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The Beal's Conjecture and Fermat's Last Theorem 
 

Adriko Bosco 

 

Abstract: A
×

+ By=Cz, where A, B, C, x, y and z are non-zero integers with x, y, z≥3, then A, B and C have a common prime factor 

equivalently. The equation A
×

+By=Cz has no solutions in non- zero integers and pairwise coprime integers A, B, C if x, y, z≥3.The 

conjecture was formulated in 1993 by Andrew Beal. If proved, $1, 000, 000 prize award. The conjecture was formulated in 1993 by Andrew 

Beal a banker and amateur Mathematician, while investigating generalization of Fermat's Last theorem. Since 1997, Beal has offered a 

monetary prize for a peer-reviewed proof of this conjecture or a counter example. 
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1. Proof 
 

From Beal's equation A
x
 + B

y 
= C

Z
, where x, y, z ≥3. 

Let x = y = z = n.      (1)  

=> A  n + B  n = C  n       (2),  

where n = 3 (minimum power) according to Beal. 

 

[1] Let A = 3, B = 6, C = 9 {pairwise coprime integers}, n = 3 (a constant index). 

3, 6 and 9 have a common prime factor 3. 

From A  n + B  n = C  n

=> 3³ + 6³ = 9³ 

27 + 216 = 729 

But 243 ≠729. 

Ratio, r of RHS: LHS = 729/243 = 3. 

Thus 3 (243) = 729. 

=> r = C /n (A  n + B )n     (3). 

Or r = C
z
/ (A

x 
+ B

y
)      (4),  

The general form of the ratio. 

=> r (243) = 729 

Hence r (27 + 217) = 729 

Thus r (3³ + 6³) = 9³ 

=> r (A  n + B )n = C  n       (5) 

:. n (A  n + B )n = Cⁿ        (6) 

where x = y = z = r = n. 

 

Check  

From r (A
× 

+ B
y
) = C

z
 

=> 3 (3³ + 6³) = 9³ 

3 (27 + 216) = 729 

3 (243) = 729 

729 = 729. 

From (5), r (A  n + B  n ) = C  n

r (A
x 
+ B

y 
) = C

z
     (7), where x ≠ y ≠ z ≠ r ≠ n. 

=> A
×

+ B
y 
= (C

z 
)/r       (8) 

Thus A
× 

= (C
z 
)/r - B

y.      (
9) 

:. A = 
x√[ (C

z 
)/r - B

y 
].    (10) 

 

Similarly, from (8),  

B
y 
= (C

z
)/r - A

x
.         (11) 

:. B = 
y√[ (C

z 
)/r - A

x 
].    (12) 

From (7),  

C = 
z√[r (A

x 
+ B

y 
) ].     (13) 

 

Note: 

1) The general form of r (A  n + B )n = C  n is written as r (A
x 
+ B

y 
) = C

z
  or  A

x 
+ B

y 
= (C

z 
)/r. This is Boscomplex Theorem. 

2) Equations (10), (11) And (13) are the general solutions to A
x 

+ B
y 
= C

z
. 

3) Therefore, Boscomplex Theorem states that r ( A
x 
+ B

y 
) = C

z
, if A, B, C, x, y, and z are non-zero integers with x, y, z ≥3, 
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then A, B and C have a common prime factor equivalently. 

4) C > A, and B. 

:. From n ( A  n + B  n ) = C  n

=>  A  n + B  n = C /nn 

A  n = (C )n/n - B  n            (14) 

:. A = ⁿ√ ( C /nn - B )n        (15) 

=> A = ³√ (C³/3 - B³)        (16) 

Similarly, B = ⁿ√ (C /nn - A )n        (17) 

=> B = ³√ (C³/3 - A³)        (18) 

And C = ⁿ√n (A  n + B )n        (19) 

=> C = ³√3 (A³ + B³)        (20) 

Therefore, equations (15), (17) and (19) are the solutions to the equation A
× 

+ B
y 
= C

z
, where x = y = z = r = n. 

 

2. Worked Examples 
 

For example; 

 

[1] (i) To find B value in the above example when A = 3, C = 9, n = 3; given A
x 
+ B

y 
= C

z
. 

 

Solution 

Given; A = 3, C = 9, n = 3, and B = ? 

From Boscomplex Theorem, r (A
x 
+ B

y 
) = C

z 

<=> n (A  n + B )n = C  n ; x = y = z = r = n. 

=> B = ⁿ√ (C /nn - A )n 

B = ³√ (9³/3 - 3³) , n = 3 

= ³√ (729/3 - 27) 

B = ³√216 = 6 as above. 

 

ii) To find the value of A in the above example when B = 6, C = 9, n = 3. 

Solution 

From A = ⁿ√ (C /nn - B )n 

= ³√ (9³/3 - 6³) 

= ³√ (729/3 - 216) = ³√243 - 216 

A = ³√27 = 3 as above. 

 

(iii) To find C value in the above example when A = 3, B = 6, and n = 3. 

 

Solution 

From Boscomplex theorem,  

r (A
x 
+ B

y
) = C

z
 

<=> n (A  n + B )n = C  n

=> C = ⁿ√[n (A  n + B )n] 

= ³√[ 3 (3³ + 6³)] 

C = ³√3 (27 + 216) = ³√729 = 9 as above. 

 

[2] Let A = 5,  B = 10,  C = 15,  n = 3. 

From (2), A  n + B  n = C  n

=> 5³ + 10³ = 15³; where 5, 10 and 15 have coprime factor 5. 

=> 53 + 10³ = 15³ 

125 + 1, 000 = 3375 

But 1125 ≠ 3375 

 

Hence ratio, r = 3375/1125 = 3, it holds ( i.e r = n = 3 ). 

=> r (1125) = 3375 

 

Hence r (125 + 1, 000) = 3375 

r (5³ + 10³) = 15³ 

=> r (5  n + 10 )n = 15  n  <=> 3 (5³ + 10³) = 15³ 

But r = n.   

:. 3375 = 3375 
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Hence n (5  n + 10 )n = 15 .n 

:. n (A  n + B )n = C  n as in [1] above. 

 

Therefore, the values of A, B and C are calculated as in example 1 (i), (ii) and (iii) above. 

 

i.e.; From A = ⁿ√ (C /nn - B )n,  

B = ⁿ√ (C /nn - A  n ),  C = ⁿ√{n ( A  n + B )n} 

From A= ⁿ√ (C /nn - B )n 

A = ³√15³/3 - 10³ 

A = 5 as above. 

From B = ⁿ√ (C /nn - A )n 

B = ³√15³/3 - 5³   

B = 10 as above  

From C = ⁿ√{n (A  n + B )n}    

C = ³√3 (5³ + 10³)       

C = 15 as above. 

 

[3] Let A = 10, B = 20, C = 30 

From A  n + B  n = C  n

=> 10³ + 20³ = 30³, coprime factor is 5. 

1, 000 + 8, 000 = 27, 000 

9, 000 ≠ 27, 000 

:. r = 27, 000/9000 = 3, it holds (i.e r = n = 3) 

=> r (9, 000) = 27, 000 

r (1, 000 + 8000) = 2, 7000 

r (10³ + 20³) = 30³ 

r = n,  3 = n 

=> n (10  n + 20  n ) = 30  n

:. n (A  n + B )n = C ,n it holds. 

:. A = ⁿ√ (C /nn - B )n, B = ⁿ√ (C /nn - A )n, and C = ⁿ√n (A  n + B )n are the solutions to the equation A
x 
+ B

y 
= C

z
 when x = y = z 

= n. 

=> A = ³√ (30³/3 - 20³)   B = ³√ (30³/3 - 10³)   C = ³√3 (10³ + 20³) 

A = 10 as above,    B = 20 as above,    C = 30 as above. 

[4] Let A = 6,  B = 12,  C = 18,  n = 3. 

From A
x 
+ B

y 
= C

z
,  

But r = C
z
/ (A

x 
+ B

y
) 

         18³ 

=> r = ------------- = 5832/ (216 + 1728) = 5832/1944 

      6³ + 12³ 

r = 3 

:. r = n = 3 

:. the value of A = 6 is given by A = 
n√ (C

n
/n  - B

n
) 

A = ³√ (18³/3 - 12³) = ³√ (5832/3 - 1728) = 1944 - 1728 = ³√216 = 6 as above. 

Similarly B = 
n√ (C

n
/n  - A

n 
),  

=> B = ³√ (5832/3 - 6³) = ³√ (5832/3 - 216) = 1944 - 216 = ³√1728 = 12 as above. 

From C = 
n√[n (A

n 
+ B

n
)] 

=> C = ³√3 (6³ + 12³) = ³√3 ( 216 + 1728) = ³√[3 (1944)] = ³√5832 = 18 as above. 

 

B. WHEN r ≠ n = 3. 

[5] Let A = 6,  B = 9,  C = 12,  n = 3. 

From A  n + B  n = C ,n x = y = z = n,  

6³ + 9³ = 12³, coprime factor = 3. 

216 + 729 = 1728 

945 ≠ 1728 

                  _____ 

r = 1728/945 = 1.8285714. It doesn't hold (i.e. r ≠ n = 3) 

NB: If r ≠ n = 3, express the ratio as a fraction since it's a rational number. 

=> ratio, r = 1728/945 = 64/35 

<=> 64/35 = C /nA  n + B  n  

=> r = C /nA  n + B  n = 64/35. 
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:. r < n. 

From A
x 
+ B

y 
= C

z
  <=> A  n + B  n = C  n

=> r (A
x 
+ B

y
) = C

z
  <=> r (A  n + B )n = C  n   (21) 

:. A  n + B  n = (C )n/r                       (22) 

Hence A  n = (C )n/r - B  n                                  (23) 

:. A = ⁿ√{ (C )n/r - B }n                    (24) 

OR  A = ⁿ√{C /n[C /n (A  n + B )n] - B }n 

:. A = ⁿ√A  n   (25) 

Similarly, from equation (22), A  n + B  n = (C )n/r 

B = ⁿ√[ (C )n/r - A ]n.                                    (26) 

OR  B = ⁿ√{C /n[C /n (A  n + B )n] - A }n 

B = ⁿ√ (A  n + B  n - A )n 

:.B = ⁿ√B .n                                            (27) 

Also from equation (4), r (A  n + B )n = C  n

C = ⁿ√r (A  n + B )n 

Hence C = ⁿ√[c /n (A  n + B )n] (A  n + B )n 

:. C = ⁿ√C .n                                            (28) 

 

NB: Equations (24) - (28) are used to solve A
x 
+ B

y 
= C

z
, where x = y = z = n, r ≠ n = 3, without replacing r with n or 3 

(the minimum index or power). 

Therefore, the numbers A = 6, B = 9, C = 12 can be calculated by substituting one another in the formulae above 

respectively. 

=> A = ⁿ√ (C )n/r - B  n

:. A = ³√12³/ ( 64/35) - 9³ = 6 as above. 

OR  A = ⁿ√A  n = ³√6³ = ³√216 

:. A = 6 as above. 

B = ⁿ√[ (C )n/r - A ]n = ³√[12³/ (64/35) - 6³] = 9 as above. 

OR  B = ⁿ√B  n = ³√9³ 

:. B = 9 as before. 

C = ⁿ√r (Aⁿ+B )n = ³√64/35 (6³ + 9³) = 12 as above. 

OR  C = ⁿ√C  n = ³√12³ 

:. C = 12 as before. 

 

[6] Let A = 15, B = 45, C = 90, n = 3. 

From A  n + B  n = C  n

15³ + 45³ = 90³ 

3, 375 + 91, 125 = 729, 000 

94, 500 ≠ 729, 000 

ratio, r = 729, 000/94, 500 

r = 54/7 

=> r = C
z
/ (A

x 
+ B

y
) = 729000/94500 = 54/7.  

<=> r = C /n (A  n + B )n = 729000/94500 = 54/7. 

 

Example 

 

(i) To find the value of A above when B = 45, C = 90, n = 3. 

Solution: 

From A = ⁿ√ (C /nr - B )n 

A = ³√[ (90³)/45/7 - 45³] 

:. A = 15 as given above. 

 

(ii) To find the value of B above when A = 15, C = 90, n = 3. 

From B = ⁿ√ (C )n/r - A  n = ³√{[90³/ (54/7)] - 15³} 

B = 45 as above. 

 (iii)To find the value of C above when A = 15, B = 45, n = 3. 

Solution: 

From C = ⁿ√r (A  n + B )n 

C = ³√{54/7 (15³ + 45³)} 

C = ³√{54/7 (3375 + 91125)} = 90 as above. 
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C. WHEN x = y = z = n > 3. 

Let n = 4, A = 3, B = 6, C = 9. 

From A
x 
+ B

y 
= C

z
 

=> A  n + B  n = C  n

Thus 3⁴ + 6⁴ = 9⁴ ; x = y = z = n = 4 

81 + 1296 = 6561 

But 1377 ≠ 6561 

:. ratio, r = C
z
/A

x 
+ B

y  

= C /n (A  n + B )n 

=> r = 6561/1377 

:. r = 81/17. 

From r (A
x
 + B

y
) = C

z
 

=> r (A  n + B )n = C  n

Hence A  n + B  n = C /nr 

Thus A  n = (C )n/r - B  n

:. A = ⁿ√{ (C )n/r - B }n 

Similarly, B  n = (C )n/r - A  n

:. B = ⁿ√{ (C )n/n - A }n 

And C  n = r (A  n + B )n,  

:. C = ⁿ√r (A  n + B )n 

 

Therefore, the solutions to the equation A
× 

+ B
y 
= C

z
 are; 

A = ⁿ√{ (C )n/r - B }n, B = ⁿ√[ (C )n/r - A ]n, and C = ⁿ√r (A  n + B )n, where x = y = z = > 3. 

:. The values of A = 3, B = 6, and C = 9 are calculated as below. 

 

(i) To find A value 3 above when b = 6 and c = 9. 

From A = ⁿ√[ (C )n/r - B ]n 

A = ⁴√[ (9⁴/ (81/17) - 6⁴] 

= ⁴√[6561 (81/17) - (1296)] 

:. A = 3 as above. 

 

(ii) To find B value 6 above when A = 3, C = 9, n = 4 

From B = ⁿ√[ (C /nr) - A ]n = ⁴√[9⁴/ (81/17) - 3⁴] = 6 as above. 

 

(iii) To find C value 9 above when A = 3, B = 6, n = 4. 

From C= ⁿ√r (A  n + B )n = ⁴√81/17 (3⁴ + 6⁴) = 9 as above. 

 

(b) Let x = y = z = n = 5; A = 3, B = 6, C = 9. 

From A
x 
+ B

y 
= C

z
 

=> 3
5
 + 6

5 
= 9

5
 

243 + 7776 = 59049 

8019 ≠ 59049 

From ratio, r of C :n A  n + B  n = C /nA  n + B  n

r = 59049/8019 = 81/11 

:. r = 81/11 

From r (A  n + B )n = C  n

=> A  n + B  n = (C )n/r 

:. the solutions to the equation A
x 
+ B

y 
= C

z
 

<=> A  n + B  n = C  n where x = y = z = n, n >3, r ≠ n, are; 

A = ⁿ√[ (C )n/r - B ]n, B = ⁿ√[ (C )n/r - A ]n, C = ⁿ√r (A  n + B )n. 

 

Prove; 

From A = ⁿ√[C )n/r - B ]n, given; B = 6, C = 9, n = 5 

=> A = 
5√[9

5
 (81/11) - 6

5
] 

A = 
5√59049 (81/11) - 7776 = 3 

:. A = 3 as above. 

B = ⁿ√[C )n/r - A ,n A = 3, C = 9, n = 5. 

=> B = 
5√[9

5
 (81/11) - 3

5 

= 
5√[59049 (81/11) - 243] 

:. B = 6 as above. 
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C = ⁿ√r (A  n + B )n 

= 81/11 (3
5 
+ 6

5
) 

C = 
5√[81/11 (243 + 7776)]  

= 
5√81/11 (819) = 9 

:. C = 9 as above. 

  

D. WHEN x≠y≠z. 

(b) Let x = 3, y = 4 and z = 5, given A = 3, B = 6 and C = 9. 

From A
x 
+ B

y 
= C

z
,  

3³ + 6⁴ = 9
5
 

27 + 1296 = 59049 

1323 ≠ 59049 

From ratio, r = C
z
/A

x 
+ B

y
 

=> r = 59049/1323 = 2187/49. 

:. r = 2187/49 

From A
x 
+ B

y 
= C

z
,  

=> r (A
x 
+ B

y
) = C

z
 

 

Hence the above values of A, B and C are calculated from (10), (12) and (13) respectively as below. i.e; 

A = 
×
√[ (C

z
)/r - B

y
] 

= ³√[9
5
/ (2187/49) - 6⁴] 

:. A = 3 as above. 

Similarly, B = 
y√[ (C

z
)/r - A

x
] 

= ⁴√[9
5
/ (2187/49) - 3³] 

:. B = 6 as above. 

From r (A
x 
+ B

y
) = C

z
,  

=> C = 
z√r (A

x 
+ B

y
) 

:. C = 
5√[2187/49 (3³ + 6⁴)] 

= 
5√2187/49 (27 + 1296) 

:. C = 9 as above. 

 

(b) Let A = 15, B = 30, C = 60; x = 4, y = 3, z = 6. 

From r (A
x 
+ B

y
) = C

z 

ratio, r = C
z
/A

x 
+ B

y
 

=>r = 60
6
/ (15⁴+30³)  

=46, 656, 000, 000/50, 625 + 27, 000 

= 46, 656, 000, 000/77, 625 

= 13, 824, 000/23  

= 601043.47826087 

 

NB: substitute r value as a fraction for accuracy. 

:. r = 13, 824, 000/23. 

 

Hence the values of A, B and C above are calculated as below. 

 

From A = 
x√ (C

z
)/r - B

y
 

=⁴√60
6
/ (13824000/23) - 30³ 

=⁴√46, 656, 000, 000×23/13, 824, 000 - 27, 000 

= ⁴√77625 - 27, 000 = ⁴√50, 625 = 15 

:. A = 15 as above. 

Similarly, B = 
y√ (C

z
)/r - A

x
 

= ³√60
6
/ (13, 824, 000)/23-15⁴ 

= ³√77625 - 50, 625 = ³√27, 000 = 30 

:. B = 30 as above. 

From C = 
z√r (A

x 
+ B

y
),  

= 
6√13, 824, 000/23 (15⁴ + 30³) 

= 
6√13, 824, 000/23 (50, 625 + 27, 000) 

= 
6√46, 656, 000, 000 = 60 

:. C = 60 as above. 
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E. FOR x = y = z = ∞ (INFINITY). 

From A
x 
+ B

y 
= C

z
,  

=> A
∞ 

+ B
∞ 

= C
∞

 

Thus the ratio, r = C
z
/ (A

x 
+ B

y
) 

= C
∞

/ (A
∞

+ B
∞

) 

= ∞/ (∞+∞) = ∞/2∞ = 1/2 

:. r = 1/2 or 0.5. 

 

NB: to find r, use 2∞ = ∞ according to the formula for finding r, not the reduced form ∞ = ∞, since r < C
z
. 

:. The solutions to the equation A
x
 + B

y 
= C

z
 are given by; 

 

From (10), A = 
x√[ (C

z
)/r - B

y
] 

=> A=
∞
√[ (C

∞
)/r - B

∞
],  

A = 
∞
√ (∞)1/2 - ∞ = 

∞
√ (2∞ - ∞) = 

∞
√∞ = ∞. 

:. A = ∞, root of infinity = ∞. 

 

Similarly, from (12),  

B = 
y√[ (C

z
)/r - A

x
] 

=> B = 
∞
√[ (C

∞
)/r - A

∞
] 

= 
∞
√∞/ (1/2) - ∞ 

= 
∞
√2∞ - ∞ = 

∞
√∞ = ∞ 

:. B = ∞. 

Similarly, from (13),  

r (A
x 
+ B

y
) = C

z
 

=> C = 
z√r (A

x 
+ B

y
) 

= 
∞
√[1/2 (A

∞ 
+ B

∞
)] 

= 
∞
√1/2 (∞ + ∞) 

= 
∞
√[1/2 (2∞)] = 

∞
√∞ = ∞ 

:. C = ∞ 

:. A = ∞, B = ∞, and C = ∞, are the general solutions to the equation A
x 
+ By

 
= C

z
, where x = y = z = ∞. 

 

3. Conclusion 
 

1) Equation A
x 
+ B

y 
= C

z
 has solutions A = 

x√[ (C
z
)/r - B

y
], B = 

y√[ (C
z
)/r - A

x
] and C = 

z√r (A
x 
+ B

y
) in non-zero integers and 

pairwise prime integers A, B and C if x, y, z ≥3. Hence disproving the Beal's conjecture. 

2) (a) It should be noted that the equation n (Aⁿ+ B )n = C  n is obtained from the general equation r (A
x 
+ B

y
) = C

z
 when x = y = 

z = r = n, and is used when n = 3 (minimum power). 

 (b) If r≠n, the general equation r (A
x 
+ B

y
) = C

z
 must be used. The value of r should be expressed as a fraction for accuracy 

if it's not a whole number. 

(c) The value of C must be greater than the values of A and B. That is, it holds if C>A, and B. 

3) It's noted that this approach to Beal's conjecture acts as a general approach to solve any set of equations of this kind if the 

condition in 2 (c) above is full-filled. Hence it is a proof to Fermat's Last conjecture. Therefore, this approach solves 

both the Beal's conjecture and the Fermat's Last Theory. 
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