
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 9, September 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Left-Invertible Matrices 
 

Gezahagne Mulat Addis
1
 

 
1Dilla University, Department of Mathematics, Dilla, Ethiopia 
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1. Introduction 
 
A square matrix A of order 𝑛 over the field F, is said to be an 
invertible, if there exist another matrix B of order 𝑛 over the 
given field F, such that 𝐵𝐴 = 𝐼𝑛 = 𝐴𝐵, where 𝐼𝑛  is an 
identity matrix of order 𝑛. If such B exists then it is unique 
and it is called the inverse of 𝐴. It is known that a given 
square matrix is invertible if and only if it has a full column 
rank as well as a full row rank, otherwise it is non invertible. 
More generally, non-square matrices are noninvertible in the 
above sense. However, there are non-square matrices having 
an inverse from one side only; from the left side 
(respectively from the right side) and hence we call them left 
invertible (respectively right invertible matrices). It is a fact 
that, an 𝑚 × 𝑛 rectangular matrix has an inverse from the left 
side (respectively from the right side) if and only if it has a 
rank 𝑛 (respectively 𝑚). Unfortunately, if the left side 
(respectively the right side) inverse of a rectangular matrix 
exists, then it needs not to be necessarily unique. The 
question in this case is that how many left (respectively 
right) inverses can be there for a given rectangular matrix? In 
this paper we treat only those left invertible matrices and we 
characterize what the set of all left inverses of a rectangular 
matrix looks like. 
 
2. Preliminaries 
 

Definition 2.1: Let F be a field and let A be an 𝑚 × 𝑛 matrix 
over F. Then A is called an injection if:  
 𝐴𝑥 = 𝐴𝑦 ⇒ 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝐹𝑛 . 
 

Definition 2.2:  For an 𝑚 × 𝑛 matrix A over a field F, define 
the null space of 𝐴 and the column space of 𝐴 respectively 
by: 
 𝒩 𝐴 =  𝑥 ∈ 𝐹𝑛 : 𝐴𝑥 = 0   
 ℛ 𝐴 = {𝐴𝑥: 𝑥 ∈ 𝐹𝑛 }  
Then both 𝒩 𝐴  and ℛ 𝐴 are subspaces of 𝐹𝑛  and 𝐹𝑚  
respectively. [1] 
 

Theorem 2.1: For an 𝑚 × 𝑛 matrix A over a field F:  
 dim 𝒩 𝐴  + dim ℛ 𝐴  = dim 𝐹𝑛 = 𝑛 [1]  
 

Theorem 2.2: An 𝑚 × 𝑛 matrix 𝐴 over a field F is an 
injection if and only if 𝒩 𝐴 =  0  
Proof: Suppose that 𝐴 is an injection. Then it is clear that 
𝐴0 = 0 ⟹ 0 ∈ 𝒩 𝐴 ⟹ {0} ⊆ 𝒩 𝐴 . 
On the other hand: 

𝑥 ∈ 𝒩 𝐴 ⟹ 𝐴𝑥 = 0 = 𝐴0  
    ⟹ 𝐴𝑥 = 𝐴0 

    ⟹ 𝑥 = 0   
        (∵ 𝐴 is an injection) 

    ⟹ 𝒩 𝐴 ⊆  0 ⊆ 𝒩 𝐴  
Therefore, 𝒩 𝐴 =  0 .  
 
Conversely suppose that 𝒩 𝐴 =  0 . Therefore for any 
𝑥, 𝑦 ∈ 𝐹𝑛 ; 𝐴𝑥 = 𝐴𝑦 ⟹ 𝐴 𝑥 − 𝑦 = 0 ⟹ 𝑥 − 𝑦 ∈ 𝒩 𝐴 =
 0 ⟹ 𝑥 − 𝑦 = 0 ⟹ 𝑥 = 𝑦 and hence A is an injection;  ∎ 
 

Theorem 2.3: If an 𝑚 × 𝑛 matrix A over a field F is an 
injection, then 𝑛 ≤ 𝑚. 
 
Proof: Suppose that A is an injection. Thus it follows from 
the above theorem that 𝒩 𝐴 =  0  and hence 
dim 𝒩 𝐴  = 0. Therefore; 
 𝑛 = dim 𝒩 𝐴  + dim ℛ 𝐴    
  ⟹ 𝑛 = 0 + dim ℛ 𝐴      
    
 ⟹ 𝑛 = dim ℛ 𝐴  ≤ dim 𝐹𝑚 = 𝑚. 
 ⟹ 𝑛 ≤ 𝑚. ∎ 
Theorem 2.4: If an 𝑚 × 𝑛 matrix A over a field F is an 
injection, then its columns 𝐴1, 𝐴2,…,𝐴𝑛are linearly 
independent  vectors in the vectorspace 𝐹𝑚 .  
Proof: Suppose that A is an injection. Then by theorem 2 we 
have that, 𝒩 𝐴 =  0   
Now for any scalars 𝛼1, 𝛼2,…,𝛼𝑛  in F; 
𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 = 0 ⟹ 𝐴𝑥 = 0 where 𝑥 =
 𝛼1, 𝛼2, … , 𝛼𝑛 𝑇  in 𝐹𝑛   
 ⟹ 𝑥 ∈ 𝒩 𝐴 =  0   
 ⟹ 𝑥 = 0  
 ⟹ 𝛼1 = 0, 𝛼2 = 0,…,𝛼𝑛 = 0  
Thus 𝐴1, 𝐴2,…,𝐴𝑛are linearly independent to each other.  
Conversely suppose that the columns 𝐴1, 𝐴2,…,𝐴𝑛of 𝐴 are 
linearly independent to each other. Following the above 
theorem, it suffices to prove that 𝒩 𝐴 =  0 . Then it is 
clear that, 𝐴0 = 0 ⟹ 0 ∈ 𝒩 𝐴 ⟹ {0} ⊆ 𝒩 𝐴 . 
On the other hand; for any 𝑥 =  𝑥1, 𝑥2 , … , 𝑥𝑛 𝑇  in 𝐹𝑛  
consider: 
𝑥 ∈ 𝒩 𝐴 ⟹ 𝐴𝑥 = 0  
 ⟹ 𝑥1𝐴1 + 𝑥2𝐴2 + ⋯ + 𝑥𝑛𝐴𝑛 = 0  
 ⟹ 𝑥1 = 0, 𝑥2 = 0, … 𝑥𝑛 = 0   

  (∵ 𝐴1, 𝐴2,…,𝐴𝑛are linearly 
independent) 

 ⟹ 𝑥 = 0 
 ⟹ 𝒩 𝐴 ⊆  0 ⊆ 𝒩 𝐴   
 ⟹ 𝒩 𝐴 =  0  ∎ 
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3. Left-Invertible Matrices 
 

Definition 3.1: An 𝑚 × 𝑛 matrix A over a field F is said to 
be left invertible if there exists an 𝑛 × 𝑚 matrix B over the 
given field F such that 𝐵𝐴 = 𝐼𝑛  where 𝐼𝑛  is an identity 
matrix of order n. in this case B is called the left inverse of A 
 

Definition 3.2: An 𝑚 × 𝑛 matrix A over a field F is said to 
be left cancellable if for any positive integer p and for any 
two 𝑛 × 𝑝 matrices B and C over the over the given field F;  

𝐴𝐵 = 𝐴𝐶 ⟹ 𝐵 = 𝐶. 
The next theorem gives us two equivalent conditions 
(necessary and sufficient conditions) to a given rectangular 
matrix to have a left inverse and it is included here for the 
completeness of the paper. 
 

Theorem 3.1: The following are equivalent for any 𝑚 × 𝑛 
matrix A over the given field F. 

(1) 𝐴 is an injection 
(2) 𝐴 is Left Invertible  
(3) A is Left cancellable 

Proof: (1) ⟹ (2) Suppose that 𝐴 is an injection. Then the 
columns  𝐴1, 𝐴2, … , 𝐴𝑛  of A are linearly independent in  𝐹𝑚  
and hence forms a basis for the column space ℛ 𝐴  of 𝐴 in 
𝐹𝑚  so that dim ℛ 𝐴  = 𝑛. Put 𝑦1 = 𝐴1,  𝑦2 = 𝐴2, 
…,𝑦𝑛 = 𝐴𝑛 , then  𝑦1 , 𝑦2 , … , 𝑦𝑛   is a basis for ℛ 𝐴 . If 
𝑛 = 𝑚, then A is a square matrix having a full column rank 
and hence invertible. Assume that 𝑛 < 𝑚 and let 𝑟 = 𝑚 −
𝑛 > 0. Therefore ℛ 𝐴  is a proper subspace of 𝐹𝑚 spanned 
by the column vectors 𝑦1 , 𝑦2 , … , 𝑦𝑛  of A. Thus we can 
choose an element 𝑦𝑛+1 in 𝐹𝑚 − ℛ 𝐴 . Since 𝑦𝑛+1 ∉ ℛ 𝐴  
then it is not a scalar combination of those 𝑦𝑖 ’s and hence the 
set  𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1  becomes linearly independent in 𝐹𝑚 . 
Let 𝑈1 be the subspace of 𝐹𝑚  generated by 
 𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1 . Therefore since  𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1  is 
linearly independent we get that dim 𝑈1 = 𝑛 + 1. If 𝑛 + 1 =
𝑚 then 𝑈1 = 𝐹𝑚  and if 𝑛 + 1 < 𝑚, then we can choose 
another element 𝑦𝑛+2 in 𝐹𝑚 − 𝑈1, then 𝑦𝑛+2 ∉ 𝑈1, so that 
this 𝑦𝑛+2 is not a linear combination of vectors 
𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1 and hence the set 
 𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+2  is linearly independent in 𝐹𝑚 . 
Similarly doing this process 𝑟 times, we get 𝑟 vectors 
𝑦𝑛+1 , 𝑦𝑛+2, … , 𝑦𝑛+𝑟 = 𝑦𝑚  in 𝐹𝑚  such that the set 𝐵 =
 𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1, … , 𝑦𝑛+𝑟 = 𝑦𝑚   is alinerly independent in 
𝐹𝑚  and hence an ordered basis for 𝐹𝑚 . If we let 𝐴[𝐵] to be 
the matrix with columns 𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1, … , 𝑦𝑚 ; vectors in 
B, then 𝐴[𝐵] is an 𝑚 × 𝑚 matrix such that its first n columns 
are columns of A. On the other hand, since its columns 
𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1 , … , 𝑦𝑚  are linearly independent we get 
that 𝐴[𝐵] is invertible and let 𝐴[𝐵]−1 be its inverse. Then 
this 𝐴[𝐵]−1 is an 𝑚 × 𝑚 matrix over the same field F such 
that 𝐴[𝐵]−1𝐴[𝐵] = 𝐼𝑚 = 𝐴[𝐵]𝐴[𝐵]−1; that is, 𝐴[𝐵]−1𝑦𝑖 =
𝑓𝑖  for all 1 ≤ 𝑖 ≤ 𝑚 and in particular for 1 ≤ 𝑖 ≤ 𝑛, where 
𝑓𝑖 = (0, 0, … ,0,1,0, … 0); an m tuple of 0’s and 1 at the 𝑖th 
place. In other words, 𝑓𝑖  is the 𝑖th column of the identity 
matrix 𝐼𝑚 . Now define an 𝑛 × 𝑚 matrix denoted by 𝐴𝐵, such 
that its rows are the first 𝑛 rows of 𝐴[𝐵]−1. For each 
1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛, if we let 𝑥𝑖𝑗  to be an entry of the 
product matrix 𝐴𝐵𝐴 which is placed at the ith row and at the 
jth column, then 

 𝑥𝑖𝑗 = the dot product of the ith  row of 𝐴𝐵 and the jth column 
of 𝐴 
 = the dot product of the ith  row of 𝐴[𝐵]−1 and the jth 

column of 𝐴[𝐵] 

 =  
1        𝑖𝑓     𝑖 = 𝑗
0        𝑖𝑓     𝑖 ≠ 𝑗

    (∵ 𝐴[𝐵]−1𝐴[𝐵] = 𝐼𝑚 )

  
Therefore 𝐴𝐵𝐴 = 𝐼𝑛  and hence this 𝐴𝐵 is a left inverse of A. 
Thus A is left invertible. 
 
(2) ⟹ (3) Suppose that A is left invertible. Then it has a left 
inverse and let B be a left inverse of A. Then B is an 𝑛 × 𝑚 
matrix over the same field F such that 𝐵𝐴 = 𝐼𝑛 . For any 
integer p, let C and D be an 𝑛 × 𝑝 matrices over the given 
field F such that 𝐴𝐶 = 𝐴𝐷. Therefore  𝐵 𝐴𝐶 = 𝐵 𝐴𝐷 ⟹
 𝐵𝐴 𝐶 =  𝐵𝐴 𝐷 ⟹ 𝐼𝑛𝐶 = 𝐼𝑛𝐷 ⟹ 𝐶 = 𝐷 and hence A is 
left cancellable. 
 
(3) ⟹ (1) is trivial. 
 
Remark: We observe from the above theorem that any 
injective matrix has at least one left inverse and in fact it is 
not necessarily unique. So, the question in this case is that 
how many left inverses can be there for a given injective 
matrix? In the next theorem we characterize the set of all left 
inverses of a given injective matrix.  
 
Theorem 3.2: Let 𝐴 be an 𝑚 × 𝑛 injective matrix over the 
field F. If we let  
𝔏 𝐴 = be the class of all left inverses of 𝐴, and let 
𝔅 𝐴 =  {𝐵: 𝐵 𝑖𝑠 𝑎 𝑏𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝐹𝑚 , containing the columns 
 𝐴1, 𝐴2, … , 𝐴𝑛  of A and 𝑠𝑝𝑎𝑛 𝐵1 −  𝐴1, 𝐴2, … , 𝐴𝑛  ∩
𝑠𝑝𝑎𝑛 𝐵2 −  𝐴1, 𝐴2, … , 𝐴𝑛  = {0} for any 𝐵1 ≠ 𝐵2 ∈ 𝔅 𝐴 }  
Therefore there is a one-to-one correspondence between 
𝔏 𝐴  and 𝔅 𝐴 . 
 
Proof: If 𝐵 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1, … , 𝑦𝑚  ∈  𝔅 𝐴 , then B is 
a basis for 𝐹𝑚  containing the columns 𝐴1, 𝐴2, … , 𝐴𝑛  of A and 
by simple rearrangement we can assume that 𝑦𝑖 = 𝐴𝑖  for 
1 ≤ 𝑖 ≤ 𝑛. For each 𝐵 ∈  𝔅 𝐴  let us define two matrices 
𝐴[𝐵] and 𝐴𝐵 as in the above theorem (Theorem 3.1). Thus it 
follows that 𝐴𝐵 ∈ 𝔏 𝐴 . 
Now define ℎ: 𝔅 𝐴 → 𝔏 𝐴  by:  
 ℎ 𝐵 = 𝐴𝐵  for all 𝐵 ∈  𝔅 𝐴  
It is clearly observed in theorem 3.1 that, this ℎ is well 
defined. Now we first prove that ℎ is one-to-one. 
Let 𝐵1 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 , 𝑦𝑛+1 , … , 𝑦𝑚   and 
𝐵2 =  𝑧1 , 𝑧2, … , 𝑧𝑛 , 𝑧𝑛+1, … , 𝑧𝑚  ∈  𝔅 𝐴  such that 𝐵1 ≠ 𝐵2. 
Therefore 𝑦𝑖 = 𝑧𝑖 =  𝐴𝑖  for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑠𝑝𝑎𝑛 𝐵1 −
 𝐴1, 𝐴2, … , 𝐴𝑛  ∩ 𝑠𝑝𝑎𝑛 𝐵2 −  𝐴1, 𝐴2, … , 𝐴𝑛   = {0}; that is 
𝑠𝑝𝑎𝑛 𝑦𝑛+1 , … , 𝑦𝑚  ∩ 𝑠𝑝𝑎𝑛 𝑧𝑛+1, … , 𝑧𝑚  = {0}. If 𝐴[𝐵1] 
and 𝐴[𝐵2] are matrices with columns 𝑦1 , 𝑦2 , … , 𝑦𝑚  and 
𝑧1 , 𝑧2, … , 𝑧𝑚  respectively, then 𝐴[𝐵1] and 𝐴[𝐵2] are both 
invertible. Let 𝐴𝐵1

 and 𝐴𝐵2
 be an 𝑛 × 𝑚 matrices containing 

only the first 𝑛 rows of 𝐴[𝐵1]−1 and 𝐴[𝐵2]−1 respectively. 
As it is observed in the above theorem, both 𝐴𝐵1

 and 𝐴𝐵2
 are 

left inverses of A, so that 𝐴𝐵1
𝐴 = 𝐼𝑛 = 𝐴𝐵2

𝐴, in other words, 
for 1 ≤ 𝑖 ≤ 𝑛, 𝐴𝐵1

𝑦𝑖 = 𝐴𝐵1
𝐴𝑖 = 𝑒𝑖  and similarly 𝐴𝐵2

𝑦𝑖 =

𝐴𝐵2
𝐴𝑖 = 𝑒𝑖  where 𝑒𝑖  is the ith column of the identity matrix 

𝐼𝑛 . Also for 1 ≤ 𝑗 ≤ 𝑚 − 𝑛, 𝐴𝐵1
𝑦𝑛+𝑗 = 0 = 𝐴𝐵2

𝑧𝑛+𝑗 . Now 
our claim is to prove that 𝐴𝐵1

≠ 𝐴𝐵2
. Here we use a proof by 
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contradiction and suppose if possible that 𝐴𝐵1
= 𝐴𝐵2

, then 
𝐴𝐵1

𝑦 = 𝐴𝐵2
𝑦 for all 𝑦 ∈ 𝐹𝑚 . Now choose exactly one 

element 𝑦 ∈ 𝐹𝑚 − ℛ 𝐴 , then 𝑦 ∉ ℛ 𝐴  and hence 𝑦 is not 
a linear combination of the columns  𝐴1, 𝐴2, … , 𝐴𝑛  of A. 
Considering a basis 𝐵1, 𝑦 can be expressed as 𝑦 = 𝛼1𝑦1 +
⋯ + 𝛼𝑛𝑦𝑛 + ⋯ + 𝛼𝑚𝑦𝑚 = 𝛼1𝐴1 + ⋯ + 𝛼𝑛𝐴𝑛 +
𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚  for some scalars 𝛼1, 𝛼2, … , 𝛼𝑚 . On 
the other hand, considering a basis  𝐵2, 𝑦  can also be 
expressed as 𝑦 = 𝛽1𝑧1 + ⋯ + 𝛽𝑛𝑧𝑛 + ⋯ + 𝛽𝑚𝑧𝑚 = 𝛽1𝐴1 +
⋯ + 𝛽𝑛𝐴𝑛 + 𝛽𝑛+1𝑧𝑛+1 + ⋯ + 𝛽𝑚𝑧𝑚  for some scalars 
𝛽1 , 𝛽2, … 𝛽𝑚 . Therefore, 
𝐴𝐵1

𝑦 = 𝐴𝐵2
𝑦  

⟹ 𝐴𝐵1
 𝛼1𝐴1 + ⋯ + 𝛼𝑛𝐴𝑛 + 𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚  =

𝐴𝐵2
 𝛽1𝐴1 + ⋯ + 𝛽𝑛𝐴𝑛 + 𝛽𝑛+1𝑧𝑛+1 + ⋯ + 𝛽𝑚𝑧𝑚    

⟹ 𝛼1𝐴𝐵1
𝐴1 + ⋯ + 𝛼𝑛𝐴𝐵1

𝐴𝑛 + 𝛼𝑛+1𝐴𝐵1
𝑦𝑛+1 … +

𝛼𝑚𝐴𝐵1
𝑦𝑚 = 𝛽1𝐴𝐵2

𝐴1 + ⋯ + 𝛽𝑛𝐴𝐵2
𝐴𝑛 + 𝛽𝑛+1𝐴𝐵2

𝑧𝑛+1 +

⋯ + 𝛽𝑚𝐴𝐵2
𝑧𝑚    

⟹ 𝛼1𝑒1 + ⋯ + 𝛼𝑛𝑒𝑛 + 𝛼𝑛+10 + ⋯ + 𝛼𝑚 0 = 𝛽1𝑒1 + ⋯ +
𝛽𝑛𝑒𝑛 + 𝛽𝑛+10 + ⋯ + 𝛽𝑚 0   
⟹ 𝛼1𝑒1 + ⋯ + 𝛼𝑛𝑒𝑛 = 𝛽1𝑒1 + ⋯ + 𝛽𝑛𝑒𝑛    
⟹  𝛼1 − 𝛽1 𝑒1 + ⋯ + (𝛼𝑛 − 𝛽𝑛)𝑒𝑛 = 0  
⟹ 𝛼1 − 𝛽1 = 0, 𝛼2 − 𝛽2 = 0, … , 𝛼𝑛 − 𝛽𝑛 = 0  
 (∵  𝑒1 , … , 𝑒𝑛  is a standard basis for 𝐹𝑛 ) 
⟹ 𝛼1 = 𝛽1 , 𝛼2 = 𝛽2, … , 𝛼𝑛 = 𝛽𝑛    
Since 𝛼1𝐴1 + ⋯ + 𝛼𝑛𝐴𝑛 + 𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚  and 
𝛽1𝐴1 + ⋯ + 𝛽𝑛𝐴𝑛 + 𝛽𝑛+1𝑧𝑛+1 + ⋯ + 𝛽𝑚𝑧𝑚  are different 
forms of 𝑦, then  
𝛼1𝐴1 + ⋯ + 𝛼𝑛𝐴𝑛 + 𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚 = 𝛽1𝐴1 +
⋯ + 𝛽𝑛𝐴𝑛 + 𝛽𝑛+1𝑧𝑛+1 + ⋯ + 𝛽𝑚𝑧𝑚   
⟹ 𝛼1𝐴1 + ⋯ + 𝛼𝑛𝐴𝑛 + 𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚 = 𝛼1𝐴1 +
⋯ + 𝛼𝑛𝐴𝑛 + 𝛽𝑛+1𝑧𝑛+1 + ⋯ + 𝛽𝑚𝑧𝑚    
⟹ 𝛼𝑛+1𝑦𝑛+1 + 𝛼𝑛+2𝑦𝑛+2 + ⋯ + 𝛼𝑚𝑦𝑚 = 𝛽𝑛+1𝑧𝑛+1 +
𝛽𝑛+2𝑧𝑛+2 + ⋯ + 𝛽𝑚𝑧𝑚    
If we let 𝑢 = 𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚 = 𝛽𝑛+1𝑧𝑛+1 + ⋯ +
𝛽𝑚𝑧𝑚 , then 𝑢 is spanned by {𝑦𝑛+1 , … , 𝑦𝑚 } aswellas 
 𝑧𝑛+1, … , 𝑧𝑚   and hence 𝑢 ∈ 𝑠𝑝𝑎𝑛 {𝑦𝑛+1, … , 𝑦𝑚 } ∩
𝑠𝑝𝑎𝑛 𝑧𝑛+1 , … , 𝑧𝑚  = span 𝐵1 −  𝐴1, … , 𝐴𝑛  ∩
span 𝐵2 −  𝐴1, … , 𝐴𝑛  = {0}. So that 𝑢 = 0. Thus we have 
that: 𝑢 = 𝛼𝑛+1𝑦𝑛+1 + ⋯ + 𝛼𝑚𝑦𝑚 = 0 and 𝛽𝑛+1𝑧𝑛+1 + ⋯ +
𝛽𝑚𝑧𝑚 = 0. Since each 𝑦𝑖 ’s and 𝑧𝑖’s are linearly independent 
respectively, it follows that 𝛼𝑛+𝑗 = 0 = 𝛽𝑛+𝑗  for all 1 ≤ 𝑗 ≤

𝑚 − 𝑛. Therefore, 𝑦 = 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛  and hence 
𝑦 ∈ ℛ 𝐴  which is a contradiction to our choice of 𝑦. Thus  
𝐴𝐵1

≠ 𝐴𝐵2
. This says that ℎ 𝐵1 ≠ ℎ 𝐵2  for all 𝐵1 ≠ 𝐵2 ∈

𝔅 𝐴 . Therefore ℎ is a one to one map.  
 
Furthermore, we prove that ℎ is an on-to map; for, 
Let 𝐷 ∈ 𝔏 𝐴 , then 𝐷 is a left inverse of 𝐴; that is, 𝐷 is an 
𝑛 × 𝑚 matrix over the given field F such that 𝐷𝐴 = 𝐼𝑛  (an 
identity matrix of order n). So that  𝐷 𝐴𝑥 = 𝑥 for all 
𝑥 ∈ 𝐹𝑛 . In particular, 𝐷 𝐴𝑒i = 𝑒i and hence 𝐷𝐴𝑖 = 𝑒i  for 
all 1 ≤ 𝑖 ≤ 𝑛, where 𝑒i is the ith column of the identity 
matrix 𝐼𝑛 .   
 𝑥 ∈ 𝐹𝑛 ⟹ 𝑥 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑛𝑒𝑛  for some 
scalars 𝛼1, 𝛼2, … , 𝛼𝑛  
 ⟹ 𝑥 = 𝛼1𝐷(𝐴𝑒1) + 𝛼2𝐷(𝐴𝑒2) + ⋯ + 𝛼𝑛𝐷(𝐴𝑒𝑛)  
  ⟹ 𝑥 = 𝐷 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛  
  ⟹ 𝑥 = 𝐷𝑦, where 𝑦 = 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 ∈

Fm  
  ⟹ 𝑥 ∈ ℛ 𝐷  
  ⟹ 𝐹𝑛 ⊆ ℛ 𝐷 ⊆ 𝐹𝑛  

  ⟹ ℛ 𝐷 = 𝐹𝑛  and hence dim ℛ 𝐷  = dim 𝐹𝑛 = 𝑛. 
Since 𝐷 is an 𝑛 × 𝑚 matrix over the field F, we have that: 

dim 𝒩 𝐷  + dim ℛ 𝐷  = dim 𝐹𝑚  
 ⟹ dim 𝒩 𝐷  + 𝑛 = 𝑚  

In this case if 𝑚 ≠ 𝑛, then dim 𝒩 𝐷  = 𝑚 − 𝑛 > 0, and 
hence 𝒩 𝐷  is a nontrivial subspace of 𝐹𝑚  with dimension 
𝑚 − 𝑛. So that we can choose 𝑚 − 𝑛 linearly independent 
vectors 𝐴𝑛+1, 𝐴𝑛+2, … , 𝐴𝑚  in 𝒩 𝐷 . Thus the product 
𝐷𝐴𝑛+𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑚 − 𝑛. 
Claim 1: The set 𝐵 =  𝐴1, 𝐴2, … , 𝐴𝑛 , 𝐴𝑛+1, … , 𝐴𝑚   is linearly 
independent in 𝐹𝑚 .  
For any scalars 𝛼1 , 𝛼2, … , 𝛼𝑚 ; 
𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 + ⋯ + 𝛼𝑚𝐴𝑚 = 0   
  (1) 
⟹ 𝐷 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 + ⋯ + 𝛼𝑚𝐴𝑚  = 0  
⟹ 𝛼1𝐷𝐴1 + 𝛼2𝐷𝐴2 + ⋯ + 𝛼𝑛𝐷𝐴𝑛 + 𝛼𝑛+1𝐷𝐴𝑛+1 … +
𝛼𝑚𝐷𝐴𝑚 = 0  
⟹ 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑛𝑒n = 0   (∵ 𝐷𝐴𝑖 = 𝑒𝑖  for 
all 1 ≤ 𝑖 ≤ 𝑛 and 𝐷𝐴𝑛+𝑗 = 0 for all 1 < 𝑗 ≤ 𝑚 − 𝑛) 
⟹ 𝛼1 = 0,  𝛼2 = 0, …, 𝛼𝑛 = 0.   
   (∵  𝑒1, … , 𝑒𝑛  is a standard basis for 𝐹𝑛 ) 
Substituting the value of these 𝛼𝑖’s in equation (1) we get 
that: 𝛼𝑛+1𝐴𝑛+1 + ⋯ + 𝛼𝑚𝐴𝑚 = 0 and since each 𝐴𝑛+𝑗 ’s are 
linearly independent to each other, it follows that 𝛼𝑛+𝑗 = 0 
for all 1 ≤ 𝑗 ≤ 𝑚 − 𝑛. This says that, 𝛼𝑖 = 0 for all 1 ≤ 𝑖 ≤
𝑚. Therefore the set 𝐵 =  𝐴1, 𝐴2, … , 𝐴𝑛 , 𝐴𝑛+1, … , 𝐴𝑚  is 
linearly independent in 𝐹𝑚  and since 𝐵 has exactly 𝑚 
elements, then it becomes a basis for 𝐹𝑚  containing the 
columns 𝐴1, 𝐴2, … , 𝐴𝑛of A, so that 𝐵 ∈ 𝔅 𝐴 . 
Claim 2: 𝐷 = 𝐴𝐵 = ℎ 𝐵   
Since B forms a basis for 𝐹𝑚 , any 𝑦 ∈ 𝐹𝑚  can be expressed 
as 𝑦 = 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 + ⋯ + 𝛼𝑚𝐴𝑚 , then 
𝐷𝑦 = 𝐷 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 + ⋯ + 𝛼𝑚𝐴𝑚    
 = 𝛼1𝐷𝐴1 + 𝛼2𝐷𝐴2 + ⋯ + 𝛼𝑛𝐷𝐴𝑛 + ⋯ + 𝛼𝑚𝐷𝐴𝑚  

           
 = 𝛼1𝑒1 + 𝛼2𝑒2 + ⋯ + 𝛼𝑛𝑒n      (∵ 𝐷𝐴𝑖 = 𝑒𝑖  

for all 1 ≤ 𝑖 ≤ 𝑛 and 𝐷𝐴𝑛+𝑗 = 0 for all 1 < 𝑗 ≤ 𝑚 − 𝑛) 
 = 𝐴𝐵 𝛼1𝐴1 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛𝐴𝑛 + ⋯ + 𝛼𝑚𝐴𝑚     
 = 𝐴𝐵𝑦  
Thus 𝐷𝑦 = 𝐴𝐵𝑦 for all 𝑦 ∈ 𝐹𝑚 , and this implies that 

𝐷 = 𝐴𝐵 = ℎ 𝐵 ; that is, ℎ is an on-to map and hence a one-

to-one correspondence. ∎ 

4. Conclusion 
 
As we observe in Theorem 2.2, Theorem 2.4 and Theorem 
3.1 of this paper, a given rectangular 𝑚 × 𝑛 matrix 𝐴 over 
the given field F, has a left inverse if and only if it is an 
injection or equivalently if it is left cancellable or 
equivalently if 𝒩 𝐴 = {0} or equivalently if its columns are 
linearly independent or equivalently if it has a full column 
rank. This tells us that any rectangular matrix satisfying one 
of the above conditions and hence the others, has at least one 
left inverse. If A is square, then the existing left inverse is 
also a right inverse and hence it is unique. Otherwise, it 
needs not to be necessarily unique. As proved in Theorem 
3.2, there is a one to one correspondence between the set 
𝔏 𝐴  of all left inverses of 𝐴 and the set 𝔅 𝐴  of bases for 
𝐹𝑚 , containing the columns 𝐴1, 𝐴2, … , 𝐴𝑛  of A such that, 
𝑠𝑝𝑎𝑛 𝐵1 −  𝐴1, 𝐴2, … , 𝐴𝑛  ∩ 𝑠𝑝𝑎𝑛 𝐵2 −  𝐴1, 𝐴2, … , 𝐴𝑛  =
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{0} for all 𝐵1 ≠ 𝐵2 ∈ 𝔅 𝐴 . On other words, the set of all 
left inverses of an 𝑚 × 𝑛 matrix 𝐴 over the field F, is 
equivalent (or cardinal) with the collection of tuples of 
𝑚 − 𝑛 column vectors 𝐴𝑛+1, 𝐴𝑛+2 , … , 𝐴𝑚  in 𝐹𝑚  satisfying 
that the set  𝐴1, 𝐴2, … , 𝐴𝑛 , 𝐴𝑛+1, 𝐴𝑛+2, … , 𝐴𝑚   is linearly 
independent and vectorspaces 𝑈1 and 𝑈2 generated by any 
two arbitrary tuples 𝐴𝑛+1, 𝐴𝑛+2, … , 𝐴𝑚  and 
𝐴′𝑛+1 , 𝐴′𝑛+2, … , 𝐴′𝑚  respectively, have only a zero vector in 
common. 
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