
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Web Service Application to Access Climate Data
from Cloud using Spring Framework

Vijayshree1, Dr. Rekha Patil2

1Department of Computer Science and Engineering M.Tech (CSE), Poojya Doddappa Appa College of Engineering, Gulbarga, Karnataka,

India

2Department of Computer Science and Engineering, Poojya Doddappa Appa College of Engineering, Gulbarga, Karnataka

Abstract: The world has full of valuable information because of the rapid development of internet, World Wide Web and e-commerce

application. It is a huge challenge to fetch this valuable information which is distributed in different parts of the world and in a different

format. The field of application where sensors are used is expanding extensively fast. Sensors provide information about various aspects

of the real world. Sensors are used for gathering environmental information such as changes in temperature, air pressure, and water

quality. The important task is to analyze the large amount of multidimensional data generated by diverse sensors and interoperability

among various system which handles such complex data. These sensors are distributed geographically and their networks do not take

context information into account due to which they provide heterogeneous interfaces to access the data. To handle these issues we need

to give greater importance to the interoperability of the data acquired from heterogeneous and distributed network of sensors.In this

paper, We are proposing an architecture where the sensor is automated using Jenkins Continuous Integration server and generate the

climate data information from the cloud and store in the NoSQL Mongo database and expose the climate data using Spring RESTful

web service over the web and visualize the climate data to users using Spring Model View Controller framework. It also provides the

performance benchmarking of REST and SOAP Web services.

Keywords: Sensors, Cloud Web Services, RESTful Web Services, Jenkins Continuous Integration, NoSQL, Mongo DB, Spring MVC,
Spring RESTful web services

1. Introduction

The explosion of the web, and now web 2.0, it is only now
that we are beginning to see the automatic interaction
between different web sites, and between web sites and client
applications, web sites and business databases, as part of
more a global interconnection.

On the web, data is moving faster than we can browse it.
Hence, there is a strong demand for everyone that can find,
track and monitor information coming from diverse
sources.The rapidly emerging web services technology has
the potential to change the way the Internet works for
businesses. While currently web services work well for
business-to-consumer applications, they don't for business-
to-business applications. RESTful Web services should be
able to address this issue.

The motivation behind RESTful web services is what drives
the progress of technology to make complex things simpler.
RESTful Web services quickly becoming the preferred
technology for building arbitrary applications that
communicate over the network. REST fully leverages
protocols and standards that power the World Wide Web and
is simpler than traditional SOAP-based web services. With
the emergence of cloud-computing and the growing interest
for web hosted applications, REST-based technologies can
help both in the development of rich user interface clients
calling into remote servers; and in the development of actual
servers for manipulating data structures in a client
application (written in any language) or directly in the
browser.

The study mainly focused on exposing the climate data
coming from sensors as REST API using Spring RESTful

web services and development of client application which
consumes the REST API and visualizes the Climate data
using Spring MVC Framework.

The study also extended in usage of NoSQL Mongo DB
which is an effective way to store large amount of climate
data. In addition, we used Jenkins Continuous Integration
which interacts with cloud tofetch the data and prove that CI
is best for automation framework.

The proposed system makes use of internet data packet and
JSON messages are realized by RESTful web service.There
will be three major components residing on different tiers,
which communicates with each other and to external services
using JSON messages to realize the complete system.

The first step on implementation would be developing a
sensor application which is responsible to establish
connection between sensor and web service.The next step is
to develop a client application, which can be accessed via
URL. It is a user intractable application and responds to
user’s request by fetching data from the RESTful web
server.The final step is to develop a sensor web service,
which is the core of our system, which is responsible to
process, coordinate and manage sensor data among sensor
devices and the client application. It will exchange JSON
messages to realize the data communication between the
sensor application and client application.

Paper ID: SUB158069 495

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure1: RESTful Web Services

The paper is organized, section 1 discusses the introduction,
and section 2related works. Section 3 methodology,
architecture and system design Section 4, result. Finally,
section 5 presents some concluding remark.

2. Related work

”A Sensor Web Middleware with StatefulServices for
Heterogeneous Sensor Networks”: T. Kobialka,R. Buyya,
etal[1] has proposed Web Service Resource Framework
(WSRF) mechanisms into the core services implementation
of the NICTA Open Sensor Web Architecture (NOSA).
NOSA is a suite of middleware services for sensor network
applications which are built upon the Open GIS Consortiums
Sensor Web Enablement standard.The NICTA Open Sensor
Web Architecture is built upon a uniform set of operations
and standard sensor data representations as defined by the
Open Geospatial Consortium (OGC). The OGC is a
geospatial standards authority that has defined a Sensor Web
Enablement (SWE) method which includes specifications of
interfaces, protocols and encodings that enable discovering,
accessing and obtaining sensor data as well as sensor-
processing services.

“Architecture for implementing geospatial web services
using SOA and NoSQL solutions” -P. Amirian, A. Basiri,
A. Winstanley[2]The proposed work assesses geospatial
services through a so called OGC services framework and
proposed an architecture for implementing geospatial web
services.The first approach is to use the specifications
published and managed by Open Geospatial Consortium
(OGC).The second approach is to use web services
technologies and use the standard messaging and standard
interface definition mechanisms. In this paper in order to
provide access to geospatial resources in efficient and
standard manner there are generally two issues: huge volume
of geospatial data and limited capabilities of OGC services to
provide self-sufficient messages containing geospatial data.
The proposed solution provides geospatial resources through
interoperable services which can be consumed using various
kinds of message exchange patterns for different kinds of
clients.

“Service Oriented Architecture:SOA strategy,
Methodology and Technology”- J. Lawler, B. Hawel[3]
The proposed works for an architecture for implementing
web services using SOA (SOAP, WSDL, UDDI)The concept
of SOA solves the traditional problem of tight coupling and
Web Services are the major technology for implementing
SOA

“Using Service-Oriented Architectureand Component-
Based Development to Build Web Service Applications.”-
Brown. A., Johnston,S., Kelly, K[4]The proposed work
have written a Rational Software White Paper and concluded
that 1. Services models can be derived from existing
component-based models. 2. Common patterns and designs
can be applied to assist in the transformation to service-
oriented models.The system as a whole is designed and
implemented as a set of interactions among these services.
Exposing functionality as services is the key to flexibility.
This allows other pieces of functionality (perhaps themselves
implemented as services) to make use of other services in a
natural way regardless of their physical location. A system
evolves through the addition of new services. The resulting
service-oriented architecture (SOA) defines the services of
which the system is composed, describes the interactions that
occur among the services to realize certain behavior, and
maps the services into one or more implementations in
specific technologies.

“The Road to Enterprise Application Integration (EAI)”-
ZaighamMahmood[5] the proposed work for EAI
integration based on SOA.Enterprises have invested heavily
in large-scale applications software to run their services and
business functions. The infrastructure used is often
heterogeneous across a number of platforms, operating
systems and languages and, thus, there is a huge duplication
of functionality and services resulting in a waste of valuable
resources and poor response times. Increasingly, the business
and IT managers are being asked to deliver improved
functionality while leveraging existing IT investment as well
as provide flexibility and on-demand services. In this
context, Service Oriented Architecture (SOA) is emerging as
an attractive architectural style for developing and
integrating enterprise applications. SOA promises a better
alignment of IT with business, seamless integration of
business applications and reduced costs of development and
maintenance. Evidence suggests that large enterprises are
moving towards this new paradigm.

“Restful web services: A solution fordistributed data
integration”- J. Meng, S. Mei, and Z. Yan[6]
has proposed work have a solution for distributed data
integration using RESTful web services.The core principle of
RESTful Web Services is resource which is a conceptual
mapping to a set of entities, not the entity that corresponds to
the mapping at any particular point in time. Representations
are any useful information about the states of the resources.
They are usually a sequence of bytes, plus representation
metadata to describe those bytes. These advantages are
suitable for solving the problems of Internet-scale distributed
data integration. Traditional Web Services have more mature
extension standards of WS-* protocol stack and good support
of development tools to meet the needs of QoS and complex
heterogeneous hardware and software system environment.
So it is more suitable for enterprise computing. But we
believe that both kinds of Web Services have complementary
strengths.

“REST and SOAP: When Should I Use Each (or Both)”-
Rozlog. M[7]has proposed work by taking an example and
demonstrated the two approaches for interfacing to the

Paper ID: SUB158069 496

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Web with web services, namely SOAP (Simple Object
Access Protocol) and REST (Representational State
Transfer). Both approaches work, both have advantages and
disadvantages to interfacing to Web services, but it is up to
the web developer to make the decision of which approach
may be best for each particular case.The approach is very
simple to understand and can be executed on really any client
or server that has TP/HTTPS support. The command can
execute using the HTTP Get method. So developers that use
this approach, cite the ease of development, use of the
existing web infrastructure, and little learning overhead as
key advantages to the style.

“ Migration ofSOAP-based Services to RESTful
Services”-B. Upadhyaya, Ying Zou, Hua Xiao, J. Ng, and
A. Lau[8]has proposed a case study on a set of publicly
available SOAP-based Web services. The results of the case
study show that their approach can achieve high accuracy of
identifying RESTful services from the interfaces of SOAP-
based services and can improve the performance for
invoking Web services after SOAP-based services are
migrated to RESTful services.

“Implementing REST Web Services”-Hao[9] the proposed
work have some best practices and guidelines for
implementing RESTful web services. With other styles of
web services, REST is easy to implement and has many
highly desirable architectural properties: scalability,
performance, security, reliability, and extensibility. Those
characteristics fit nicely with the modern business
environment, which commands technical solutions just as
adoptive and agile as the business itself.

“RESTful Web Services Development Checklist[10] The
proposed work has discussed on rich functionalities of REST
and HTTP. He proposed the IDE and checklist to develop the
REST APIs in easy and fast manner. RESTful Web service
developers can have well-behaved service implementations
up and running in short order. REST’s relative simplicity
comes from the fact that it not only clearly defines its trade-
offs and constraints but also distinctly separates concerns,
such as resource identification, resource interfaces, and
definitions for interchanged data. This delineation makes it
relatively easy for developers designing and building
RESTful services to consider and track important issues that
can profoundly impact system flexibility, scalability, and
performance.

3. Proposed System

The product is entirely new product. It is not a component of
a larger system. The climate web application is an online
web application which displays climate data such as
pressure, temperature and humidity of particular city and will
interact with a RESTful web service application which
provides RESTful API services in order to fetch climate data
from Mongo DB. Continuous Integration system monitors
the sensors data from cloud and pushes the climate data in
the Mongo DB.

Figure 2: Architecture of Climate data application

Product Sub system:

i) Sensor Web Application: It is a web application that is

provided in the form of URL which is a user interface to
the user. User can make the selection of the city and
request for weather data like temperature, pressure and
humidity

ii) Sensor Web Service: Sensor web service is a
RESTfulWeb Services, which is responsible to process,
coordinate and manage sensor data stored in Mongo DB.
It will exchange JSON messages to realize the data
communication with sensor web application

iii) Sensor Application: It is a script which running
continuously in Continuous Integration Jenkins server.
Sensor application is an application which stores weather
data fetched from cloud and pushes the data into Mongo
DB.

iv) Cloud climate data: All the weather information like
temperature, pressure, humidity are fetched from the
cloud using RESTful web services are stored in Mongo
Database which is a No SQL database

3.2 Product Design of Climate Data

There are three major sub components in our product which
interacts with each other to realize a complete product and
each components is developed in layered architecture and
with existing framework which is depicted in figure below.

Paper ID: SUB158069 497

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 3: Detailed System design

3.2.1Sensor Web Application

It is a web application developed on Spring MVC framework
which is deployed on an Apache Tomcat server. It is client
application, accessed via URL and intractable application
which responds to user’s request by fetching data from the
RESTful web server and visualize the climate data fetched
from RESTful web services to the users.It provides solution
to layer an application by separating three concerns
presentation, controller and business flow.
 The Model in our application is Service Layers

implemented in the form of SensorService which give
information about request or requested information or
Model can be a POJO converted from JSON which
encapsulates the application data given by the controller.

 The View is web page in our application which display the
information of cities and weather information and is
responsible for rendering the weather data and in general it
generates HTML output that the client's browser can
interpret.

 The Controller in our application is RequestController and
is responsible for processinguser requests for fetching
weather information and building appropriate model from
SensorService and passes it to the view for rendering.

Request Controller: Routes all the requests into framework
control that means whenever requests land on different
controllers it queues that request to the controller of
framework without this MVC framework will not may be
able to take control of the request at landing at the
application.

In Spring MVC framework Dispatcher Servlet access Front
Controller which handles all coming requests and queues for
forward to the different controller.

1) Whenever request lands the dispatcher servlet consult

with HandlerMapping to call the appropriate controller.
(HandlerMapping- is a component which have the map of
URL and Controller which need to be invoked for that
particular request which lands with URL)

2) Then Dispatcher servlet has information about which
controller need to be invoked

3) Then that controller will be invoked
4) And Controller can request the model for some

information (about some DAO, Service layer or Data in
POJO, or data in database using business logic)

5) Once process has been done then dispatcher servlet get
the response then dispatcher servlet will get view resolver
to build the view and view resolver look out what view
has being configured it has been JSP, Velocity, XML etc.
based this configuration view has been prepared and the
information from model i.e. POJO it will be put on the
view and response will be send back to browser.

Spring MVC Request Flow:
1) Request lands to Request Controller
2) Capture the Request Locale i.e use for

internationalization i.e Read .properties files
3) Check for multipart-file(MIME type header or not)

upload data from distributed application
4) Consult with HandlerMapping for which Controller to

be invoked
5) And Then responsibility is given to the Handler Chain
6) This Handler Chain is responsible to be invoked some of

the interceptors that needs to be invoked before of a
controller and after the controller that means interceptors
are here like very too similar to the filters that help to
separate the pre-process logic and post-process logic.

7) After process of pre-process interceptor return to the
controller process the post-process logic.

8) Then return to the view resolver prepared the view based
on your configuration decide which configuration (JSP,
Velocity, PDF etc.) to be invoked.

9) After choosing view technology prepare the view and
return the response back to the client.

3.2.2 Sensor Web Service
RESTfulAPIProvider is a simple REST Provider-annotated
component @RESTful API Provider, provides defaults for
all the REST API methods to access the city information and
weather data. For example, the RestAPI Provider handles all
requests that start with a city name (like Bangalore)followed
by /weather. Any methods in the type that further qualify the
URI, like read climateData, are added to the root request
mapping. Thus, read weather information is, in effect,
mapped to /{cityId}/weather/{temperature}. Methods that
don’t specify a path just inherit the path mapped at the type
level. The add method responds to the URI specified at the
type level, but it only responds to HTTP requests with the
verb.These REST API methods return simple POJOs –
climate data (temp, humidity, pressure), etc., in all but the
add case. When an HTTP request comes in that specifies an
Accept header, Spring MVC loops through the configured

Paper ID: SUB158069 498

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

HttpMessageConverter until it finds one that can convert
from the POJO domain model types into the content-type
specified in the Accept header, if so configured. Spring Boot
automatically wires up an HttpMessageConverter that can
convert generic Object s to JSON, absent any more specific
converter. HttpMessageConverter s work in both directions:
incoming requests bodies are converted to Java objects, and
Java objects are converted into HTTP response bodies.

Use curl (or your browser) to see the JSON response from
http://localhost:8080/weather/bangalore Spring MVC will
convert the incoming HTTP request (containing, perhaps,
valid JSON) to a POJO using the appropriate
HttpMessageConverter.

3.2.3 Sensor application in CI Server
Sensor application provides a REST API accessible from any
networked client device for querying weather data. Climate
data Map is a cloud which provides REST API. Following
are the features
 Access current weather data for only location in Karnataka

state of India
 Current weather is frequently updated based on global

models and data from Cloud
 Data is available in JSON, XML, or HTML format

4. Results

4.1 Comparison of SOAP vs REST based on response
time of request

As mentioned in the paper [7], we used the algorithm to
check the response time of number of service request made
from SOAP and REST to fetch the climate data. Response
times for fetching all temperature, pressure, and humidity
data service requests from wired clients is plotted in the
below graph.

4.2 Snapshots

4.2.1 Main page displaying the details of the locations and
also presenting the different icons for the user (temperature
icon, pressure icon, humidity icon, complete climate icon).

4.2.2Table displaying the temperature data after climate user
selecting the city and clicking on temperature icon.

4.2.3 Table displaying the pressure temperature data after
climate user selecting the city and clicking on pressure icon.

4.2.4 Table displaying the humidity data after weather user
selecting the city and clicking on humidity icon.

4.2.5 Table displaying the weather data after weather user
selecting the city and clicking on complete climate data icon.

5. Conclusion

In this paper, we demonstrated the automation of sensor to
generate the climate data information from cloud using

Paper ID: SUB158069 499

http://localhost:8080/weather/bangalore

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 9, September 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Jenkins Continuous Integration server which is an effective
way to automate the hardware. Use of NoSQL Mongo
database to store the climate data where the exchange format
is based on JSON which is also exchange format with REST
and better solution to handle huge amount of climate data
effectively. We also designed and developed the RESTful
web service application based on Spring RESTful web
services where we exposed all the climate data information
as a RESTful API service to the consumer. Our proposed
solution achieves loose couplingand is platform independent
and interoperable with many other applications with the help
of layered architecture developed. We also made a
comparison of REST and SOAP based web services and
proved that REST is best suitable solution for Internet-scale
distributed data integration. And finally, the useof a Spring
MVC framework which is robust, flexible and provide a
clear distinction of model, view controller and is well
designedfor rapidly developing web applications.. Hence
from this paper we obtained various climatic condition such
as temperature, pressure, humidity etc. of various cities of
Karnataka as result.

Application is now only restricted to display Karnataka
major cities climate data information. It should be possible to
display the climate data of major cities of all countries
worldwide. Application can be extended to display the future
climate data (3 to 7 days) which needs extension with GUI
and storage of future climate data in Mongo DB .It can be
extended to display the icons of weather indicator (sunny,
cloudy, and rainy) in the GUI.

It can also include more climate data information like wind
speed, precipitation information. Project can be extended to
Android application to develop only the UIlayer and service
can be consumed with Sensor web services.Application can
also stores the past data for one month in the Mongo DB to
show the effectiveness of Mongo database.

References

[1] T. Kobialka,R. Buyya, et al, ”A Sensor Web

Middleware with StatefulServices for Heterogeneous
Sensor Networks”, 3rd International Conferenceon
Intelligent Sensors, Sensor Networks and Information,
ISSNIP2007, Melbourne, Qld,491-496 (2007) .

[2] P. Amirian, A. Basiri, A. Winstanley, ”Architecture for
implementing geospatial web services using SOA and
NoSQL solutions”, The ThirdInternational Conference
on Digital Information and CommunicationTechnology
and its Applications (DICTAP2013),161-169 (2013).

[3] J. Lawler, B. Hawel. “Service Oriented
Architecture:SOA strategy, Methodology and
Technology”, Taylor &Francis Group (2008)

[4] Brown. A., Johnston,S., Kelly, K, ”Using Service-
Oriented Architectureand Component- Based
Development to Build Web Service Applications.”, A
Rational Software White Paper,2002.

[5] Mahmoud. Q , ”The Road to Enterprise Application
Integration (EAI)”, Service-Oriented Architecture
(SOA) and Web Services publishedApril 2005,
Available:
http://www.oracle.com/technetwork/articles/javase/soa-
142870.html, [Accessed: 30 Apr 2014].

[6] J. Meng, S. Mei, and Z. Yan, ”Restful web services: A
solution fordistributed data integration”,Computational
Intelligence and SoftwareEngineering, 2009. CiSE
2009.International Conference on, pages 1 4,2009.

[7] Rozlog. M, ”REST and SOAP: When Should I Use Each
(or Both)”,01 Apr 2010 [Blog entry]
Available:http://www.infoq.com/articles/rest-soap-
when-to-use-each

[8] B. Upadhyaya, Ying Zou, Hua Xiao, J. Ng, and A. Lau,
” Migration ofSOAP-based Services to RESTful
Services”,Proc. 13th IEEE InternationalSymposium on
Web Systems Evolution (WSE), 2011, pp. 105114.

[9] H. He, Implementing REST Web Services: Best
Practices and Guidelines.11 AUG 2004.[Blog entry],
O’REILLY XML.com. Available
http://www.xml.com/pub/a/2004/08/11/rest.html

[10] “RESTful Web Services Development Checklist”
Internet Computing,IEEE Volume: 12 , Issue: 6. Nov.-
Dec. 2008.

[11] Apache WSRF: http://ws.apache.org/wsrf/
[12] Liang S, Coritoru, A., Tao, C. A Distributed Geo-Spatial

Infrastructure for Smart Sensor Webs, Journal of
Computers and Geosciences Vol.31, 2005.

[13] XML Beans: http://xmlbeans.apache.org/overview.html
[14] A. Alowisheq, D. E. Millard, T. Tiropanis, “ EXPRESS:

EXPressingREstful Semantic Services Using Domain
Ontologies.” International Semantic Web Conference
2009: 941-948

[15] A. K. Jain, M. N. Murty, P. J. Flynn; Data clustering: a
review; ACM Computing Surveys (CSUR) Volume 31
Issue 3, Sept. 1999

Paper ID: SUB158069 500

