
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Software Defined Networks: Challenges,
Opportunities and Trends

Hrishikesh Arun Deshpande

1Member of Technical Staff R&D, NetApp India Pvt. Ltd, Bangalore, India

Abstract: Traditional networks often consist of a static arrangement of switches, routers and other components. Such a configuration
is quite inflexible and inappropriate to meet the dynamic traffic and programmable bandwidth requirements of today’s applications.
Moreover, with the advent of cloud computing and big data, we need a network that is agile and dynamically scalable, something that a
traditional network cannot guarantee. A software defined network abstracts the lower level hardware configuration from the higher
level applications by decoupling the decision making control plane from the packet forwarding data plane. Thus software defined
networks are better suited to meet the dynamic requirements of today’s applications. This paper gives insights into the requirements that
are driving the networking community towards software defined networks, challenges involved in implementing a programmable
network, opportunities and advantages offered by software defined networks vis-à-vis traditional networks and emerging trends in
research and standardization of software defined networks.

Keywords: software defined networks, flow table, OpenFlow, Network Function Virtualization, programmable bandwidth, scalability

1. Introduction

Traditional computer networks often comprise of myriad
types of networking devices such as routers, network
switches, firewalls, authentication gateways, network address
translators (NAT) and so on. These devices are tightly
coupled within the network and are guided by complex
protocols and policies to handle host connectivity, network
speeds and topologies [1]-[2]. But such a static arrangement
in traditional networking architectures is inflexible and
unsuited to meet the vastly dynamic and scalability
requirements of today’s users, carriers and enterprises. With
the emergence of cloud services, server virtualization, mobile
devices and big data, it has become imperative that the the
underlying network infrastructure is programmable, agile and
adjust dynamically to unpredictable traffic patterns and
bandwidth requirements [2]. Software defined networks
(SDN) have been touted as an enabling technology to help
network administrators manage network controls by
abstracting the lower level networking hardware from
network services and applications [3]. This basically results
in networks that are programmable and satisfy the demands
of high bandwidth, scalability and dynamic computing needs
of today’s enterprise data centers and carriers. This makes
SDN’s a viable alternative to traditional networks in meeting
the dynamic traffic and bandwidth requirements of today’s
applications [1]-[3].

2. Software Defined Networks

The static and complex nature of traditional computer
networks makes it difficult for them to meet the current
market requirements of mobility, scalability and high
bandwidth [1]. Thus efficient network management and
network utilization is challenging, forcing network
administrators to resort to tedious manual configuration
processes and device level management tools [2]. These
techniques are quite inefficient and fail to meet the
challenging requirements of current markets and have
prompted the networking community to reexamine traditional

network architectures and consider networks that are
dynamically programmable and agile [4]. This has generated
significant interest towards SDN in both the academia and
industry [5].

2.1 Need for Software Defined Networks

Since traditional networks are unable to handle effectively
dynamically changing traffic patterns and high bandwidth
requirements, the academic community formed the Open
Flow Network Center with emphasis on SDN research.
Similarly, network operators and service providers formed
the Open Networking Foundation, an industry driven
initiative, to further promote SDN research [1]. Several
factors prompted the academia and industry to consider
SDN’s as an alternative to traditional networks. Table 1
below summarizes the drivers that led the networking
community towards SDN research [1]-[5].

Table 1: Drivers for SDN research

Sl.
No

Driver Reason

1. High
Bandwidth

Traditional Networks with static
configuration of network devices are
unable to meet the ever increasing
bandwidth requirements of customers.
SDN’s which can adapt dynamically to
high bandwidth requests are better
suited in such cases.

2. Dynamic
traffic patterns

Users are beginning to access different
databases, servers and corporate
networks from different devices from
anywhere and at any point of time.
Thus it’s not possible to assume a
certain constant traffic pattern over a
network and traffic often tends to be
unpredictable.

3. Scalability As demands for bandwidth explode,
it’s difficult for traditional networks
with fixed configurations to scale
dynamically. Scaling a network results
in addition of several thousands of

Paper ID: SUB157995 328

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

network devices greatly complicating
their maintenance and increasing costs.

4. Cloud Services With wide acceptance of cloud based
services, there’s been a spurt in
demand for agile applications and
dynamic provisioning of resources.

5. Network
Management

Constant scaling of traditional
networks results in addition of several
thousands of network devices that need
to configured and maintained thereby
making network management quite
difficult.

6. Network
Complexity

Today’s networks have a myriad type
of network devices and topologies that
are guided by a diverse set of
protocols. Each protocol serves
different functions making the overall
network complex and difficult to
manage.

7. Vendor
independence

Since each vendor has different
hardware refresh cycles, enterprises are
forced to configure each vendor’s
equipment separately. This together
with the absence of an open interface
restricts enterprises from adapting their
network dynamically.

2.2 Architecture of Software Defined Networks

SDN’s have been defined in several ways. But in simplest
terms, a software defined network can be defined as a
programmable network where lower level hardware
functionality is abstracted from higher level network services
and applications [4]. This is accomplished by decoupling the
control plane from the data plane. Figure 1 illustrates the
architecture of a typical SDN network.

Figure 1: SDN Architecture

Control plane is the layer where decisions of the destination
to which the traffic is to be sent are made while data plane is
the layer that forwards the traffic to the selected destination.
The data plane consists of networking hardware such as
switches routers and gateways that are connected together to
form the underlying networking infrastructure [6]. The data
plane communicates via a southbound interface with the
control plane that consists of a network operating system
(OS) [7]. The network OS interacts with the underlying
hardware and abstracts the network topology from the
application layer. In most cases, the OS forms a part of a

separate SDN controller that makes routing decisions. The
application layer typically consists of network access and
management applications such as access control, mobility
control, traffic scheduling and energy-efficient networking.
The application layer interacts with the Network OS via a
northbound interface [6]. Thus the SDN controller in the
control plane together with the high level applications
manage traffic control and network management thereby
providing multiple layers of abstraction to the outside world
[7]. Both northbound and southbound API’s are implemented
as open interfaces making the network programmable to suit
specific needs [4]. Also, since the lower level network
infrastructure is abstracted from the application layer, the
applications can make service requests without having to
worry about network specific configurations [4], [6], [7].

A typical SDN operates by dividing the incoming network
traffic into flows. In simplest terms, a flow can be a stream of
packets with the same MAC address or IP address, a TCP
connection, packets arriving from the same switch port or a
Virtual Local Area Network (VLAN) tag [7]. The entries of
individual flows are maintained in a flow table that forms the
part of every network switch. The SDN controller
coordinates the overall activities of network switches such as
addition or removal of flow entries from switch flow tables
and switch interactions [7]. Whenever a newly arriving
packet doesn’t match an existing flow entry, the SDN
controller is responsible for deciding if it forms a part of an
authentic flow. If yes, then the SDN sends the flow entry
details and forwarding information to the corresponding
switch which updates the same in its flow table [7]. Thus the
SDN controller, that facilitates coordination between
switches and takes routing decisions, is the most important
component in a typical SDN [5]-[6].

3. Challenges in Implementing Software

Defined Networks

Although SDN’s appear like a panacea for various network
scheduling and management problems such as dynamic
traffic, adaptable scaling, high bandwidth etc. implementing a
true SDN has several challenges and pitfalls that need to be
overcome [8]. Some of the key challenges faced while
implementing SDN’s have been described below.

3.1 Interoperability Issues

The key challenge in successfully deploying SDN’s is to
ensure interoperability with existing networks. Currently
there exists a vast install base of traditional networks that
supports critical business operations [8]. Thus bumping off
an old network and replacing it with entirely with SDN
cannot happen without inducing massive network outages
resulting in denial of service to customers. Hence, it’s
essential that SDN deployment happens gradually with both
traditional networks and SDN’s working together in close
coordination [8].

A possible way to ensure interoperability would be to define
a new protocol that not only specifies the requirement for
SDN communication interfaces but also ensures backward

Paper ID: SUB157995 329

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

compatibility with existing IP routing and MPLS control
plane technologies [8]. The specifications of such a protocol
need to be standardized to ensure uniform acceptance across
the industry. The Internet Engineering Task Force (IETF) is
currently working on developing standards for protocols,
interfaces and mechanisms in order to ensure smooth
interoperability of SDN’s with existing networks [9].

3.2 Security Issues

Although much attention has been paid as to how SDN’s can
be successfully deployed and interoperate with existing
networks, there has been a limited push towards research in
the security aspects of SDN’s from both academia and
industry [10]. It’s not possible to successfully deploy SDN’s
in the absence of proper security and intrusion detection
mechanisms. Table 2 summarizes the key security threats that
can affect the functioning of SDN’s.

Table 2: Security Issues in SDN
Sl.
No

Security Threat Description

1. Denial of Service
Attack

If a controller is centralized, it becomes
a single point of failure. Thus, an

attacker can overload the SDN controller
and switch memory by introducing

several new and unknown flows that the
controller is not designed to handle

causing outages and denial of service.
2. Switch

Vulnerabilities
A malicious switch can potentially flood

the controller with malicious packets,
slow down network traffic or even

ignore new routing requests.
3. Controller

Vulnerabilities
Since an SDN controller and Network

OS form the backbone of a SDN
network, vulnerabilities in the controller
can be exploited to gain full control of

the network.
4. Man-in-the-middle

Attacks
In the absence of Transport Layer

Security(TLS), vulnerabilities in the
control plane communications can be

exploited to introduce man-in-the-
middle attacks and severely compromise

SDN security
5. Authentication

Issues
With multiple nodes accessing a single
controller or a single node connected to

multiple controllers, the potential for
unauthorized access and illegal

configuration manipulation increases.
6. Open Interfaces Since SDN’s support open interfaces

and known protocols to simplify
networking, these interfaces can be
exploited by an attacker to gain full

control of the network.

These threats can be mitigated by implementing transport
layer security (TLS) that ensures mutual authentication
between SDN controllers and underlying switches [8].
Further, proper forensics need to be put in place to ensure
detection of attacks and strong security policy mechanisms
need to be put in place to ensure integrity and authenticity of
data. Also, the usage of authentication gateways,
vulnerability scanners and honeypots can be considered to
deal with these threats [10]-[11].

3.3 Availability of Service

In traditional networks, if one or more of the networking
devices fail, traffic can be routed through alternate paths and
processed by other devices in the network to ensure
continuous availability of service. But SDN’s introduce an
additional issue of single point of failure [12]. In a
centralized SDN architecture with a single controller, if the
SDN controller is compromised or rendered unusable, then
this will disrupt the entire network resulting in non-
availability of service to legitimate users [12]. Thus it’s
essential to provide a cluster of active stand-by controllers as
backups to the existing controller to ensure a non-disruptive
service to users [13]. A distributed SDN controller
architecture can also be considered to implement a load
balancing based SDN network where the traffic load can be
shared by multiple controllers in the configuration. Further,
path-link failures can hamper the availability of service to
intended users. The SDN architecture should thus support a
multipath configuration so that the controller can redirect
traffic from dead links to active routes [12].

3.4 Scalability Issues

Traditional networks have a static configuration of routers,
switches and other networking components that are governed
by specific policies and protocols [14]. Thus scaling the
network dynamically becomes quite challenging, since it
requires a reconfiguration of existing networking elements,
addition of new elements and make them conform to some
common policy settings. This process is quite expensive and
laborious. But in a SDN, control plane is decoupled from the
data plane. Hence any addition of new networking elements
required for scaling doesn’t change the network control
functions resulting in seamless scaling [14].

Although addition of new switches and routers is seamless,
SDN introduces other scalability issues. Firstly, an increase
in the number of switches and flows results in a proliferation
of traffic that might overwhelm the SDN controller with
several thousand requests [8]. This can actually result in
queuing at the controller thereby slowing down the network.
Further, addition of new flows can also cause scalability
issues. Addition of a new flow requires setting up new
entries in a flow table that maintains the records of various
flows. It also involves switch updates and multiple
interactions between the controller and the switches that can
potentially slowdown the network. Addition of new
networking components will increase the corresponding flow
table updates thereby overloading the controller further
compounding scalability problems [14]. Several solutions
have been proposed to solve scalability issues, the prominent
one being a proposal to have a multicore controller executed
on a shared memory infrastructure where flow processing can
be shared by multiple cores [15]. Another approach is to
process a certain portion of queries at the intervening nodes
itself so that a single controller is not overwhelmed with
several requests [14].

Paper ID: SUB157995 330

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.5 Performance Problems

As already mentioned, centralized controller architecture will
overwhelm the SDN controller thereby greatly slowing down
the network, resulting in serious performance degradation
[16]. Possible solutions to this issue include setting up of
hybrid SDN architecture with sharing of workloads by
multiple controllers. Such a hybrid setup can ensure fast
forwarding of existing flows [17]. But addition of a new flow
can result in performance bottlenecks since the flow setup
process involves multiple flow table updates, switch updates
and interactions between various components [12]. Thus,
flow setup needs to be optimized based on the processing
time and I/O performance of the controller. Such an
optimization can be used to determine the ideal time for flow
setup and thus reduce the flow setup latency [17]. Hence a
hybrid distributed architecture with multiple SDN controllers
and an optimized algorithm for flow setup time can together
reduce possible bottlenecks and improve performance [12],
[16], [17].

4. Opportunities and Advantages

Despite the initial installation and implementation problems,
SDN has been touted as a network of the future mainly due to
its flexibility in adding new interfaces, dynamic addition of
network switches and its programmable nature with respect
to handling dynamic traffic flows. These advantages make
SDN’s an attractive alternative to traditional networks [1]-
[3]. Some of the compelling opportunities provided by
SDN’s in different fields have been described below.

4.1 Network as a Service (NaaS)

With SDN, control plane is decoupled from the underlying
network infrastructure. This abstracts the lower level network
from incoming traffic flows [3]. Such an abstraction is
possible by defining application layer-control plane
interfaces (API’s) and control plane-data plane interfaces.
These interfaces facilitate communication between various
layers [4]. Such a virtualization allows applications to focus
on serving external traffic and effectively manage the
network without worrying about the lower level switch
infrastructure. Thus the underlying network itself can be
presented as a service to the application layer wherein the
applications process incoming traffic requests and request a
service from lower layers [18].

 4.2 Programmable Bandwidth

Since SDN’s abstract the lower level hardware
implementation from the control functions, it’s possible to
dynamically add new transport paths [6]. This is achieved
through the addition or removal of flow paths whose
information is maintained in a flow table. The flow table is
then used by the SDN controller to make intelligent routing
decisions based on the available active links [7]. Such a
dynamic alteration of flows allows effective workload
management and job distribution [19]. This automated
provisioning of network bandwidth facilitates effective
handling of unpredictable traffic flows and better congestion

management.

4.3 Network Customization

The programmable nature of SDN’s allows them to be
tailored and customized to meet the requirements of specific
vendors or individual companies [20]. With the decoupling
of control and data planes [6], SDN’s can also be customized
at switch, controller and network management levels. This is
achieved by dynamically altering flow paths and routing
mechanisms based on specific requirements [7]. Also, SDN
interfaces are being implemented as open standards. Thus,
networks can be customized to allow specific policies w.r.t
traffic control, Quality of Service (QoS), packet forwarding
and device control mechanisms [20]. Also these policies can
be further tailored for specific needs in fields such as
education, healthcare, energy, banking systems among others.

4.4 Vendor Neutrality

In traditional networks, network design and operation is
guided by vendor specific polices and protocols [1]. Further,
the absence of any common standards and open interfaces
resulted in a static, vendor dependent configuration, making
it difficult for network operators to tailor the networks to
meet their specific requirements [2]. But in case of SDN,
communication between control, data and application layers
happens via standardized, open interfaces [7]. The
development of open standards for SDN has made it vendor
neutral thus making it possible for operators, carries and
enterprises to have common configuration and policy settings
irrespective of the vendors involved [21].

4.5 Cloud Services

With a spurt in cloud based deployments, enterprises require
dynamic access to applications, infrastructure and other
services. SDN, with its programmable nature, allows
dynamic provisioning of storage, network and computing
resources [2]. Also, SDN controllers can provide for
effective pooling of existing network resources ensuring
better resource utilization [8]. A SDN framework called
“Meridian” has been developed for cloud computing
networks. This framework enables users to create and
maintain a suitable topology for cloud workloads and handle
dynamic traffic through virtual implementations on
underlying network hardware [22].

4.6 Big Data

Today, big data involves massive parallel processing of large
data sets on thousands of servers. This can place a huge
bandwidth demand on networks, requiring the networks to
scale to a previously unimaginable size. Traditional networks
with static configurations are unable to respond effectively to
such massive bandwidth requirements resulting in outages
[23]. If SDN controllers are connected in a distributed
configuration and have a programmable bandwidth capability
through dynamic management of flows, network admins will
gain the required flexibility to program their networks to suit
the big data paradigm [6]-[7]. This enables network
operators to effectively handle the processing of big data sets

Paper ID: SUB157995 331

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and the demanding bandwidth and scalability requirements
that these data sets place on the network [23].

5. Recent Trends in SDN research

Ever since the idea of SDN was conceptualized, it has
evoked significant interest from both academia and industry.
Many path breaking innovations and research activities have
been witnessed to simplify SDN implementation and justify
SDN as a viable alternative to traditional networks. Further,
several attempts have been made to standardize SDN
architecture and communication interfaces so as to ensure a
common vendor independent framework. The forthcoming
sections discuss the recent trends in SDN standardization and
research [5].

5.1 SDN standardization

A conglomerate of vendors, network operators and service
providers established the Open Networking Foundation
(ONF) which is developing an open standard for SDN called
the OpenFlow Standard [24]. Implementing open interfaces
for SDN makes it vendor neutral and thus facilitates better
standardization. ONF has several working groups (WG) to
deal with various aspects of SDN. For example, the
Architecture and Framework WG is focused on defining
ONF’s idea of an SDN together with its interfaces. Similarly,
the Configuration & Management WG has defined an
OpenFlow Configuration Protocol to deal with configuration
of SDN switches [24].

Similarly, the Internet Research Task Force (IRTF) which is
an open international community of vendors, network
designers and researchers, has established a SDN research
group (SDNRG) to deal with various issues encountered in
the SDN space such as cloud management and routing
control [26]. SDNRG has formed the Interface to Routing
System (I2RS) WG to implement interfaces for network
controller, user and management applications and handle
specific service requests [27].

European Telecommunications Standards Institute (ETSI)
has formed an Industry Specification Group (ISG) to develop
standards for Network Functions Virtualization (NFV) [28].
The group aims to virtualize network functions in order to
build new networking environments. NFV, which can be seen
as a complementary technology to SDN, intends to virtualize
entire classes of network code functions to create Virtual
Network Function (VNF) interfaces that can be orchestrated
and deployed on a framework to provide communication
services. NFV is a much broader technology and network
virtualization can be accomplished using SDN architecture
[28]. Thus, NFV can be considered as one of the use cases of
SDN. Realizing the correlation between SDN and NFV,
ETSI and ONF recently entered into a strategic collaboration
to implement NFV using SDN architecture [29].

International Telecommunications Union (ITU) has a
division called ITU Standardization Sector (ITU-T) that
develops standards for telecommunications industry [30].
ITU-T has formed a Joint Coordination Committee (JCA) for

SDN research called JCA-SDN. The committee is working
on developing standards for SDN. JCA-SDN also keeps a
track of recent activities in SDN research and their possible
applications [30].

5.2 Recent Work

Agarwal deals with the issue of traffic engineering in SDN’s
by explaining how a centralized controller can be optimized
for traffic engineering using Fully Polynomial Time
Approximation Schemes (FPTAS) in order to achieve better
network utilization and reduce packet loss and delays [31].
Pakzad talks about a new scheme to efficiently discover
topologies in SDN’s by proposing simple and practical
modifications to existing topology discovery mechanisms so
as to reduce control overhead and improve efficiency [32].
Adrichem talks about an efficient recovery mechanism for
SDN’s [33]. Existing recovery mechanisms involve detection
of a failed link, sending failure information to the controller
and then choosing a new active link for blocked traffic. Such
a technique is inefficient and has significant downtime. The
new technique by Adrichem proposes to reduce the recovery
time by using a failover scheme with per-link- bi-directional
packet forwarding detection using preconfigured primary and
backup paths [33].

Karakus explains how scalability is a prominent challenge in
implementing SDN’s and proposes an approach based on
levels to solve this issue. In this solution, multiple controllers
together with their networks reside in various levels and a
main controller co-ordinates their activities like a broker
[34]. Gurbani talks about abstracting network topology to
the higher level applications using Application Layer Traffic
Optimization (ALTO) protocol. ALTO provides applications
with an abstract view of the underlying network and thus
allows them to leverage the network without worrying about
the network’s internal policies or configuration [35].

Further, Blendin deals with software defined network service
chaining [36]. Service chaining allows forming services by
combining multiple service functions. Blendin explains how
service chaining can be implemented in telecommunication
networks using SDN OpenFlow architecture [36]. Singh
explains how a Denial of Service (DoS) attack can affect the
working of a SDN by exploiting the vulnerabilities in the
flow table and proposes a solution to mitigate such an attack
in its initial stage itself before it harms the network [37].
Cong proposes a software defined on-chip network (SDNoC)
which is an on-chip networking technology using SDN.
SDNoC decouples the control logic from the underlying
network hardware so that applications can configure their
network as per requirements [38].

Lombardo proposes a performance evaluation of SDN’s
using an analytical tool that takes into account the functions
requested by traffic flows and the Quality of Service (QoS)
that the network is able to provide them [39]. This approach
accounts for processing capabilities of network nodes,
routing and statistical characterization of flows requesting
each network virtualization function (NFV). Further, Rad
talks about a low latency SDN that minimizes virtualization

Paper ID: SUB157995 332

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

overhead and provides high performance for multi-tenant
cloud infrastructures [40].

6. Conclusion

Thus we can conclude by saying that traditional networks
with their static configuration of routers and switches are
inflexible and cannot dynamically adapt to the unpredictable
traffic patterns and programmable bandwidth requirements of
today’s applications. Moreover, the advent of big data and
cloud services has triggered a demand for agile access to
network applications, dynamic scalability and self-
provisioning something that traditional networks are unable
to deliver. SDN, which is an emerging technology, decouples
the decision making control plane from the packet
forwarding data plane by abstracting the underlying hardware
from the application layer. Such an additional level of
abstraction allows applications to request services from SDN
without having to worry about internal configuration details
and policies. This flexibility allows enterprises to handle
dynamically changing traffic patterns and programmable
bandwidth requirements of today’s applications. Also, the
implementation of open interfaces promotes vendor
neutrality.

However, implementing SDN’s has some challenges such as
interoperability with existing traditional networks, security
issues arising out of open interfaces and centralized
controllers, scalability concerns, performance problems and
ensuring continuous availability of service if the SDN
controller is compromised. Despite these challenges, SDN’s
provide tremendous opportunity in realizing the paradigm of
network as a service (NaaS), programmable bandwidth,
vendor neutrality, network customization and is touted to be
a future network for cloud services and big data applications.
These opportunities have generated significant interest in
SDN’s from both academia and industry. Various
organizations such as ONF, ITU-T, ETSI and IRTF are
currently involved in furthering SDN research and
standardization.

References

[1] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, T.
Turletti, "A survey of software-defined networking:
Past, present, and future of programmable networks," In
IEEE Communications Surveys & Tutorials, vol. 16,
no. 3 pp. 1617-1634, 2014.

[2] D. Kreutz, F. MV Ramos, P. Verissimo, C. Rothenberg,
S. Azodolmolky, S. Uhlig, "Software-defined
networking: A comprehensive survey," In proceedings
of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[3] J. Tourrilhes, P. Sharma, S. Banerjee and J. Pettit, "The
Evolution of SDN and OpenFlow: A Standards
Perspective," IEEE Computer Society, vol. 47, no 11,
pp. 22-29, 2014.

[4] M.K. Shin, K.H. Nam, H. J. Kim, "Software-Defined
Networking (SDN): A Reference Architecture and
Open APIs," In Proceedings of International
Conference on ICT Convergence (ICTC), pp.360–361,
Oct. 2012.

[5] M. Jammal, T. Singh, A. Shami, R. Asal, Y. Li,
“Software defined networking: State of the art and
research challenges,” Computer Networks, Elsevier,
vol. 72, pp. 74-98, July 2014.

[6] C. Rothenberg, R. Cunha, J. Bailey, M. Winter, C.
Correa, S. Lucena, M. Salvador, T. Nadeau, "When
open source meets network control planes," IEEE
Computer, vol. 47, no. 11, pp. 46-54, 2014.

[7] OpenFlow Switch Consortium, OpenFlow Spec. v1.3.0,
https://www.opennetworking.org/images/stories/downlo
ads/sdnresources/onf-specifications/openflow/
openflow-spec-v1.3.0.pdf, 2012. [Accessed: Aug. 31,
2015]

[8] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D.
Lake, J. Finnegan, N. Viljoen, M. Miller, N. Rao, “Are
we ready for SDN? Implementation challenges for
software-defined networks”, IEEE Communications
Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[9] H. Kim, N. Feamster, "Improving network management
with software defined networking," IEEE
Communications Magazine, vol. 51, no. 2, pp. 114-119,
2013.

[10] S. Scott-Hayward, G. O'Callaghan, S. Sezer, "Sdn
security: A survey," In Proceedings of SDN Future
Networks and Services (SDN4FNS), IEEE, pp. 1-7,
2013.

[11] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards
secure and dependable software-defined networks,” In
Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, ACM,
pp. 55–60, 2013.

[12] Ashton, Metzler, and Associates, “Ten Things to Look
for in an SDN Controller”, Technical Report, 2013.

[13] A. Tootoonchian, Y. Ganjali, “HyperFlow: A
Distributed Control Plane for OpenFlow,” In
Proceedings of the 2010 Internet Network Management
Conference on Research on Enterprise Networking, pp.
3-3, 2010.

[14] S. Yeganeh, A. Tootoonchian, Y. Ganjali, “On
scalability of software-defined networking,” IEEE
Communications Magazine, vol. 51, no. 2, pp. 136–
141, 2013.

[15] A. Voellmy, J.C. Wang, "Scalable Software-Defined
Network Controllers," In Proceedings of ACM
SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, pp. 289–290, 2012.

[16] A. Tootoonchian, S. Gorbunov, "On Controller
Performance in Software-Defined Networks," In
Proceedings of 2nd USENIX Conference on Hot Topics
in Management of Internet, Cloud, and Enterprise
Networks and Services, vol. 54, pp. 10, 2012.

[17] J. Mogul, L. Tourrilhes, P. Yalagandula, P. Sharma, A.
Curtis, S. Banerjee, "DevoFlow: Cost-Effective Flow
Management for High-Performance Enterprise
Networks," In Proceedings of the Ninth ACM
SIGCOMM Workshop on Hot Topics in
Networks(HotnetsIX), pp. 1, 2010.

[18] P. Costa, M. Migliavacca, P. Pietzuch, A. Wolf, "NaaS:
Network-as-a-Service in the Cloud," In Proceedings of
the 2nd USENIX conference on Hot Topics in

Paper ID: SUB157995 333

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE), vol. 12, 2012.

[19] M. Altufaili, "Intelligent Network Bandwidth
Allocation using SDN (Software Defined Networking),"
International Journal of Engineering Research &
Technology (IJERT) www.ijert.org, vol. 4, no 7, pp.
493-496, 2015.

[20] S. Liu, "Software-Defined Networking: Opportunities
And Challenges", forbes.com, para 7, Feb. 25, 2015.
[Online]. Available: http://www.forbes.com/sites
/huawei/2015/02/24/software-defined-networking-
opportunities-and-challenges/ [Accessed: Aug. 30
2015].

[21] "Software-Defined Networking (SDN) Definition",
opennetworking.com, para 6. [Online]. Available:
https://www.opennetworking.org/sdn-resources/sdn-
definition. [Accessed: Aug. 29, 2015].

[22] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, H.
Wang, "Meridian: an SDN Platform for Cloud Network
Services," IEEE Communications Magazine, vol.51,
no.2, pp.120–127, 2013.

[23] I. Monga, E. Pouyoul, C. Guok, "Software defined
networking for big-data science," In High Performance
Computing, Networking, Storage and Analysis (SCC),
IEEE, pp. 1629-1635, 2012.

[24] ”ONF Overview”, opennetworking.org, para 3.
[Online]. Available: https://www.opennetworking.org/
about/onf-overview. [Accessed: Aug. 28, 2015].

[25] “SDNRG Background”, irtf.org, para 3, Oct. 1 2013.
[Online]. Available: https://irtf.org/sdnrg [Accessed:
Aug. 28, 2015].

[26] D. Meyer, "The Software-Defined-Networking
Research Group," Internet Computing, IEEE, vol.17,
no.6, pp.84-87, 2013.

[27] S. Hares and R. White, "Software-Defined Networks
and the Interface to the Routing System (I2RS)," IEEE
Internet Computing, vol. 17, no. 4, pp. 84-88, 2013.

[28] “Network Functions Virtualization”, portal.etsi.org, para
2, [Online]. Available: http://portal.etsi.org/portal/
server.pt/community/NFV/367. [Accessed: Aug. 28,
2015].

[29] “Open Networking Foundation and ETSI announce
strategic collaboration for SDN support of NFV”,
etsi.org, para 3, Mar. 14, 2014. [Online]. Available:
http://www.etsi.org/news-events/news/764-2014-03-
onf-and-etsi-announce-strategic-collaboration-for-sdn-
support-of-nfv. [Accessed. Aug. 28, 2015].

[30] “Joint Coordination Activity on Software-Defined
Networking”, itu.int, para 1, Nov. 18 2012. [Online].
Available: http://www.itu.int/en/ITU-T/sdn/Pages/
default.aspx. [Accessed. Aug 28. 2015].

[31] S. Agarwal, M. Kodialam, and T. V. Lakshman.
"Traffic engineering in software defined networks." In
IEEE INFOCOM Proceedings, pp. 2211-2219, 2013.

[32] F. Pakzad, M. Portmann, W. Tan, J. Indulska, "Efficient
topology discovery in software defined networks," In
Signal Processing and Communication Systems
(ICSPCS), 2014 8th International Conference on, pp. 1-
8. IEEE, 2014.

[33] V. Adrichem, LM Niels, J Benjamin, V. Asten, F.
Kuipers, "Fast recovery in software-defined networks,"

In Third European Workshop on Software Defined
Networks (EWSDN), pp. 61-66, 2014.

[34] M. Karakus, A. Durresi, "A Scalable Inter-AS QoS
Routing Architecture in Software Defined Network
(SDN)," In 29th International Conference on Advanced
Information Networking and Applications (AINA),
IEEE, pp. 148-154, 2015.

[35] V. Gurbani, M. Scharf, T. Lakshman, V. Hilt,
"Abstracting network state in Software Defined
Networks (SDN) for rendezvous services", Workshop
on Software Defined Networks, co-located with IEEE
ICC, June 2012.

[36] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, D.
Hausheer, "Position paper: Software-defined network
service chaining," In Third European Workshop on
Software Defined Networks (EWSDN), IEEE, pp. 109-
114, 2014.

[37] S. Singh, R.A. Khan, A. Agarwal, "Prevention
mechanism for infrastructure based Denial-of-Service
attack over software defined network," In International
Conference on Computing, Communication &
Automation (ICCCA), IEEE, pp. 348-353, 2015.

[38] L. Cong, W. Wen, W. Zhiying, "A configurable,
programmable and software-defined network on chip,"
In IEEE Workshop on Advanced Research and
Technology in Industry Applications (WARTIA), pp.
813-816, 2014.

[39] A. Lombardo, A. Manzalini, V. Riccobene, G.
Schembra, "An analytical tool for performance
evaluation of software defined networking services," In
Network Operations and Management Symposium
(NOMS), IEEE, pp. 1-7, 2014.

[40] P. Rad, R. Boppana, P. Lama, G. Berman, M. Jamshidi,
"Low-latency software defined network for high
performance clouds," In 10th System of Systems
Engineering Conference (SoSE), IEEE, pp. 486-491,
2015.

Paper ID: SUB157995 334

