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Abstract: The objective of this study is to analyse the buckling and postbuckling yield stressof CCSSthin rectangular plate. Here, 
the exact displacement and stress profiles of the plate were obtained by applying the direct integration theory to the Kirchhoff’s 
linear governing differential equation and von Karman’s non–linear governing differential compatibility equation respectively. With 
these, the buckling and postbuckling load expression of the CCSS plate was obtained by applying work principle to the Von 
Karman’s non–linear governing differential equilibrium equation. CCSS thin rectangular plate strength was obtained in terms of its 
yield/maximum stress. Other related parameters of the plate such as: displacement parameter, Wuv, stress coefficient, Wuv2 and 
load factor, Kcx were determined. Results of this study show that for a CCSS plate material having yield stress of 250MPa at unit 
aspect ratio, failure would occur only at 1.8h postbuckling out of plane deflection (i.e., extra tolerable load of , 103.63MPa), contrary 
to the presumed critical buckling load of 148.207Mpa. The inplane load develops bending stress of 77.143MPa, while the direct 
buckling and postbuckling load accountsfor174.7MPa, prior to failure. These stresses cumulate to the yield stress of the plate. 
Hence, CCSS plate would tolerate additional load on deflection, prior to its material and structural failure. It possessespostbuckling 
strength in addition to its critical buckling strength. 
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1. Introduction 
 
A plate is a flat thin sheet of material bounded by most 
times, two parallel planes (faces), and a cylindrical or flat 
surface, called an edge or boundary. Thin plates are plates 
whose width to thickness ratio ranges between 8 – 100. They 
may be referred to thin plates under small to thin plates 
under large deflections when their maximum deflection, 
𝑤𝑚𝑎𝑥  falls between 0.2ℎto 5ℎ; where h is the plate’s 
thickness. Thin plates transit from their stable state of 
equilibrium to the unstable one, under inplane compression. 
Such transition is normally referred to as buckling or 
structural instability. In this behaviour under inplane 
compression, a critical point exists where an infinitesimal 
increase in load can cause the plate surface to buckle. The 
load at this critical point defines the buckling strength of the 
plate, or the critical or buckling load. Increases in load 
beyond the load at the initiation of buckling increase the 
buckling deformations until collapse occurs. Thus, the load 
at collapse defines the postbuckling or crippling strength of 
the plate. 
 
Thin rectangular plate has four edges. The edges may be 
free, clamped, simply supported or mixed. Capital letters C, 
F, and S are commonly used to abbreviate or designate 
clamped edge, free edge, and simply supported edge 
respectively. The labelling and naming of CCSS plate in 
relation to the edge conditions, e along their strips are 
explained in Fig 1. 

 
 

 
Figure 1: Procedure for naming plate with different 

edge conditions 
 

Postbuckling of plates may readily be understood through an 
analogy to a simple grillage model, as shown in Fig.2. In the 
grillage model, the continuous plate is replaced by vertical 
columns and horizontal ties. Under loading on the x – edges, 
the vertical columns will buckle. If they were not connected 
to the ties, they would buckle at the same load and no 
postbuckling reserve would exist. However, the ties are 
stretched as the columns buckle outward, thus restraining the 
motion and providing postbuckling reserve. The columns 
nearer to the supported edge are restrained more by the ties 
than those in the middle. This occurs too in a real plate, as 
more of the longitudinal in-plane compression is carried 
nearer the edges of the plate than in the centre. Thus, the 
grillage model provides a working analogy for both the 
source of the postbuckling reserve and its most important 
result; i.e., re-distribution of longitudinal stresses. 
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Figure 2: Post-buckling model of a thin plate under in-plane 

load, p 
 
In his context, Chaje [1] defined postbuckling load as the 
increase in stiffness with increase in deflection characteristic 
of the plate. This represents possible resistance of axial load 
by plate at excess of the critical load subsequent to buckling. 
Hence, the postbuckling response of thin elastic plates is 
very important in engineering analysis. Therefore, concerted 
effort to thoroughly studying thin plates postbuckling 
behaviour becomes imminent. 
 
Postbuckling load analysis of thin plates accounts for the 
membrane stretching and their corresponding strains and 
stresses, while buckling analysis accounts also for the 
membrane stretching but do not consider the corresponding 
strains and stresses developed by the stretching. 
Postbuckling load analysis of plate involves nonlinear large-
deflection plate bending theory, contrary to buckling load 
study which is based on classical or Kirchhoff’s linear 
theory of plates. Researchers have not done much on 
postbuckling behaviour of thin plates as its analysis involves 
nonlinear large-deflection plate theory, which usually 
reduces to two indeterminate nonlinear governing 
differential equations originally derived by Von Karman in 
1910 [2, 3]. These equations are written as follows: 
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Where, 𝜙 is the stress function, w is deflection function, h is 
the plate’s thickness and D is flexural rigidity. Equation 1 is 
the ―Compatibility Equation‖. It ensures that in an elastic 
plate the in-plane and out-of-plane displacements are 
compatible. Equations 2 and 3 are based on equilibrium 
principles of stress and in-plane loads respectively. They are 
termed ―Equilibrium equations‖ [2, 3]. Equations 1 and 2 are 
usually called Von Karman’s coupled equations. 
 

The exact solutions of these equations have been a rigor 
from the conceptual time to the recent time, in which the 
coupled solutions would give the buckling/postbuckling load 
of plates from which the true failure load is determined. This 
exact solutions of these equation is imminent, as the critical 
load predicted by buckling analysis is adjudged 
unsatisfactory [1, 4]. 
 
Despite these revelations, very few researchers have made 
effort to solving these coupled equations to obtain the 
expressions for the buckling/postbuckling load as well as the 
actual failure load of thin rectangular plates under 
compression. Researchers such as: Von Karman et. al.[5], 
Marguerre [6], Levy [7], Timoshenko and Woinowsky – 
Krieger [8], Volmir [9], Iyengar [10], Ventsel and 
Krauthammer [11], Chai [12]; and Yoo and Lee [13]have 
tried to solve these equations to obtain the 
buckling/postbuckling load as well as the actual failure load 
of thin rectangular plates under uniaxial compression. They 
tried to solve the problem by assuming double trigonometric 
solutions for deflection, w and stress,𝜙 functions to solve 
the governing differential equations of thin rectangular 
plates. In which case, the buckling/postbuckling load as well 
as the actual failure load of thin rectangular plates under 
compression they obtained would also be said to be 
assumed, as the solutions of the governing differential 
equations of the plate (deflection and stress functions) were 
assumed abinitio. No researcher has bothered to solve for 
these parameters by the direct solution of these coupled 
governing differential equations. 
 
In addition, these researchers restricted themselves to the use 
of either direct variational or indirect variational energy 
methods to finally evaluate the buckling/postbuckling load 
of this simply supported edges thin rectangular plate. None 
of the researchers considered applying direct work principle 
to finally evaluate the buckling/postbuckling loads of the 
CCSS plate or any other plate. 
 
Von Karman evaluated the final buckling/postbuckling loads 
characteristics of SSSS plate by solving the equilibrium 
equation 3, after assuming trigonometric functions for 
deflection and stressVon Karman et. al.[5]. Marguerre [6], 
Timoshenko and Woinowsky – Krieger [8] and Volmir [9] 
also assumed doubled trigonometric functions of deflection 
and stress; and employed the principle of minimum potential 
energy, rather than the equilibrium equation to furnish the 
final solution for the same SSSS plate. Iyengar [10], Ventsel 
and Krauthammer [11], Chai [12]and Yoo and Lee[13]also 
assumed doubled trigonometric functions of deflection and 
stress used Galerkin’s energy methods to obtain the final 
buckling/postbuckling load of SSSS plate. 
 
Researchers in later years very often assumed doubled 
trigonometric functions of deflection and stress and used a 
similar type of approach, i.e., combining an exact solution of 
the compatibility equation with either evaluation and 
minimization of the potential energy, or an approximate 
solution (for example, using Galerkin’s method, Ritz method 
or Rayleigh-Ritz method) of the equilibrium equation. 
 
In all these, none of these researchers obtained the 
displacement parameter, Wuv, stress coefficient, Wuv

2 and 
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load factor, Kcx associated with the SSSS plate buckling and 
postbuckling characteristics, or any other plate. This 
situation has been the bane of comprehensive solution of the 
buckling/postbuckling characteristics of plates, as the actual 
yield/maximum stress of the plate could not be obtained, 
which this paper addressed. 
 
2. The Direct Integration Approach for Exact 

General Deflection and Stress Profile for 
Buckling and Postbuckling of CCSS Plate 

 
Oguaghamba[14] used direct integral calculus approach and 
evaluated equation 3 to obtain the exact general 
displacement function of a buckled plate. The deflection 
function, W in its non – dimensional coordinates: R and Q is 
given as:  

W R, Q = Λ   Um Rm VnQn

4

n=0

4

m=0

 (4) 

Where non – dimensional coordinates:R and Q in equation 4 
relates to the usual independent coordinates x and y by the 
relation: 

x = aR: 0 ≤ 𝑅 ≤ 1 𝑎𝑛𝑑 y = bQ: 0 ≤ 𝑄 ≤ 1 (5) 
𝐔𝐦 𝐚𝐧𝐝 𝐕𝐧arecoefficients to be determined. 
Solving equation 1 by direct integral calculus approach, the 
stress distribution of the plate at buckling and postbuckling 
load regimes is obtained[14]. This expression in non-
dimensional coordinates, R and Q is given as: 
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𝐔𝐦 𝐚𝐧𝐝 𝐕𝐧coefficients in equations 4 and 6 were 
determined by Oguaghamba[14] using the Benthem’s 
boundary conditions of CCSS plate as follows: 
Uo = 0; U1 = U4;  U2 = 0; U3 = −2U4;  U4 = U4; 

Vo = 0; V1 = 0; V2 = V4; V3 = −2V4;  V4 = V4 
Hence, the CCSS plate displacement and stress profiles in 
buckling and postbuckling regimes are obtained by 
substituting these coefficients into equations 4 and 6. The 
substitution gives: 

W R, Q = Wuv h1 R, Q                                   7  

ϕ R, Q = φWuv
2 h2 R, Q −

Ncx b2

2h
Q2                      8  

Wuv
2 = Stress function coefficient for a plate in postbuckling 

regime 
where,  
𝑊𝑢𝑣 = Λ𝑈4𝑉4 
Λ = Consolidated coefficient factor of deflection in buckling 
regime 
 
h1 𝑅, 𝑄 =  1.5𝑅2 − 2.5𝑅3 +  𝑅4  1.5𝑄2 − 2.5𝑄3 +   

 𝑄4                                        (9) 
h2 R, Q = Non-dimensional stress shape (profile) function 
of the slightly bent plate, given as: 

h2 R, Q =
1

406425600
  504𝑅6 − 1080𝑅7 + 963𝑅8 −   
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  8𝑅10  42𝑄6 − 120𝑄7 + 117𝑄8 − 50𝑄9 + 8𝑄10  − 
 (10) 

φ =
Ep2

 1 + 2p2 + p4 
                               (11) 

E is the elastic modulus of plate and p is the aspect ratio. 
Expressions for the deflection and stress functions factors, 
𝑊𝑢𝑣  𝑎𝑛𝑑 𝑊𝑢𝑣

2  of the plate behaviour under pre – buckling, 
buckling and post buckling regimes deduced by 
Oguaghamba [14] is given as: 

𝑊𝑢𝑣 = 64αh; 𝑊𝑢𝑣
2 = 𝑊𝑢𝑣

2 = 4096α2h2 (12) 
 
3. Work Principle Application for Buckling 

and Postbuckling Load and Stress of CCSS 
Plate 

 
Oguaghamba[14] applied the work principle according to 
Ibearugbulemet al.[15, 16] to equation 2 in non – 
dimensional coefficient and obtained the exact general 
buckling and postbuckling load, Ncx (R, Q) of thin 
rectangular plates in non – dimensional coordinates as in 
equation 13 
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where the first and the second terms account for critical 
buckling load of the plate and the gain in load of the plate at 
postbuckling regime respectively.  
 
Substituting the expressions of h1 𝑅, 𝑄  and ℎ2 𝑅, 𝑄  into 
equations14 and 14; solving out the resulting integrand 
expressions and substituting their results into equation 13 
gave the buckling and postbuckling load expression for 
anCCSS thin rectangular plate as: 

Ncx =   
2.12603306

𝑃2
+ 2.30187038 + 2.12603306𝑃2   

 + 3.86970915 × 10−4
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Introducing the expression of 𝑊𝑢𝑣
2  given in equation 12 into 

equation 16; the buckling and postbuckling load expression 
for anCCSS thin rectangular plate reduced to: 
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 1 + 2p2 + p4 
 (19) 

where, 𝐾𝑐𝑥 is the buckling and postbuckling load coefficient. 
Oguaghamba [14] also obtained the general 

expression of theinplane and bending buckling and 
postbuckling yield stress developed by thin rectangular 
plates as: 
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Introducing 𝐔𝐦 𝐚𝐧𝐝 𝐕𝐧coefficients as determined by 
Oguaghamba [14] for CCSS plate and the 𝑵𝒄𝒙expression in 
equation (17),we obtain the inplane and bending buckling 
and postbuckling yield stress developed by the CCSS: 
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Where h1𝑚𝑎𝑥  is the non – coefficient displacement at critical 
yield of the plate. The value is 1 64  for CCSS plate [14]. 
Hence, equation 12 becomes: 

σ𝑐𝑟𝑖 =   
2.12603306
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+ 2.30187038 + 2.12603306𝑃2   
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4. Results and Discussions 
 
Fig. 2 shows a CCSS thin rectangular plate subjected to 
uniaxial compression loads on the R - edges. The interest is 
to evaluate the buckling and postbuckling load of the plate. 

 
Figure 2: CCSS – Thin Rectangular Plate under Uniaxial 

Load 
Iyengar [10]; Ventsel and Krauthammer [11]; Szilard [4]; 
and Yoo and Lee [13] in their separate works obtained only 
the buckling and postbuckling load of SSSS – thin 
rectangular plate as: 

𝐍𝐜𝐱 =   
𝟏

𝐏𝟐
+ 𝟐 + 𝐏𝟐 + 𝟑  

𝟏

𝐩𝟐
+ 𝐩𝟐 

𝐖𝟏𝟏
𝟐

𝐡𝟐

 𝟏 − 𝛍𝟐 

𝟒
 
𝐃𝛑𝟐

𝐛𝟐
 

(𝟐𝟑) 
 
No other researcher has obtained the buckling and 
postbuckling load of CCSS – thin rectangular plate. Even the 
SSSS plate as obtained by Iyengar [10]; Ventsel and 
Krauthammer [11]; Szilard [4]; and Yoo and Lee [13] is 
inconclusive, as the stress function coefficient, 𝐖𝟏𝟏

𝟐  in their 
formulation wasneither defined or was attributed to any 
empiricalinterpretation.This leaves their formulation as a 
mere theoretical exercise rather than real life adventure. 
 
The present study clearly defined these parameters: the 
displacement parameter, 𝐖𝐮𝐯, stress coefficient,𝐖𝐮𝐯

𝟐 and 
load factor, 𝐊𝐜𝐱. With this parameters, the present study 
obtained critical yield stress of the CCSS plate under 
buckling and postbuckling loads as given in equation 22. 
Therefore, equations 17 and 22 can be used to obtain the 
actual value of the buckling and postbuckling load and 
critical yield stress of an CCSS plate, knowing other 
parameters: deflection coefficient, 𝛂; Poisson ration, μ; 
breadth, b; aspect ratio, p and thickness, h of the plate. 
 
For instance, an ASTM grade A36 thin rectangular steel 
plate possessing CCSS edge conditions; subjected to 
uniformly distributed in-plane load on its R – edge, b and 
having the following physical and geometric properties as: 
breadth, b = 4000mm; thickness of plate, h = 20mm; yield 
load, σys = 250 MPa; Ultimate Stress, σu = 400 – 550 MPa; 
Poisson’s ratio, μ = 0.30; Modulus of elasticity, E = 200 
GPa; density of plate, ρ = 7,800 kg/m3. The buckling and 
postbuckling load coefficient and critical yield stress of the 
plate through unit aspect ratio and deflection coefficients 
range: 0 ≤ α ≤ 5.0 are shown in Fig. 3 and Fig. 4 
respectively. 
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Figure 3: Buckling and Postbuckling Load Coefficient, 𝐾𝑐𝑥  
and Deflection Factor, α at aspect ratio of unity for CCSS – 

Plate 

 
Figure 4: Buckling and postbuckling load critical 

yield/maximum stress, σcriand deflection Factor, α at aspect 
ratio of unity for CCSS – Plate 

 
Fig. 3 shows that the buckling and postbuckling load 
parameter, Kcx  increases quadratically as the out of plane 
deflection factor, α increases. The behaviour of buckling and 
postbuckling load parameter is a function of the buckling 
and postbuckling load. It means that the buckling and 
postbuckling load would continue to increase as the out of 
plane deflection increases. This is contrary to the literature’s 
hypothesis that the axial stiffness reduces, as the plate as a 
whole sustains increase in load after buckling or deflection 
[14]. 
 
However, this hypothesis is further clarified in Fig. 4. The 
linear relationship in the yield stress behaviour against out of 
plane deflection explained that the plate would resist extra 
in-plane load after buckling, while reduces in its material 
stiffness. That is, the plate resists further in-plane load due to 
postbuckling reserve but loses stiffness due to in-plane 
bending stress developed. Fig. 4 also show that for a CCSS 
plate material having yield stress of 250MPa, failure of such 
plate under in-plane loading would not occur until the out of 
plane deflection of the plate is about (1.8h). It is at this point 
that the induced stress in the plate would reach the failure 
stress for the plate material, which may cause failure of the 
plate. The buckling and postbuckling stresses, 𝜎𝑐𝑟𝑖  are even 

higher at other aspect ratios lower than 1.0, as shown in 
Tabe 1. CCSS plate possesses such increased load resistance 
because the edges which are simply supports and clamped 
allow stretching of the longitudinal fibers of the plate on 
deformation. In this way, the longitudinal fibers of the plate 
would undergo stress redistribution under load, as well as 
develop transverse tensile stresses after buckling. These 
tensile stresses provide the postbuckling reserve load. Thus, 
additional load may often be applied to somegeometric 
deformation without reaching material yield stress or 
imposing structural damage to the plate. 
 
However, as the structural requirements for plates are that 
the structure should not be so flexible that the behaviour 
causes alarm or discomfort to the users; other structural 
criteria may be applied to select the applicable load below 
this yield stress, which is also far above the buckling load. 
 
For instance, at zero deformation (critical buckling load), the 
yield stress of the plate for aspect ratio of unity is 
148.207MPa. This is below the design yield stress of the 
plate. Extra 103.631MPa on 1.8h deformation can be 
tolerated by the plate prior to material and structural. This 
happens at postbuckling regime. 
 

Table 1: CCSS Plate Buckling and Postbuckling Strength, 
𝜎𝑐𝑟𝑖  

P 
𝟎. 𝟎𝟎 ≤ 𝜶 ≤ 𝟎. 𝟔𝟎 

0 0.20 0.40 0.60 
𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 

0.5 256.380 284.941 313.921 343.319 
0.6 202.908 223.456 244.512 266.078 
0.7 173.727 189.450 205.750 222.627 
0.8 157.943 170.534 183.748 197.585 
0.9 150.350 160.791 171.879 183.615 
1.0 148.207 157.105 166.658 176.864 

P 
𝟎. 𝟖𝟎 ≤ 𝜶 ≤ 𝟏. 𝟒𝟎 

0.80 1.00 1.20 1.40 
𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 

0.5 373.135 403.371 434.024 465.097 
0.6 288.154 310.738 333.832 357.434 
0.7 240.082 258.114 276.724 295.911 
0.8 212.044 227.125 242.829 259.156 
0.9 195.996 209.025 222.701 237.023 
1.0 187.725 199.240 211.408 224.231 

P 
𝟏. 𝟔𝟎 ≤ 𝜶 ≤ 𝟐. 𝟐𝟎 

1.60 1.80 2.00 2.20 
𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 

0.5 496.588 528.497 560.826 593.572 
0.6 381.546 406.168 431.298 456.937 
0.7 315.676 336.018 356.937 378.434 
0.8 276.105 293.676 311.871 330.687 
0.9 251.992 267.608 283.871 300.781 
1.0 237.707 251.838 266.623 282.062 

P 
𝟐. 𝟒𝟎 ≤ 𝜶 ≤ 𝟑. 𝟎𝟎 

2.40 2.60 2.80 3.00 
𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 

0.5 626.738 660.321 694.324 728.745 
0.6 483.086 509.744 536.911 564.588 
0.7 400.508 423.159 446.388 470.194 
0.8 350.126 370.188 390.872 412.179 
0.9 318.337 336.541 355.391 374.888 
1.0 298.154 314.901 332.302 350.357 

P 𝟑. 𝟐𝟎 ≤ 𝜶 ≤ 𝟑. 𝟖𝟎 
3.20 3.40 3.60 3.80 
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𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 
0.5 763.585 798.843 834.520 870.615 
0.6 592.773 621.468 650.672 680.385 
0.7 494.578 519.539 545.078 571.194 
0.8 434.108 456.660 479.834 503.631 
0.9 395.031 415.822 437.260 459.344 
1.0 369.066 388.429 408.446 429.116 

 

P 
𝟒. 𝟎𝟎 ≤ 𝜶 ≤ 𝟒. 𝟔𝟎 

4.00 4.20 4.40 4.60 
𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 

0.5 907.129 944.061 981.412 1019.182 
0.6 710.607 741.339 772.579 804.329 
0.7 597.887 625.158 653.006 681.432 
0.8 528.050 553.092 578.756 605.043 
0.9 482.075 505.453 529.477 554.149 
1.0 450.441 472.421 495.054 518.341 

P 
𝟎. 𝟎𝟎 ≤ 𝜶 ≤ 𝟎. 𝟔𝟎 
4.80 5.00 

𝝈𝒄𝒓𝒊 − 𝑽𝒂𝒍𝒖𝒆𝒔 (𝑴𝑷𝒂) 
0.5 1057.370 1095.977 
0.6 836.588 869.357 
0.7 710.435 740.015 
0.8 631.952 659.484 
0.9 579.467 605.432 
1.0 542.282 566.877 

 
5. Conclusion 
 
Whereas the previous studies did not analysed the buckling 
and postbuckling load characteristics of CCSS plate, this 
paper analysed the buckling and postbuckling load 
characteristics of CCSS plate. Where the double 
trigonometric functions have been adjudged inadequate for 
the analysis of thin plates’ postbuckling load characteristics, 
this study obtained exact displacement and stress profiles of 
buckling and postbuckling load characteristics of CCSS 
plate by direct integration of the governing differential 
equations of the plate and implored the work principle 
technique to finally evaluating the buckling and 
postbuckling load of CCSS plate. The study also obtained 
the buckling and postbuckling yield stress obtained for 
CCSS plate and other parameters of the CCSS plate under 
buckling and postbuckling regimes such as: displacement 
parameter, Wuv, stress coefficient, Wuv

2 and load factor, Kcx. 
With all these, the study explained stiffness loss behaviour 
of plate in postbuckling regime. Thus, the study found out 
that CCSS plate would accommodate more loads beyond the 
critical buckling load, prior to actual material failure in its 
postbuckling regime. For CCSSplate’s of higher yield stress, 
failure would be due to geometric orpermissible deflection 
criteria. The study also revealed that plate deforms along the 
transverse direction, leading to the stretching of the 
longitudinal fibers of the plate, when uniaxially loaded. In 
this way, the longitudinal fibers of the plate would undergo 
stress redistribution, as well as develop transverse tensile 
stresses. These tensile stresses provide the postbuckling 
reserve load. 
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