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Abstract: The Cole-Cole diagram of Copper is calculated in the energy range of 0 ≤ ℏω ≤ 10 Ryd
using realistic band energies and wave-functions. Four wave-vectors q are chosen in ∆, Λ, and
Σ directions, namely, ⟨ 14 , 0, 0⟩, ⟨ 14 ,

1
4 , 0⟩, ⟨ 14 ,

1
4 ,

1
4 ⟩ and ⟨ 12 , 0, 0⟩ in the units of 2πa−1. The modified

augmented-plane-wave method with the Chodorow potential is utilized to calculate the energy spec-
trum and Bloch wave functions. The Cole-Cole diagrams exhibit anti-clockwise rotation as the
frequency increases for all q > 0. However, the rotation direction is reversed – becomes clockwise
– in the spatial case q = 0. The static dielectric function deceases as q−2, the area of the Cole-Cole
diagram decreases as the wave-vector increases. The free electrons in Copper metal exhibits two
plasmons for wave-vectors smaller than 0.5 2πa−1. In order to show the effect of core polarization
and interband transitions, the Cole-Cole diagrams of a free electron gas (Lindhard) are shown.
Keywords: Lindhard dielectric function, Wave-vector dependent Cole-Cole diagram, Copper di-
electric function.

1 Introduction

The dielectric function describes how electromagnetic
waves interact when propagating through matter. Con-
sequently, it determines the electrical and optical prop-
erties of the material [1]. Its real part ϵ′(q, ω) amounts
the polarization and energy storage. The imaginary
part ϵ′′(q, ω) represents the absorption properties of the
material [2]. Classical models of dielectric function such
as Drude model or Drude-Lorentz model calculate very
well the absorption of photons by the free electrons in-
side a band. However, they can’t resolve band to band
transitions. In order to include interband transitions, a
detailed calculations of the band structure of the ma-
terial is necessary and one has to invoke quantum me-
chanical models.

The parametric semicircular plot (Cole-Cole dia-
gram) of the imaginary part versus the real part has
been used frequently to describe the materials which
obey Debye theory [3, 4]. The dielectric function de-
pends mainly on four parameters; the static dielectric
constant ϵ0, the dielectric constant at infinite frequency
ϵ∞, the relaxation time τ , and an exponent factor β:

ϵ(q, ω) = ϵ′(q, ω)+ iϵ′′(q, ω) = ϵ∞+
ϵ0 − ϵ∞

1 + (iωτ)1−β
(1)

In such case the Kramers-Kronig relations can be sim-
plified as:

ϵ′ 2 − 2dϵ ′ + ϵ′′ 2 = 0, (2)

where d is the diameter of the semicircular plot.

Recently, the copper is employed as interconnect
metal instead of Aluminum to achieve a higher electri-
cal performance of on-chip wiring [5, 6, 7, 8]. Therefore,
we provide the calculation of the copper dielectric func-
tion. Four wave-vectors q are chosen in the main crys-
tallographic directions ∆, Λ, and Σ,namely, ⟨ 14 , 0, 0⟩,
⟨ 14 ,

1
4 , 0⟩, ⟨

1
4 ,

1
4 ,

1
4 ⟩ and ⟨ 12 , 0, 0⟩ in the units of 2πa−1.

For more analysis, the complex dielectric function has
been calculated assuming a homogeneous free electron
gas for the same four wave-vectors.

2 Dielectric function calculation

The microscopic copper dielectric function has been cal-
culated employing the Adler [9] definition:

ϵ(q, ω) = 1− 4πe2

Ω0q2
α(q, ω) (3)

where the non-diagonal elements of the inverse dielec-
tric matrix are fairly small [10], i.e., local field effects
can be neglected. The irreducible polarization function
α(q, ω) is given in the random phase approximation by
the following sum over occupied and unoccupied Bloch
states:

α(q, ω) = 2
∑

n,n′,K

⟨nK|e−iq·r|n′,K+ q⟩

× ⟨n′,K+ q|eiq·r|nK⟩

× f(n,K)− f(n′,K+ q)

E(n,K)− E(n′,K+ q) + ℏω + iη
(4)

where Ω0 is the crystal volume. E(n,K) is the energy
and ⟨r|nK⟩ = ψnK(r) is a Bloch state wave function
characterized by the wave-vector and the reciprocal lat-
tice vector K and the band index n, and f(n,K) is the
occupation number (i.e, Fermi-Dirac distribution), η is
a positive infinitesimally small real number; η → 0+. It
is worth to report that the dielectric function in eq. (3)
has been derived via the perturbation of the single par-
ticle Liouville equation iℏ∂ρ/∂t = [H, ρ] [9]. ρ and H
denote the single-particle matrix and the Hamiltonian,
respectively. Quadratic and higher orders are ignored
and consequently our calculations are valid in the frame
of the random phase approximation.

The matrix elements in eq. (4) are integrals over the
Winger-Seitz cell (WSC):

⟨n′,K+ q|ei(q+K)·r|n K⟩

=
1

Vc

∫
WSC

ψ∗
n′,K+q(r) exp[i(q +K)r]ψnk(r)d

3r (5)

where Vc is the volume of the primitive unit cell. To
carry out the integration, for each 1/48th of the first
Brillouin zone there are ten K points taken into ac-
count. If the vector (K + q) lies outside the Brillouin
zone it can be brought back into it by the addition of a
suitable reciprocal lattice vector Q∗.
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The Fermi-Dirac distribution function in the form
f(n,k)− f(n′,k+q), eq. 4, shows that only the transi-
tions from occupied to non-occupied states make contri-
butions to the dielectric function. The summation over
the non-occupied bands is restricted in the calculation
of the imaginary part, ϵ′′, only to those bands whose
energies are lying with a maximum value ℏω above the
Fermi energy. While the summation in the calculation
of the real part,ϵ′, is not restricted.

The augmented-plane-wave method (APW) which
was first proposed by Slater [11, 12] is used frequently to
calculate the energy bands of metals [13, 14]. The basic
idea behind the APW is that the potential in a spheri-
cal region centered at each atom is spherically symmet-
ric, hence, the wave-functions are rapidly varying and
exhibit atomic-like solution. On the other hand, the
potential in the interstitial regions is flat, consequently,
it provides plane waves. The augmented plane waves
are constructed by matching solutions of the Schrdinger
equation within each sphere with plane-wave solutions
in the interstitial region. Although the APW is an ef-
ficient method for the computation of the bands, it is
worth reporting that the APW is not completely rig-
orous. The accuracy of the findings depends on some
adjustable parameters such as the radius of the spher-
ically symmetric region, the spherically symmetric po-
tential, and the constant potential in the interstitial re-
gion. Moreover, it is only applicable to an unphysical
spherical muffin-tin potential. Therefore, in our calcula-
tions, the Bloch state wave function ψnK are calculated
employing the modified augmented-plane-wave method
(MAPW) [15, 16] with the Chodorow potential [17].
Different reasons attribute to that: The MAPW itself is
applicable to spherical and non-spherical potentials, the
calculated wave-functions are orthogonal to the func-
tions of the electron core electrons, the calculated wave-
functions and their first derivatives are continuous, and
finally the modified APW converges with the rapidity of
the usual APW. Furthermore, the Chodorow potential
[17] yields band energies in agreement with the experi-
ment [18, 19]. For the present work, every Bloch func-
tion is approximated by about 60 plane waves outside
the inscribed APW-sphere and 9 spherical waves inside
it. The corresponding eigenvalue problem of the rank
70 means that for every k-point there are 70 different
eigenstates, 10 below the Fermi level and 60 above it.

It is well known that the measurements of the
wave-vector and frequency-dependent complex dielec-
tric function ϵ(q, ω) for real metals is tedious. There-
fore, the results of our calculations will be compared
with the analytical dielectric function (Lindhard func-
tion [20]) for free electron gas.

3 Results and discussion
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Figure 1: The wave-vector Cole-Cole diagram of the
Copper in the energy range 0 ≤ ℏω ≤ 10 Ryd.
The wave-vectors dependency is displayed using dif-
ferent line styles: Solid 0.5 2π/a, Dashed 0.4330 2π/a,
Dotted-Dashed 0.3535 2π/a, and Dotted 0.25 2π/a
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Figure 2: The wave-vector Cole-Cole diagram of the
free electron gas in the energy range 0 ≤ ℏω ≤ 10 Ryd.
The wave-vectors dependency is displayed using differ-
ent line styles: Solid 0.5 2π/a, Dashed 0.4330 2π/a,
Dotted-Dashed 0.3535 2π/a, and Dotted 0.25 2π/a.

The Cole-Cole diagram of the dielectric complex
function of Copper and free electron gas are displayed
in figures (1) and (2), respectively. Discrepancies are
expected. The dielectric function of the free electron
gas is determined by the collective oscillation resulting
from the long range effects of Coulomb interaction. The
dielectric function of the electron gas in real metals is
modified by the polarization of the core electrons and
the inter-band transition even if the local field effects
are neglected. Unlike the dielectric behavior of the free
electron gas, the real part of the copper dielectric func-
tion exhibits two longitudinally polarized modes (i.e.,
ϵ′(q, ω) = 0) instead of one with respect to the fre-
quency, namely ϵ′(q, ω1) and ϵ

′(q, ω2), where ω2 > ω1.
The dependence of both frequencies, ω1 and ω2, on the
wave-vector is quantified in table (1). The two modes
almost merge at q = 0.5 2πa−1 and no longitudinal
modes exist( i.e, ϵ′(q, ω) > 0) for all q > 0.5 2πa−1.

Table 1: The frequencies at which the real dielectric
component of Copper is vanished as a function of the

wave-vector. Note: ω2 > ω1.
q/(2πa−1) ω1 (Ryd) ω2 (Ryd)
( 14 , 0, 0) 0.28 0.72
( 14 ,

1
4 , 0) 0.53 0.75

( 14 ,
1
4 ,

1
4 ) 0.59 0.63

( 12 , 0, 0) 0.85 0.86

Table 2: The imaginary dielectric component ϵ′′(q, ω)
of Copper at the frequencies ω1 and ω2.

q/(2πa−1) ϵ′′(q, ω1) ϵ′′(q, ω2)
( 14 , 0, 0) 19.38 1.95
( 14 ,

1
4 , 0) 5.48 2.06

( 14 ,
1
4 ,

1
4 ) 4.39 3.97

( 12 , 0, 0) 1.95 1.92

Table (2) gives the imaginary dielectric components
when the real component is vanished. ϵ′′(q, ω1) de-
creases almost quadratically via increasing the wave-
vector, it is small but not negligible. Therefore, very
sharp resonance peaks are not expected to be found in
the Cu energy loss spectrum [10]. Moreover, as can be
seen in figures (1) and (2), the static dielectric function
– which is important in determining the static screen-
ing of electric fields – is a pure real quantity and decays
sharply with increasing the wave-vector. One of the
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interesting features of the Copper Cole-Cole diagram
is that the diagram becomes clockwise when the wave-
vector equals zero, i.e, ϵ(0, ω).

4 Conclusion

The wave-vector Cole-Cole diagram of Copper as well
as free electron gas has been calculated. The static di-
electric functions ϵ(q, 0), the shape of ϵ′′(q, ω) and the
zeros of ϵ′(q, ω) have been found to be wave-vector func-
tions. The free electron gas exhibits one plasmon, while
the electron gas in Copper metal exhibits two plasmons
for wave-vectors smaller than 0.5 2πa−1. The second
author thanks W.-D. Kraeft and S. Saafan for helpful
discussions.
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