
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Best Practices in Error Handling for Lightning Web

Components

Raja Patnaik

Email: raja.patnaik[at]gmail.com

Abstract: Error handling is a critical component of software development, particularly within Lightning Web Components. Ensuring

that applications can handle errors gracefully enhances user experience and contributes to the application's robustness. This document

delves into the best practices for effective error management in LWC, emphasizing the importance of incorporating error-handling

strategies from the design phase. It discusses the need for consistent error-handling mechanisms and outlines design patterns suitable for

web applications. Additionally, the document guides maintaining user experience continuity during errors and tips for debugging and

logging to create resilient applications. Proactive error handling is proposed to reduce the likelihood of unanticipated issues, thereby

crafting a more reliable and user-friendly application.[1][2][3]

Keywords: Error Handling, Lightning Web Components, Best Practices, User Experience, Design Patterns, Robustness, Debugging,

Logging Errors, Reusable Components

1. Introduction

In the rapidly evolving landscape of web development, the

robustness and reliability of applications are paramount.

Lightning Web Components, leveraging modern web

standards, provide a powerful platform for creating

maintainable and scalable applications. Critical to the success

of these applications is the ability to adeptly handle errors,

ensuring minimal disruption to the end-user experience.

This introduction to error handling in Lightning Web

Components sets the stage for exploring best practices that

can be integrated throughout the software development

lifecycle. We will investigate how proactive error

management can fortify applications against unexpected

issues from the initial design phase to deployment and

maintenance.

We will cover strategies to implement consistent error

handling across LWC components, employing design

patterns that handle errors gracefully and maintain interface

continuity. We will also address tips for debugging, logging

errors, and creating reusable components for error display. By

the end of this document, developers should be equipped with

a comprehensive toolkit for building more resilient Lightning

Web components, enhancing both the developer's workflow

and the user's interaction with the application.[3][4]

1) Understanding Error Handling in Lightning Web

Components

Error handling in Lightning Web Components is crucial to

building a reliable and user-friendly application. It involves

anticipating, catching, and responding to potential mishaps

that may occur during code execution. In LWC, errors can

arise from various sources, such as JavaScript exceptions,

failed API calls, resource loading errors, or issues during

component initialization.

Understanding error handling in LWC requires familiarity

with the frameworks' error boundaries, designed to catch and

handle errors within templates and lifecycle methods.

Additionally, LWC developers should know how to work

with the error objects returned by the Salesforce platform

when an error occurs server-side, for instance, with Lightning

Data Service or Apex calls.

Developers create resilient components by implementing

try/catch blocks, using error handling lifecycle hooks,

defining error boundaries, and delivering clear, actionable

feedback to the user when errors are displayed. By effectively

managing these errors, developers can enhance the overall

reliability and maintainability of their applications while

simultaneously improving user satisfaction.[1][5]

2) Incorporating Error Handling from the Design Phase

Incorporating error handling from the design phase is a

strategic approach that involves planning for potential errors

and defining how the system should respond before

implementation. It's essential to consider error handling early

in development to create robust and user-centric applications.

Design-phase error planning includes:

• Risk Assessment: Identifying parts of the application

most susceptible to errors and prioritizing them for robust

error handling mechanisms.

• Interface Design: Crafting user interfaces that can display

error messages clearly and non-disruptively.

• User Experience: Considering the impact of errors on the

user experience and designing ways to maintain

functionality where possible, even when some parts of the

application fail.

• Fallback Plans: Create backup plans, such as using

cached data or default states, to allow users to continue

working despite errors.

• Proactive Checks: Setting up validations and checks to

prevent errors before they occur, such as input validations

to prevent format or data errors.

• Testing Strategies: Outlining thorough testing strategies

to detect and manage errors, including unit tests,

integration tests, and user testing scenarios focused on

error handling.

• Documentation: Ensuring comprehensive documentation

about known errors, their potential impact, and how to

handle them, which aids in maintainability and future

development.

Paper ID: SR24529174416 DOI: https://dx.doi.org/10.21275/SR24529174416 1616

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

By considering error handling early in the design process,

developers can build applications that are functional and

resilient to unexpected issues, ensuring a smoother and more

reliable user experience.[1][5][6]

3) Error Handling Strategies for Robust Lightning Web

Components

To develop robust Lightning Web Components that can

handle errors effectively, it's essential to implement solid

error-handling strategies that catch potential issues and

provide helpful feedback to users. Here are some strategies

that can lead to a more resilient LWC:

• Graceful Error Handling with try-catch: Encapsulate

risky operations within try-catch blocks to handle

exceptions and avoid crashes. Display a user-friendly

message if an error occurs.

• Using Lightning Data Service with onerror: LDS has

built-in error handling with the `onerror` event handler.

Use it in components interacting with Salesforce data to

handle server-side errors gracefully.

• Handling Asynchronous Errors: When working with

Promises or async-await syntax, always include `.catch()`

blocks or try-catch around await calls to handle exceptions

from asynchronous code.

• Apex Exception Handling: When calling Apex methods

from LWC, use try-catch blocks in Apex to handle

exceptions and throw `AuraHandledException` to return

custom error messages that can be displayed to the user as

toast messages or in-line alerts.

• Error Boundary Components: Create error boundaries

in LWC to encapsulate parts of the component tree and

handle JavaScript errors by rendering fallback UIs instead

of crashing the entire component.

• Global Error Handlers: Implement window-level error

handlers using `window.onerror` or `window.

addEventListener('error', handler)` to capture unhandled

errors that propagate to the top and log them for analysis.

• Client-Side Validation: Before making server calls,

validate user inputs on the client side to prevent errors that

arise from submitting invalid data. This can reduce the

number of mistakes that need server-side handling.

• Detailed Logging: Use console logging or a more

sophisticated logging mechanism to track errors. This is

valuable for debugging and monitoring your application's

health post-deployment.

• Proactive Error Prevention: Beyond just handling

errors, try to anticipate where errors might occur and add

checks or validations to prevent these errors from

happening in the first place.

• User Instruction: In your error messages, aim to provide

steps or guidance for the user to correct the issue or

proceed with alternative actions if possible.

By applying these strategies, developers can create LWCs

that are not just functional but also resilient to errors and

capable of providing a robust experience for the user.[7][3][1][2]

4) Tips for Debugging and Logging Errors in Lightning

Web Components

Debugging and logging are integral to the development

process, especially when dealing with complex applications

like Lightning Web Components. Practical strategies for

debugging and logging can help identify and resolve errors

efficiently. Here are some tips for debugging and logging

errors in LWC:

• Use Developer Tools: Leverage browser developer tools

to debug your LWC. The console, network, and sources

tabs help inspect errors, view network requests, and step

through your JavaScript code.

• Systematic Console Logging: Employ console methods

like console.log (), console.error(), and console.warn() to

track the flow of your code and output error details.

However, remember to remove or minimize logging in

production to avoid exposing sensitive information.

• Error Handling Patterns: Adopt error handling patterns

like try-catch blocks and promise `.catch()` handlers to

capture exceptions and log meaningful error information.

• Custom Logger Service: Implement a custom logging

service that captures errors and logs them to a persistent

store or sends them to an external monitoring service for

analysis.

• Performance Monitoring: Use performance monitoring

tools to track how components behave in production,

which can provide insight into issues related to

performance bottlenecks or unexpected behavior.

• Unit Testing: Write unit tests for your components using

frameworks like Jest. Testing will help you identify errors

early on during the development cycle.

• Structured Error Objects:When handling errors, use

structured error objects that can include additional

context, which can help you during debugging.

• Reproducible Test Cases: Create reproducible test cases

for bugs you encounter. This will help you isolate the

cause and verify that the issue has been resolved once a

fix is implemented.

• Monitor Application Logs: Regularly monitor and

review application logs, especially after deploying new

changes. This can help catch any new errors that arise.

By implementing these tips, developers can enhance their

ability to debug and log errors, leading to higher application

stability and improved maintenance.[1][8][9]

5) Lightning web components Component Lifecycle

The component lifecycle in Lightning Web Components

refers to the sequence of phases a component goes through,

from creation to destruction. Understanding this lifecycle is

critical for error handling and for optimizing component

behavior. Below are the essential lifecycle hooks available in

LWC:

• constructor(): This is the first phase in the lifecycle where

the component instance is created. You can perform

initializations like setting up the initial state here, but you

should avoid any DOM access or making API calls at this

stage.

• connectedCallback(): This hook is invoked when the

component is inserted into the DOM. It is an excellent

place to perform setup tasks like adding event listeners or

fetching data.

• render(): This method is called after `connectedCallback`

and whenever a reactive property changes. It returns the

template to be rendered.

• renderedCallback(): This hook is called after the

component renders and re-renders. You can perform post-

render logic or DOM manipulations here.

Paper ID: SR24529174416 DOI: https://dx.doi.org/10.21275/SR24529174416 1617

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 10, October 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• disconnectedCallback(): This lifecycle hook is called

when the component is removed from the DOM. It helps

clean up tasks like removing event listeners or canceling

ongoing API calls.

• errorCallback(): This is a unique lifecycle hook for error

handling. If a child component throws an error, you can

use this hook in the parent component to handle the error

and decide how to continue. It allows you to implement

error boundary behavior in LWC.

The knowledge of these lifecycle hooks is essential for

developers to effectively initialize, update, and clean up

components' resources and to handle any errors or exceptions

that may occur during the component's life. Proper use of

these hooks can lead to optimized and error-free components.

Figure 1: LWC Lifecycle Flow [10]

6) Lightning Web Components Performance Best

Practices

Performance is a critical aspect of user experience in web

applications, and Lightning Web Components are no

exception. Here are some performance best practices for

LWC development:

• Efficient Data Fetching: Fetch data efficiently by

requesting only the data your component needs. Use the

@wire decorator with Lightning Data Service to leverage

client-side caching and avoid unnecessary server round

trips.

• Lazy Loading: Use dynamic imports to lazy load

JavaScript modules only when needed, reducing your

component's initial load time.

• Minimize DOM Operations: The DOM is slow to

manipulate, so you should minimize direct DOM

operations. Let the LWC framework update the DOM for

you via reactive properties.

• Avoid Unnecessary Rerenders: Only make reactive the

properties that need to be reactive. Avoid unnecessary

rerenders by limiting changes to reactive properties.

• Use Lightning Base Components: Utilize the Lightning

base components provided by Salesforce, as they are

built for performance and provide standard functionality.

• Cache Static Resources: When possible, Cache static

resources in the browser to reduce load times on

subsequent visits.

• Optimized Images and Media: Compress images and

media files and use modern formats to improve load time.

• Minimize Third-party Libraries: Evaluate the need for

third-party libraries, as they add overhead. If you must

use them, load them asynchronously or use dynamic

imports.

• Use Platform Events for Real-time Data: To handle

real-time data, consider using Platform Events to avoid

constantly polling the server for updates.

• Monitor with Performance Tools: Use browser

developer and Salesforce-specific performance

monitoring tools to identify and optimize bottlenecks.

• Server-Side Optimizations: Ensure your Apex code is

optimized, make efficient SOQL queries, and bulkify

your code to handle large data sets efficiently.

By implementing these best practices, you can improve the

performance of your Lightning Web Components. This will

lead to a better user experience, higher user satisfaction, and

more efficient use of resources.[1]

2. Conclusion

In conclusion, applying best practices for performance in

Lightning Web Components is essential for delivering a high-

quality user experience. Key strategies include:

• Efficient data fetching and leveraging client-side caching

• Utilizing lazy loading for JavaScript modules

• Minimizing DOM operations and rerenders

• Using Salesforce's Lightning base components

• Caching static resources in the browser

• Optimizing images and media files

• Being judicious with third-party libraries

• Utilizing Platform Events for real-time updates

• Monitoring performance with specialized tools

• Optimizing server-side Apex code

By adhering to these recommendations, developers can build

Lightning Web Components that not only meet the

functionality requirements but do so with optimal

performance, thus ensuring user satisfaction and aligning

with best practices in web development. This focus on

performance helps to create sustainable and efficient

applications that scale well and deliver consistent, reliable

experiences to end-users.

References

[1] "Error Handling Best Practices for Lightning and

Apex". 2017

[2] "Handle Server Errors". 2020

[3] "Error Handling Best Practices for Lightning Web

Components". 2020

[4] C. Hart, "How To Build Resilient JavaScript UIs". 2021

[5] "Front-End Error Handling". 2014

[6] "Chapter 10. Errors, Good Programming Practices, and

Debugging — Python Numerical Methods". 2020

[7] A. Longshaw and E. Woods, "Patterns for Generation,

Handling and Management of Errors". 2004

[8] W. Weimer and G. C. Necula, "Finding and preventing

run-time error handling mistakes". 2004

[9] “LWC - https://lwc.dev/guide/debug” 2021

[10] “LWC Lifecycle flow - 2020

https://lwc.dev/guide/lifecycle#lifecycle-flow”

Paper ID: SR24529174416 DOI: https://dx.doi.org/10.21275/SR24529174416 1618

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://lwc.dev/guide/debug

