for(i=2;i<=n;i++) 
{ 

if(n%i==0) 
{ 

break; 
} 

} 
a[c++]=i;  
n=n/i; 

} 
while(n>1); 

 
for(i=0;i<c-1;i++) 
{ 

for(j=i+1;j<c;j++) 
{ 

if(a[i]==a[j]) 
{ 

flag=false; 
break; 

} 
} 

} 
if(flag==true) 
{ 

int r; 
r=(int)Math.pow(-1,c); 
System.out.println("mobius("+p+")="+r); 

} 
else 
{ 

System.out.println("mobius("+p+")="+0); 
} 

} 
} 

} 
 

Paper ID: SUB158610 177

https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/-1_(number)
https://en.wikipedia.org/wiki/0_(number)
https://en.wikipedia.org/wiki/1_(number)
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Prime_factor
https://en.wikipedia.org/wiki/Even_and_odd_numbers


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 10, October 2015 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

3. Mobius (α,β) Function 
 
The function [µ(α,β);n] is known as the Mobius (α,β) 
function for all positive numbers n, having value (-1)k and 0, 
depends upon prime factors of n lies in the interval [α,β]. The 
function [µ(α,β);n] is defined as follows: 
 

 
where, α, β ϵ N and k is the number of distinct prime factors 
of n lies in the interval [α,β] and [µ(1,β);1]= 1 
 
eg: [µ(3,12);195] = [µ(3,12);3.5.13] = (-1)2 = 1 
 
3.1 Properties of Mobius (α,β) Function 
 
3.1.1 [µ(α,β);n] = µ(n), for every n ϵ N, if all the prime 
factors of n are distinct and lies in the interval [α,β]. 
 
3.1.2 [µ(α,β);n] is multiplicative, for every n ϵ N, if all the 
prime factors of n are distinct and lies in the interval [α,β]. 
i.e.,[µ(α,β);n1].[µ(α,β);n2]....[µ(α,β);nr] = [µ(α,β);n1.n2…..nr]  
if gcd (n1,n2,…,nr) = 1 
 
Proof: To prove this property first we consider only two 
distinct numbers n1 and n2 such that, gcd (n1,n2) = 1 
 
Let n1 = p1. p2….. pi has i distinct prime factors, all lies in the 
interval [α,β], 
and n2 = q1. q2….. qj has j distinct prime factors, all lies in the 
interval [α,β]. 
 
then n1. n2 = p1. p2….. pi. q1. q2….. qj has (i+j) distinct prime 
factors, all lies in the interval [α,β]. 
 
Therefore, 
[µ(α,β);n1]. [µ(α,β);n2] = (-1)i. (-1)j 
 = (-1)i+j 
 = [µ(α,β);p1. p2….. pi. q1. q2….. qj] 
 = [µ(α,β);n1. n2] 
where, gcd (n1,n2) = 1 
 
In general, we can write 
if gcd (n1,n2,…,nr) = 1 
 
then, 
[µ(α,β);n1].[µ(α,β);n2].….[µ(α,β);nr] = [µ(α,β);n1.n2….nr]. 
 
Hence, [µ(α,β);n] is multiplicative. 
 
3.1.3 ([µ(α,β);n], *) is an abelian group, for every n ϵ N, if all 
the prime factors of n are distinct and lies in the interval 
[α,β]. 
i.e., [µ(α,β);n] with a binary operation multiplication (*) form 
an abelian group, where, α,β ϵ N, n ϵ Z+ and all prime factors 
of n lies in the interval [α,β]. 
 
Proof: Let S = [µ(α,β);n], where all the prime factors of n are 
distinct and lies in the interval [α,β]. 
then, S = {-1, 1} and multiplication (*) be the binary 

operation on the set S. 
 
Closure and Associative Property: 
 
Composition table for S for the binary operation (*) is as 
follows: 

Table 1: Composition table 

* -1 1 
-1 1 -1 
1 -1 1 

 
Since all the elements of composition table belongs to the set 
S, therefore closure and associative property hold. 
 
Existence of identity:  
 
Since, (-1)*(1) = -1 = (1)*(-1) 
and (1)*(1) = 1 = (1)*(1) 
i.e., for every s ϵ S, there exist 1 ϵ S, such that  

(s)*(1) = s = (1)*(s) 
 
Hence, 1 is the identity element for multiplication. 
 
Existence of inverse: 
 
Since, (-1)*(-1) = 1 = (-1)*(-1) 
and (1)*(1) = 1 = (1)*(1) 
i.e., for every s ϵ S, there exist s-1 ϵ S, such that  

(s)*(s-1) = 1 = (s-1)*(s) 
 
therefore, each element s ϵ S has its multiplicative inverse in 
S. 
Hence, ([µ(α,β);n], *) is a group. 
 
Also, (1)*(-1) = -1 = (-1)*(1) 

(1)*(1) = 1 = (1)*(1) 
(-1)*(-1) = 1 = (-1)*(-1) 

Therefore the commutative law also holds. 
 
Hence, ([µ(α,β);n], *) is an abelian group. 
 
4. Conclusion 
 
The above analysis shows that the function [µ(α,β);n] satisfy 
the multiplicative law and all the properties of an ablelian 
group together with the binary operation (*) multiplication. 
Hence the function [µ(α,β);n] forms an abelian group. 
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