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Abstract: The main purpose in this investigation is to use the Buongiorno’s mathematical model for studying the effect of an internal 
heat source which produces a constant volumetric heat on the onset of convective instability in a confined medium , filled of a 
Newtonian nanofluid layer and heated from below, this layer is assumed to have a low concentration of nanoparticles. The linear 
study in the free - free case shows that the thermal stability depends of the volumetric heat delivered by the internal source, the 
Brownian motion, the thermophoresis of the nanoparticles and other thermo-physical properties of nanoparticles. The studied 
problem will be solved analytically by converting our boundary value problem to an initial value problem, after this step we will 
approach the searched solutions with polynomials of high degree.  
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1. Introduction  
 
For Increasing the effective thermal conductivity of the 
coolant fluids in a confined geometry, we prefer using fluids 
containing nano-sized metallic particles (about 1-100nm) in 
suspension to obtain a nanofluid characterized by a high 
effective thermal conductivity compared to the regulars fluids 
(water - oil - ethylene glycol). The experiment shows that the 
presence of the nanoparticles in a base fluid allows us to obtain 
a significant growth in the thermal conductivity of the mixture 
(base fluid + nanoparticles), for this purpose we find that the 
nanofluids are currently used in the cooling of advanced 
electronic or nuclear systems.  
 

The nanofluid term was introduced by Choi [1] in 1995 and 
remains usually used to characterize this type of colloidal 
suspension. Buongiorno [2] was the first researcher who 
treated the convective transport problem in nanofluids, he was 
established the conservation equations of a non-homogeneous 
equilibrium model of nanofluids for mass, momentum and 
heat transport. The thermal problem of instability in 
nanofluids with rigid-free and free-free boundaries was 
studied by Tzou [3,4] using the eigenfunction expansions 
method. The onset of convection in a horizontal nanofluid 
layer of finite depth was studied by Nield and Kuznetsov [5], 
they found that the critical Rayleigh number can be decreased 
or increased by a significant quantity depending on the 
relative distribution of nanoparticles between the top and 
bottom walls. 
  

In this paper, we will study the Rayleigh -Bénard problem for 
the Newtonian nanofluids with a uniform heat source in the 
free-free case using a new type of boundary conditions for the 
nanoparticles which assumes the nanoparticle flux must be 
zero on the impermeable boundaries. D.A. Nield and A.V. 
Kuznetsov [6] are considered as the first ones who were used 
this type of boundary conditions for the nanoparticles.  
 

The new model of boundary conditions for the nanoparticles 
is physically more realistic since it combines the contribution 
of the Brownian motion and the thermophoresis of the 
nanoparticles, for this reason we find currently several authors 
[7-11] are using this type of model to study the natural 
convection in nanofluids. 
 

To show the accuracy of our method in this study, we will 
check some results treated by D.Yadav et al. [12] concerning 
the study of the convective instability of regular fluids in 
presence of an internal heat source which produces a constant 
volumetric heat in the free-free case.  
 

2. Mathematical Formulation  
 

We consider an infinite horizontal layer of an incompressible 
Newtonian nanofluid characterized by a low concentration of 
nanoparticles , heated uniformly from below and confined 
between two identical horizontal surfaces where the 
temperature is constant and the nanoparticle flux is zero on the 
boundaries, this layer will be subjected to an internal heat 
source which will provide a constant volumetric heat Qs and 
also  to  the gravity field g⃗  (see Figure 1).The thermo-physical 
properties of nanofluid (viscosity, thermal conductivity, 
specific heat) are assumed constant in the analytical 
formulation except for the density variation in the momentum 
equation which is based on the Boussinesq approximations . 

 
       

 

 

 

 

 

 

         Figure 1: Physical configuration 
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Within the framework of the assumptions which were made 
by Buongiorno [2] and Tzou [3,4] in their publications for the 
Newtonian nanofluids, we can write the basic equations of 
conservation which govern our problem in dimensionless 
form as follows: 

∇⃗⃗ ∗. V⃗⃗ ∗ = 0    (1)  

ρf [
∂V⃗⃗ ∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)V⃗⃗ ∗] = −∇⃗⃗ ∗P∗ + η∇⃗⃗ ∗

2
V⃗⃗ ∗ 

+{ρ0[1 − β(T∗ − Tc)](1 − χ∗) + ρpχ
∗}g⃗  

(2)  

(ρc)f [
∂T∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)T∗] = κ∇⃗⃗ ∗

2
T∗ + Qs 

+(ρc)p  [DB∇⃗⃗ ∗χ∗. ∇⃗⃗ ∗T∗ + (
DT

Tc
) ∇⃗⃗ ∗T∗. ∇⃗⃗ ∗T∗] 

(3)  

∂χ∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)χ∗ = DB∇⃗⃗ ∗

2
χ∗ + (

DT

Tc
) ∇⃗⃗ ∗

2
T∗ (4)  

where  ρf is the density of the base fluid , ρ0 is the fluid density 
at reference temperature Tc , ρp is the  nanoparticle  density , β 
is the thermal expansion coefficient of  the base fluid  , V⃗⃗ ∗  is 
the velocity vector , t∗ is the time , P∗ is the pressure , T∗ is the 
temperature , χ∗ is the volume fraction of nanoparticles , η is 
the viscosity of the nanofluid  , κ is the thermal conductivity 
of the nanofluid , DB is the Brownian diffusion coefficient , 
DT is the thermophoretic diffusion coefficient  , (ρc)f is the 
heat capacity of the base fluid , (ρc)p is the heat capacity of 
the nanoparticle , (x∗, y∗, z∗) are the cartesian coordinates , ∇⃗⃗ ∗ is 
the vector differential operator . 

In this study the asterisks are used to distinguish the 
dimensional variables from the nondimensional variables 
(without asterisks). 

If we consider the following dimensionless variables: 

(x∗; y∗; z∗) = h(x; y; z) ; t∗ =
h2

α
t ; V⃗⃗ ∗ =

α

h
V⃗⃗   

 P∗ =
ηα

h2 P ;  T∗ − Tc = (Th − Tc)T ; χ∗ − χ0
∗ = χ0

∗χ 

Then, we can get from equations (1)-(4) the following 
adimensional forms: 

∇⃗⃗  . V⃗⃗ = 0 (5)  

Pr
−1 [

∂V⃗⃗ 

∂t
+ (V⃗⃗  . ∇⃗⃗ )V⃗⃗ ] = −∇⃗⃗ (P + RMz) + ∇⃗⃗ 2V⃗⃗  

+ [(1 − χ0
∗)RaT − RNχ − χ0

∗RaTχ]e⃗ z 
(6)  

∂T

∂t
+ (V⃗⃗  . ∇⃗⃗ )T = ∇⃗⃗ 2T + Hs 

 + NBLe
−1 ∇⃗⃗ χ. ∇⃗⃗ T + NANBLe

−1∇⃗⃗ T. ∇⃗⃗ T 
(7)  

∂χ

∂t
+ (V⃗⃗  . ∇⃗⃗ )χ = Le

−1∇⃗⃗ 2χ + NALe
−1∇⃗⃗ 2T (8)  

Where  Pr = η ρfα⁄  is the Prandtl number , Le = α DB⁄   is the 
Lewis number , Hs = Qsh

2 κ(Th − Tc)⁄  is the dimensionless 
constant heat source strength , Ra = ρ0gβh

3(Th − Tc) ηα⁄  is the 
thermal Rayleigh number , RM = [ρ0(1 − χ0

∗) + ρpχ0
∗]gh3 ηα⁄  is the 

basic density Rayleigh number , RN = (ρp − ρ0)χ0
∗gh3 ηα⁄  is the 

concentration Rayleigh number, NA = DT(Th − Tc) DBTc⁄ χ0
∗  is the 

modified diffusivity ratio , NB = (ρc)pχ0
∗ (ρc)f⁄  is  the modified 

particle-density increment , α = κ (ρc)f⁄  is the thermal 
diffusivity of the nanofluid , χ0

∗  is the reference value for the 
nanoparticle volume fraction . 
 

 

 
2.1 Basic Solution 
The basic solution of our problem is a quiescent thermal 
equilibrium state, it’s assumed to be independent of time 
where the equilibrium variables are varying in the z-direction 
only, therefore: 

V⃗⃗ b = 0⃗  (9)  

Tb = 1    ; 
dχb

dz
+ NA

dTb

dz
= 0   at  z = 0 (10)  

Tb = 0    ; 
dχb

dz
+ NA

dTb

dz
= 0   at  z = 1 (11)  

If we introduce the precedent results into equations (6)-(8), we 
obtain: 

∇⃗⃗ (Pb + RMz) = [(1 − χ0
∗)RaT − RNχ − χ0

∗RaTχ]e⃗ z (12)  

d2Tb

dz2
+ NBLe

−1 (
dχb

dz

dTb

dz
) + NANBLe

−1 (
dTb

dz
)
2

= −Hs (13)  

d2χb

dz2 + NA

d2Tb

dz2 = 0 (14)  

After using the boundary conditions (10) and (11), we can 
integrate the equation (14) between 0 and z for obtaining: 

χb = NA(1 − Tb) + χ0 (15)  

Where  χ0 = (χ∗ − χ0
∗) χ0

∗⁄   is the relative nanoparticle volume 
fraction   at   z = 0 . 

If we take into account the expression (15), we can get after 
simplification of the equation (13): 

d2Tb

dz2 = −Hs    
(16)  

Finally, we obtain after an integrating of the equation (16) 
between 0 and 1: 

Tb = −
1

2
Hsz

2 + (
1

2
Hs − 1) z + 1 (17)  

χb =
1

2
NAHsz

2 − NA (
1

2
Hs − 1) z + χ0 (18)  

 

2.2 Stability Analysis  
 

For analyzing the stability of the system, we superimpose 
infinitesimal perturbations on the basic solutions as follows 

T = Tb + T′; V⃗⃗ = V⃗⃗ b + V⃗⃗ ′ ; P = Pb + P′ ;  χ = χb + χ′ (19)  

In the framework of the Boussinesq approximations, we can 
neglect the terms coming from the product of the temperature 
and the volumetric fraction of nanoparticles in equation (6), if 
we suppose also that we are in the case of small temperature 
gradients in a dilute suspension of nanoparticles, we can 
obtain after introducing the expressions (19) into equations 
(5)-(8) the following linearized equations: 
 

∇⃗⃗  . V′⃗⃗  ⃗ = 0 (20)  

Pr
−1

∂V⃗⃗ ′

∂t
= − ∇⃗⃗ P′ + (RaT

′ − RNχ′)e⃗ z + ∇⃗⃗ 2V⃗⃗ ′ (21)  

∂T′

∂t
+ f1w

′ = ∇⃗⃗ 2T′ + f2
∂T′

∂z
+ f3  

∂χ′

∂z
 (22)  

∂χ′

∂t
+ f4w

′ = NALe
−1∇⃗⃗ 2T′ + Le

−1∇⃗⃗ 2χ′ (23)  

Where   f1 = DTb , f2 = NBLe
−1D(χb + 2NATb ) , f3 = NBLe

−1DTb 
                f4 = Dχb  and  D = d dz⁄  . 
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After application of the curl operator twice to equation (21) 
and using the equation (20), we obtain the following z-
component of the momentum equation: 

Pr
−1 ∂  

∂t
∇⃗⃗ 2w′ = ∇⃗⃗ 4w′ + Ra∇⃗⃗ 2

2T′ − RN∇⃗⃗ 2
2χ′ (24)  

Where  ∇⃗⃗ 22= (
∂2  

∂x2
) + (

∂2  

∂y2
) is the two-dimensional Laplacian 

operator on the horizontal plane.  
Analyzing the disturbances into normal modes, we can 
simplify the equations (22) - (24) by assuming that the 
perturbation quantities are of the form: 

(w′, T′, χ′) = (𝓌(z), 𝒯(z),𝒳(z))e[i(kxx+kyy)+σt] (25)  
After introducing the expressions (25) into equations (22) - 
(24), we obtain: 

Pr
−1σ(D2 − k2)𝓌 = (D2 − k2)2𝓌 − k2Ra𝒯 + k2RN𝒳 (26)  

σ𝒯 + f1𝓌 = (D2 − k2)𝒯 + f2D𝒯 + f3D𝒳 (27)  

σ𝒳 + f4𝓌 = NALe
−1(D2 − k2)𝒯 + Le

−1(D2 − k2)𝒳 (28)  
Where σ is the dimensionless growth rate, kx and ky are 
respectively the dimensionless waves numbers along the  x 

and y directions , k = √kx
2 + ky

2 is the resultant dimensionless 

wave number. 

In the free-free case, the equations (26) - (28) will be solved 
subject to the following boundary conditions: 

𝓌 = D2 𝓌 = 𝒯 = D(𝒳 + NA𝒯) = 0   at    z = 0; 1 (29)  
 

2.3 Method of Solution  
 

In this study we assume that the principle of exchange of 
stability is valid. As we are interested in a stationary stability 
study characterized by  σ = 0 , then the equations (26)-(28) 
become: 

(D2 − k2)2𝓌 − k2Ra𝒯 + k2RN𝒳 = 0   (30)  

f1𝓌 − (D2 − k2)𝒯 − f2D𝒯 − f3D𝒳 = 0 (31)  

f4𝓌 − NALe
−1(D2 − k2)𝒯 − Le

−1(D2 − k2)𝒳 = 0 (32)  
We can solve the equations (30) - (32) which are subjected to 
the conditions (29), by making a suitable change of variables 
that makes the number of variables equal to the number of 
boundary conditions, to obtain a set of eight first order 
ordinary differential equations which we can write it in the 
following form: 

d  

dz
ui(z) = aijuj(z) ;   1 ≤ i, j ≤ 8  (33)  

With: 
aij = aij(z, k, Ra, Hs, NB, Le , RN , NA) 

The solution of the system (33) in matrix notation can be 
written as follows: 

U = BC (34)  

Where  B = ((bij(z))1≤i≤8
1≤j≤8

)   is a square matrix of order  8 × 8, 

U = ((ui(z))1≤i≤8
)
T

 is the unknown vector column of our 
problem , C = ((cj)1≤j≤8

)
T

 is a constant vector column. 

If we assume that the matrix B is written in the following form: 
 

 

 

B = ((ui
j(z))1≤i≤8

1≤j≤8

) (35)  

Therefore, the use of four boundary conditions at  z =  0 , 
allows us to write each variable ui(z) as a linear combination 
only for four functions  ui

j(z) , such that: 
bij(0) = ui

j(0) = δij (36)  
After introducing the new expressions of the variables  ui(z) 
in the system (33), we will obtain the following equations:   

d  

dz
ui

j(z) = ailul
j(z) ;   1 ≤ i, l, j ≤ 8  (37)  

For each value of j , we must solve a set of eight first order 
ordinary differential equations which are subjected to the 
initial conditions (36) , by approaching these variables with 
real power series defined in the interval  [0,1]   and truncated 
at the order  N ,   such that: 

ui
j(z) = ∑ dp

i ,j
zp

p=N

p=0

 (38)  

A linear combination of the solutions ui
j(z) satisfying the 

boundary conditions (29)   at  z =  1  leads to a homogeneous 
algebraic system for the coefficients of the combination. A 
necessary condition for the existence of nontrivial solution is 
the vanishing of the determinant which can be formally 
written as: 

f(Ra , k , Hs , NB , Le , RN , NA) = 0 (39)  
If we give to each control parameter  (Hs , NB , Le , RN  , NA)  its 
value, we can plot the neutral curve of the stationary 
convection by the numerical research of the smallest real 
positive value of the thermal Rayleigh number  Ra  which 
corresponds to a fixed wave number k and verifies the 
dispersion relation (39). After that, we will find a set of points 
(k, Ra) which help us to plot our curve and find the critical 
value (kc, Rac) which characterizes the onset of the convective 
stationary instability, this critical value represents the 
minimum value of the obtained curve. 
 

2.4 Validation of the Method  
 

The truncation order N  which correspond at the convergence 
of our method is determined, when the five digits after the 
comma of the critical thermal Rayleigh number Rac remain 
unchanged (see Table 1). 

To validate our method, we compared our results with those 
obtained by Dhananjay Yadav et al. [12] concerning the 
Rayleigh-Bénard problem for the regular fluids in the 
presence of an internal heat source. To make this careful 
comparison, we must take into consideration the restrictions:  
Le
−1 = RN = NA = NB = 0  in the governing equations of our 

problem (see Table 2). 

According to the below results, we notice that there is a very 
good agreement between our results and the previous works, 
hence the accuracy of the used method. Briefly, the 
convergence of the results depends greatly on the truncation 
order N of the power series and also of the heat source 
strength Hs. Finally, to ensure the accuracy of our obtained 
critical values for the studied Newtonian nanofluids, we will 
take as truncation order : N = 32 
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Table 1: The exact stationary instability threshold of a Newtonian 
nanofluid for Hs = 20  and  Hs = 60. 

NB = 0.01, Le = 100 , RN = 1 , NA = 0.1 

N 
Hs = 20 

 

Hs = 60 
kc Rac kc Rac 

25 2.47227 449.84172 2.72311 209.35582 
26 2.47233 449.83882 2.72358 209.34532 
27 2.47232 449.83940 2.72346 209.34765 
28 2.47232 449.83935 2.72348 209.34743 
29 2.47232 449.83936 2.72348 209.34749 
30 2.47232 449.83935 2.72348 209.34743 
31 2.47232 449.83936 2.72348 209.34746 
32 2.47232 449.83936 2.72348 209.34745 
33 2.47232 449.83936 2.72348 209.34745 
34 2.47232 449.83936 2.72348 209.34745 
35 2.47232 449.83936 2.72348 209.34745 

 

 
 

Exact 
value 2.47232 449.83936 2.72348 209.34745 

 
Table 2: The obtained stationary instability threshold by D. Yadav et 
al. [12] and us, for the regular fluids for various values of  Hs. 

Hs 
D. Yadav et all 

 

Present study 

kc Rac kc Rac N 
0 2.221 657.51128 2.22144 657.51138 18 
1 2.223 656.69234 2.22287 656.69244 20 
2 2.227 654.25598 2.22715 654.25608 23 

10 2.340 589.42140 2.33980 589.42136 28 
20 2.527 473.46423 2.52736 473.46404 29 
30 2.657 381.12034 2.65717 381.12011 29 
40 2.739 315.26816 2.73859 315.26794 31 
60 2.829 232.11493 2.82940 232.11473 31 

 

3. Results and Conclusion 
 

To study the effect of a parameter  (Hs, NB , Le , RN , NA) on the 
onset of the convective instability for the newtonian 
nanofluids in the presence of an internal heat source which 
produces a constant volumetric heat, we must determine the 
variation of the critical thermal Rayleigh number Rac as a 
function of the heat source strength Hs for different values of 
this parameter (see Figure 2 - Figure 5). 

 

 
Figure 2: Plot of Rac as a function of  Hs and NB for 

                             Le = 100 , RN = 1 , NA = 0.1       

 
Figure 3: Plot of Rac as a function of  Hs and Le for 

                              NB = 0.01 , RN = 1 , NA = 0.1        
 

 
Figure 4: Plot of Rac as a function of  Hs and RN for 

            NB = 0.01 , Le = 100 , NA = 0.1         
 

 
Figure 5: Plot of Rac as a function of  Hs and NA for 

                             NB = 0.01 , Le = 100 , RN = 1     
     

In this paper, we have examined the effect of a uniform heat 
source on the onset of convection in a Newtonian nanofluid 
layer heated uniformly from below in the case where the 
nanoparticle flux is zero on the impermeable boundaries, this 
study shows that the modified particle-density increment NB 
has a negligible effect on the onset of the convective 
instability in the Newtonian nanofluids , therefore the 
contribution of Brownian motion and thermophoresis in the 
thermal energy equation (7) can be neglected. Rather, the 
Brownian motion and thermophoresis directly enter in the 
equation (8) expressing the conservation of nanoparticles.  
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The precedent Figures show also that an increase either in the 
heat source strength Hs , in the Lewis number Le , in the 
concentration Rayleigh number RN or in the modified 
diffusivity ratio NA allows us to accelerate the onset of the 
convection, hence they have a destabilizing effect. 
 
The obtained results may be summarized as follows; 
 
 The heat source strength Hs increases the energy supply 

to the system, and hence increases the driving force which 
accelerates the onset of the convection. 

 
 The modified particle-density increment NB  has a 

negligible effect, because this parameter always appears 
only in the perturbed energy equation (22) as a product 
with the inverse of the Lewis number Le near the 
temperature gradient and the volume fraction gradient of 
nanoparticles , such that: 

 
 

NB ~10−3 − 10−1  ;  Le~102 − 103 
 

 The presence of the nanoparticles in a base fluid allows us 
to destabilize it, this result can be interpreted as an 
increase in the volume fraction of nanoparticles, increases 
the Brownian motion and the thermophoresis of the 
nanoparticles, which cause the destabilizing effect. 
 

 The regular fluids are more stable than the nanofluids. 
 

 An increase in the temperature difference between the 
horizontal plates allows us to decrease the critical thermal 
Rayleigh number  Rac , this result can be explained by the 
increase in the buoyancy forces which destabilizes the 
system.  

 
 To ensure the stability of the nanofluids, we can use the 

less dense nanoparticles or the ones which are having a 
small heat capacity.   
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