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Abstract: Unmanned Aerial Vehicles navigation usually relies on precise localization services that are commonly acquired using a 

GPS system. However, the GPS signal can be lost or disturbed due to bad weather, the existence of obstacles or other constraints 

imposed by the environment. In this context, the Inertial Measurement Unit alone becomes ineffectual for providing reliable 

information about the vehicle position, because of the cumulative error on calculation iterations. Subsequently it produces mission 

errors, which could have disastrous consequences. This work presents as a contribution an alternative navigation strategy in the 

hovering framework, which makes the flying craft able to overcome the localization constraints at these environments. The proposed 

solution consists of a system that toggles from a GPS-based localization to hybrid localization. This hybrid approach is essentially based 

on two methods. The first will be based on deterministic method, justified by exact data that don’t overlap position estimation, as against 

the second will be based on a Bayesian method to calculate the relative UAV position by the combination of the IMU data and the 

results of image processing results using the SIF descriptor, which is most appropriate for our context. 
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1. Introduction 
 

UAVs autonomous and semi-autonomous navigations 

usually rely on a robust localization services, which can be 

an annoying constraint when moving in some poor 

environment, because correct localization is generally 

based on methods which overcome constraints related to 

this environment. 

 

However, with the development of more complex drone 

operating in uncontrolled and dynamic environments, the 

drone must continuously reconfigure itself to adapt to the 

external conditions and its objectives. Particularly, its 

control architecture must give a very powerful localization 

meeting the same requirements in order to ensure proper 

navigation without errors. 

 

2. UAV localization solution 
 

The location based visual characteristics is an ideal 

complement to the classic localization especially in urban 

areas [1]. In this context we propose a system allowing to 

the autonomous drone to locate permanently in this 

environment, by switching from a conventional signal of 

GPS to a signal coming from image processing block on 

order to build a geo-location map. Firstly we will propose a 

classification procedure for the various descriptors, 

according to the UAV flight modes, which meets the 

material constraints actually used. Afterwards ,according to 

scenario based on image processing we will develop a 

theoretical method, “correction-prediction”, for calculating 

the position by increments imposed by vision-based 

processing and correcting the cumulative errors in each 

iteration. 

 

2.1 Localization System 

 

Vehicle maneuvers, with obstacle avoidance, can be 

performed in a local coordinate system. but planned 

autonomous navigation requires absolute positioning using 

a global coordinate system. However, for certain drone 

applications, the two cases can be covered as those carried 

out in restricted environments and these marks can be 

classified according to a measurement criterion. A 

distinction can therefore be made between "incremental" 

and "absolute" measures. These types generally have 

different and often complementary characteristics which are 

frequently combined in order to obtain a robust localization 

system. First, we will describe the incremental solutions, 

then the absolute solutions and finally hybrid. In each 

method, we will briefly discuss the advantages and 

disadvantages of each method in our context, while a more 

in-depth study can be found on the article. [2]. 

 

 

 
Figure 1: Translation control 

 

The relative position is based on sensors (gyro, 

accelerometer ...) which provide an estimation of the 

incremental displacement of an object between two 

instants. In general, these approximations are very close to 
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each other, and so providing a good estimate. If the initial 

position and heading of the object are known, we can 

estimate the new position by knowing its movement. This 

sort of measures provides a good accuracy over short 

distances, but the accumulation of errors in the estimation 

of every movement causes a significant drift over long 

distances. In robotics, classic odometry is based on wheel 

rotation speed to compute the distance traveled and then 

change cape [3]. Despite some systematic errors (error on 

wheel spoke) or spot (wheel slip), this technique is reliable 

and simple. Movement of a mobile platform can also be 

estimated using one or more cameras. This technique, 

called optical odometry, performs matching identical points 

of interest between two consecutives images and rebuilt 

moving 3D camera [4],[5],[6]. The difference is that here 

we are working on a system with 6 degrees of freedom to 

estimate. But the computing times remain of an order of 

magnitude much greater than the classical odometry, which 

is an invalid technique for unstructured environments. 

 

The absolute localization consists in estimating the craft 

position relative to some landmarks, which are themselves 

referenced in a Global coordinate system. The advantage of 

this technique is its ability to avoid drifts and error 

accumulations. The most common way is to use a 

constellation of satellites positioned in known coordinates, 

such as satellites that are orbiting around the Earth and are 

emitting radio-frequency waves. On the other hand, ground 

receivers can measure the travel time of these signals in 

order to estimate the position of these receivers (Such 

technique requires responses from at least 4 satellites). Up 

to date, Global Navigation Satellite System (GNSS) can be 

considered as the best means of geo-positioning in a global 

navigation coordinate system such as earth surface. The 

main system is the NAVSTAR-GPS [9] (Commonly known 

as GPS Global Positioning System), which also has a 

Russian equivalent GLONASS. 

 

Because of the limited accuracy that a single method can 

achieve, it has been preferable to use hybrid solutions based 

on the both methods; relative measurements and absolute 

measurements. One possibility is to combine the two types 

of sensors through a coupling, such as GPS and odometer 

or GPS and an inertial unit. Other processes, such as map-

matching or Simultaneous Localization and Mapping 

(SLAM) are within the scope of hybrid solutions because 

they cannot be related to purely relative techniques or to 

purely absolute techniques. Because of its wide scope or 

applications fields, the coupling of a GPS sensor and an 

inertial unit has been strongly developed by the scientific 

community [12], [13]. The high accuracy of the inertial 

location on the short displacement and the approximate 

position provided by the GPS allow for mutual 

compensation, by using two methods of coupling between 

these two sensors: integration through loose coupling and 

integration through tight coupling. 

 

2.2 Visual command for hovering 

 

We consider in this work a hexa-rotor drone as a mobile 

machine to be studied.The dynamic modeling of this type 

of machine was presented in the article [17]. The yaw 

control is identical to that proposed for the tracking task; 

here we simply remember the circuit diagram in Figure 2 

which focuses on controlling the yaw parameter after 

performing the visual tracking algorithm. 
 

 

Figure 2: Lace control 

 

To control the UAV translational movement, the position 

regarded as a control input corresponding to object position 

cp =  xp , yp in the projected landmark Rp . This position 

cp  is obtained using an estimate of the rotation matrix R 

calculated from the inertial measurements through an 

onboard attitude option. The purpose of translation 

command consists in adjusting the position error defined by: 

εcp
= cp

∗ − cp  which designates the desired position of the 

object in the image plane. 

Vp
∗ = Kpεcp

Hierarchical command relation and Kp   

Proportional gain. 

 

This speed will be controlled in an internal control loop 

which plays a damping role necessary for the system 

stability, as the speed corrector determines the attitude 

control (pitch and roll) to be sent to the UAV. To take the 

system's internal disturbances into account, a proportional 

integral (PI) is used to regulate the speed, and a proportional 

controller regulates the position error. The speed error will 

be defined by:  

εvp
= Vp

∗ − Vp                           (1) 

Where the current error Vp  is obtained by a derivative filter 

at the positioncp . We will use a filter in the following form: 

Vp
(k+1)

=  1 − α Vp
 k + α

cp
(k +1)

−cp
(k )

δt
               (2) 

α determines the cutoff frequency. 

The attitude set-point (θ *, φ *) sent to the drone is in the 

form: 

 θ∗,∅∗ = kpv  kpεcp
− Vp + kIp  (kpεcp

− Vp)  (3) 

kpv  and kIp  are gains PI used by the speed regulator . 
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3. Vision-based localization approach  
 

In this section we present a new arbitration concept, which 

consists in finding the UAV position permanently, by 

collaborating between the satellite measurements and the 

information extracted from the observation as proprioceptive 

data. 

 

3.1 Arbitrator System 

 

The Arbitration system consists of two blocks: measurement 

control block and tilt block. The first must be able to assess 

the reliability of the GPS measurement [11] and the 

secondary makes it possible to pass from a determined 

method when there is no absolute measurement noise to a 

method based on the position calculation by Image flux 

processing, where the problem of perception becomes a 

Problem of statistical estimation or as a Markov process. 

 

 
Figure 3: Arbitrator system 

 

 Location in Deterministic setting 
The location in the deterministic framework consists of 

merging the GPS data and the IMU data to determine the 

position of the craft as shown in the following figure: 

 
Figure 4: Deterministic localization 

 

We note μkϵE the parameter vector which characterizes the 

UAV position of the device at the instant t, ϵ ⊂ ℝnμ  the 

space of parameters vectors. With nμ  is the number of 

parameters considered. 

 

The deterministic correction function consists in finding the 

new parameters μk+1 which minimize a distance in the 

measurements space B at the instant t + 1.We can, therefore, 

have a function that associates to each position of a 

measurement vector: 

g ∶ μ t ϵE → g μ t  ϵ ℬ 

It is assumed that the space E is provided with a distance 

(standard), so the problem can be written in the case of a 

Euclidean distance such as: 

 μ
k+1

= arg minμ g μ − g μ
k
  

2
 

Where g μk  is a reference measurement vector, which can 

be taken in the previous image. The distance to be 

minimized is also called objective function. 

 

 Localization in the Bayesian framework 

In case of loud noises or loss of the GPS signal, we'll 

consider the localization problem as a statistical estimation 

problem; we try to estimate the system state over time, 

according to a coupling, the sensors measures and visual 

observations to minimize the accumulated noise and keep a 

correct location. The state vector usually consists of the 

parameters of the position (2D or 3D) μk   but also it can 

contain other parameters (ie speed, acceleration ...).  

 

Suppose that we have a model f to evaluate the system 

stateXk , which makes it possible to predict the new state of 

the system Xk , from the previous state Xk−1. This model is 

an approximation of the system behavior, which has an 

uncertainty can be modeled by a noise nk .. We have already 

developed this method in the article [17], so we can 

summarize the method in the following diagram: 

 

 
 

If we consider a model with constant speed  vxk
vyk

 
T

 and a 

state vector Xk =  xkykzkvxk
vyk

vzk
 

T
, the state evolution 

can then be modeled by the following linear  state-equation 

(4):  

f Xk−1, nk = AXk−1 + nk (4) 

As for a time interval Δt:  
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It’s assumed that it has a measurement model or an 

observation model zk = h(Xk , bk ) / withbk  is the model 

noise.  

 

Unlike deterministic methods, the measurement information 

are noisy in statistical method, this noise will be taken into 

account in the estimation process. Therefore the measured 

state variables are considered as random variables. 

Estimating the system state Xk  from the known 

measurements z1:k = (z1,⋯ , zk)  up to time t will be 

equivalent to determining a probability functionp(zk|z1:k), 

which represents the probability density of the state zk  by 

knowing the measurements z1:k . 
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Therefore, we propose an optimal recursive solution to this 

problem of position calculus based on two steps: 

 Xk−1 Z1:k−1 
by   prediction
          p Xk  Z1:k−1  

p Xk  Z1:k−1 
by  correction  
          p Xk  Z1:k   

 

The prediction step uses the dynamic equation and the 

probability density p Xk−1 Z1:k−1 to obtain the a priori 

probability densityp Xk Z1:k−1  : 
   p Xk  Z1:k−1 =  p Xk  Xk−1 p Xk−1 Z1:k−1 dXk−1(5) 

the correction step then calculates the posterior probability 

density p Xk z1:k  from the likelihood function p zk Xk  

through recursive Bayes' formula (6): 

p Xk  Z1:k 

∝  p Zk Xk  p Xk Xk−1 p Xk−1 Z1:k−1 dXk−1 6  

The localization component calculates the position of the 

extracted features in the global reference frame. A last 

position, supplied by GPS, of the moving vehicle is 

necessary to alternate to a system referenced point to point 

using the processing of the combination {Image flow and 

laser odometer response}. 

 

 
Figure 5: Concept of location method 

 

The measuring principle on stage consists make an 

adjustment between a reference model of the object and 

measurements taken as the displacement progresses. 

 

3.1 The proposed hybrid localization approach 

 

In FIG. 6, we propose a system that allows an UAV to locate 

permanently in an uncertain environment, relying on the 

construction of a positioning system that switches from a 

conventional GPS signal to a signal comes from a visual 

processing block. In addition to the process of extracting 

features, the construction of the map relies on two additional 

processes for evaluating functionality and function 

compression. These methods allow generating an efficient 

map which offers high localization accuracy with less 

functionality; consequently it provides computational 

savings in memory and processing time [14], [15]. 

 

 
Figure 6:  Localization block in proposed architecture 

 

Moreover, the solution structure uses topological features 

and odometer measurements in order to combine them to 

build a functional map.  

 

The structure of the proposed solution uses three main 

modules: feature extraction, map generation and UAV 

localization. 

 

 

 

 

3.2 Feature detection method 

 

The first step is based on the analysis of image sequences 

captured by UAV to detect a reference object,and prepare 

the typical characteristics which must be defined and 

detected. For this reason, we try to present an effective 

detection method applied to a series of captured images, 

which makes it possible to keep the object characteristics 

invariant to scale, to rotation, to translation and not to affect 

the maximum possible lighting effects. 
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Firstly, the approach seeks the extraction of the 

characteristic points of the zone to be followed and it 

initializes the estimation support of the global movement. A 

second phase corresponds to the extraction of target 

characteristics. It has two parts: 

 The first part is the prediction of thepoint’s position to 

follow in the current image. Using an estimator of the 

overall motion. In [13] it is shown that a quadratic type 

model is the most suitable for writing the motion of a 2D 

scene. For reasons of computing time, we have used is 

the affine model. 

 Second part corresponds to the search of points using the 

prediction in order to refine the estimate of the target 

position. This step corresponds to the analysis of local 

motion in the image. The method is developed in Article 

[17] 

 

In [16] the SIFT (Scale-Invariant Features Transform) can 

detect and identify similar elements between different 

successive images. This is a method proposed by David G. 

Lowe which was based on improving the approach [17]. In 

[7] Lowe not only presented the SIFT but also discussed the 

key points pairing. SIFT can be invariant to image scaling, 

rotating and blurring which is a key advantage of object 

detection from drones. 

 

On review [8], Bay and Tuytelaars are proposed robust 

functions for image convolutions and the Fast-Hessian 

detector. The SIFT and SURF algorithms have different 

methods for detecting characteristic points. SIFT built an 

image pyramid and treats each layer with Gaussian on 

increasing sigma values before taking the difference. On the 

other hand, creates SURF sampling method is an easy 

process for the higher levels in the pyramid resulting 

images. The following results show that it works faster and 

produced good results. 

 

A. Comparison Results 

In order to justify the choice of the method used, we try to 

analyze the algorithms developed on Matlab that we have 

implicated in a raspberry environment 2, for satisfying the 

same conditions of an autonomous drone, In order to 

evaluate the performance of these methods according to the 

constraints that can be found in a real context, execution 

time (A), average accuracy, change of point of view 

(rotation) (B) (C) and illumination changes (D), 

consequently we come to construct the following 

comparative table 1, 
 

 
Figure 7: Test device 

 

 

 

Table 1: Comparison of methods 
Methods SIFT SURF Camshift* A-SIFT 

A 100ms 70 ms 95 ms 115ms 

B 85.98% 80,88% 83,34% 80.98% 

C 93,36% 94,78% 94,01% 93,36% 

D 97,59% 96,46% 94,78% 96,59% 

Time Good Best Good Common 

Scale Good Good Common Best 

Rotation Good Common Good Common 

Illumination Best Common Common Good 

Affine Good Good Good Good 

 

 
Figure 8: Roll simulation 

 

 
Figure 7: Translation simulation 

 

 
Figure 10: Detected Points-Features 
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Figure 11: Correspondence Points 

 

 
Figure 12: Response time test 

 

The SIFT key points are the extreme points of the Gaussian 

scale space differences. The SIFT algorithm computes the 

unstable extreme point and the exact position of the pixel 

using the Taylor expansion and the Hessian matrix. Also in 

the Gaussian image, the values and direction of each 

neighborhood pixel  is calculated to get the scale of 

independence key-point and direction. Since these key 

points are invariant to these conditions, so this method can 

achieve a better detection result. 

 

B. Coordinates calculation 

Below, we compare the coordinates calculated by a classical 

method based on the IMU alone and the method proposed in 

the previous section. 

 

 
Figure 3: Variation of X Through time 

 

 
Figure 8: Variation of Y Through time 

 

These results in Fig 14 and 15, show that, in closed places, 

the different improvements make tracking much less 

susceptible then in the classical version based on the IMU 

only. This is particularly noticeable for example in the 

variation of the estimated altitude on the displacement of a 

few centimeters. 

 

4. Conclusion 
 

We have just presented our proposed approach in the case of 

positioning the drone in closed areas through a visual system 

that can replace the GPS with the same performance,by 

confronting all these techniques with our context, in 

particular, the various constraints imposed. Our objective is 

to develop and validate this control architecture based on 

visual servoing in order to reinforce localization strategies, 

autonomous navigation and to have a good implementation 

of any object tracking tasks.The rest of our reasoning 

approach, which works on two aspects, UAV command and 

image Processing, seeks to have a greater integration of 

visual methods as an intelligence module compatible with 

any modular architecture.In order to allow a very strong 

imbrication between the image analysis and the control thus 

avoiding certain temporal constraints present in the other 

servo-control techniques. 

 

Abbreviation and Acronyms 
 

IMU: Inertial Measurement Unit 

GPS: Global Positioning System 

GNSS: Global Navigation Satellite System 

UAV: Unmanned Aerial Vehicle 

EKF: Extended Ealman Filter 

SIFT: Scale-Invariant Features Transform 

SURF: Speeded Up Robust Features 

Camshift*: adapted Continuously Adaptive Mean Shift  
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