
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

From Concept to Production: Crafting Payment

Solutions with Java and Spring Boot

Pavan Kumar Joshi

Fiserv, USA

Email: pa1n12[at]gmail.com

Abstract: The payment industry has undergone successful innovation in the last decade due to technological change and other drivers

that require efficiency in payment systems. Some of the most effective tools currently being used to create such systems include Java and

Spring Boot, which are powerful frameworks allowing developers to create superb payment solutions that can undergo intense stress

without compromising on flexibility. This work introduces some aspects of the complete lifecycle of payment systems developed with Java

and Spring Boot, including the considerations from the conceptual environment to large - scale production, including issues of scalability,

security, transactional processes, and interfaces with third parties. Payment systems in the twenty - first century are conducted at a very

large scale and thus require the highest optimization and Java because of its feature of platform independence and Spring Boot because

of its features of building microservices are best suited for building these systems. Some fundamental design issues deliberated comprise

database control, how transactions are dealt with at the same time, protection of the payment modes, and sanction of financial laws. Since

Java has various libraries and Spring Boot has numerous built - in facilities, developers can save much time and release solutions into

markets securely. However, it should be noted that core concerns include the problem of transactional integrity and protection against

different types of threats, including fraud or access of unauthorized users. This paper outlines key problems and provides a detailed step

- by - step guide to the methodology for constructing payment systems, from requirement analysis to testing and implementation. Using

examples of real companies, we show how the described technologies are used in practice and in which industries – e - commerce, digital

wallets, and subscription services. At last, the paper considers further developments of the topic: the application of AI to improve fraud

prevention and blockchain to increase transparency of payments; and the constant advancements in microservices. The conclusion

highlights the idea that the payment system is a continuous process through the help of tools Java and Spring Boot, as these tools would

remain important in dealing with new challenges that crop up in the industry.

Keywords: Java, Spring Boot, Payment Solutions, Microservices, Transaction Management, Scalability

1. Introduction

The payment system has emerged as a fundamental

component of the world economy for the purchase of goods

trading and services through an advanced technological tool

that has made a drastic change in the processing of the

payment system. The transition from cash - based payment

systems to electronic mobile and online forms of payment

requires a strong platform that can support a high volume of

secure transactions. [1 - 3] Java, which is reputed for its

stability, and Spring Boot, which is developed for building

microservices architecture with fewer codes, have become

favorite tools for payment solutions.

1.1. Importance of Java and Spring Boot in Payment

Solutions

Java and Spring Boot have become among the most well -

established technologies in developing current payment

solutions because of their natural benefits in terms of

scalability, security, and flexibility.

Figure 1: Importance of Java and Spring Boot in Payment

Solutions

• Scalability and Performance: Java has an impressive fit

for multi - threading and concurrency, which is very

important for huge amounts of payments, also, Java can

work with thousands of transactions per second. Garbage

collections occur because of Java optimizations during

high - loaded conditions in memory consumption. Finally,

Spring Boot promotes scalability using microservices

techniques, which allows one part to operate as an

individual unit while being designed for load balancing

and to operate asynchronously.

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1590

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:Pa1n12@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Security and Data Protection: Java’s strength regarding

security lets one advance encryption using the Java

Cryptography Extension (JCE). OAuth2, JWT

authentication, and multi - factor authentication MFA are

easily integrated into the Spring Boot application

combined with Spring Security to offer multiple layers of

security to payment transactions. Both technologies

provide compliance with standards as regards PCI - DSS

for handling sensitive financial information.

• Ease of Integration with Third - Party Payment

Processors: Java has a massive number of APIs, and

Spring Boot’s REST - based structure makes integration

with third - party payment processors like PayPal and

Stripe much easier. Spring Boot makes the flow of API

communication to the payment gateway conspicuous and

realistic to manage the transaction. Its flexibility improves

the number of accepted payments, ensuring an excellent

user experience across all the payment processes.

• Rapid Development and Deployment: Spring Boot

provides default project templates, built - in servers such

as Tomcat server, and dependencies management which

help to start the application easily. Java has a very large

supporting toolset that improves functionality while

shortening development time. Combined, they allow for

faster development, and this makes it easier for businesses

to launch payment solutions to the market quickly.

However, at the same time, these must be secure and

performed.

• Maintainability and Flexibility: Java’s object - oriented

architecture allows for modular and reusable coding

patterns, thus making it easy to maintain payment

applications. The microservices architectural nature of

Spring Boot means that the components contained within

it can be altered or even swapped out without having to

change the overall system. Since each server has

independent modules, it is easy to introduce new features

while also having the most minor interruptions through

CI/CD pipelines.

• Enterprise - Grade Reliability: Java is placed in such

confidence for accomplishing highly sensitive financial

applications because of its reliability in dealing with

sensitive operations. To this, Spring Boot is designed to

offer enterprise features from form Spring Actuator, which

is a tool for spring applications that offer real - time health

checkups of the system. This also means that problems are

identified at an early stage, making Java and Spring Boot

suitable for secure, dependable payment systems.

• Community Support and Ecosystem: It has also

commanded steady support from the community for

decades, resulting in large libraries of sources, documents,

and socket libraries. Additionally, Spring Boot also enjoys

updates from VMware (formerly Pivotal), making sure

that security issues and new improvements are provided

regularly. This vast ecosystem minimizes obstacles to

development and offers tried - and - true, dependable

methods to address problems of the payment system.

1.2. The Role of Microservices in Payment Systems

The architecture that brought microservices into the payments

system has, in recent years, been deemed as critical as it has

revolutionized how payment solutions are built and deployed.

Unlike the one where all services are integrated into a single

package, it is a decomposition of a payment system where

functionalities are developed separately. Most of them tackle

a certain role on the website such as transaction services, user

verification, security, or payment gateway.

Figure 2: The Role of Microservices in Payment Systems

• Scalability and Resource Optimization: Microservices

enable payment systems to scale the limited services, like

transaction processing depending on the workload,

proficiently. During peak traffic, only essential services

grow, meaning that large capital investments are not

needed, and effectiveness is increased. On the contrary,

this dynamic scalability is a perfect scalper since it

enhances operation during Black Friday without

necessarily apprizing up the net.

• Fault Isolation and Enhanced Reliability: As for

microservices, the services run distinctively, and that

means that if one service is compromised, the other areas

of the system will be unaffected. The above fault isolation

enhances system reliability and eliminates the occurrence

of single points of failure often found in monolithic

designs. Further, it is possible to perform rolling updates

that enable the update of single services without a need to

bring an overall system down, thereby increasing its

reliability.

• Flexibility in Technology and Deployment: It allows the

utilization of different technologies independently for

different segments of the payment system like Java for

transaction processing and Python for fraud management.

It liberates such solutions and ensures more onerous

development. Independent deployment also fits CI/CD

pipelines to speed up updates of features and their releases

as well.

• Improved Security and Compliance Management: It

means that various levels of security perceptions are

possible for every microservice at the same time, with the

highest level of security for critical services such as

payment gateways and average ones for other, less secure

services. This level of detail makes it easier to achieve PCI

- DSS compliance. Separate logging for a specific service

guarantees unproblematic auditing, enhancing the

detection of fraud and noncompliance in the system.

• Ease of Maintenance and Development Agility: An

aspect of maintainability achieved by microservices is that

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1591

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

it is less complex to perform routine changes, upgrades, or

debug work on several applications at once. That is why

modular structures enable faster development and

implementation of innovations, increasing flexibility.

Other services, such as anti - fraud or the addition of new

payment means, which previously required the

cooperation of several teams, are now possible to be

developed by separate teams, thereby speeding up the

process of development.

• Supporting Diverse Payment Methods and Processors:

Microservices also mean that adding new payment

methods and processors is uncomplicated because each

method/processor is its service. These services interact at

an API level with the core system enabling fast integration

of emerging trends such as mobile payments or even

cryptocurrency. These facts minimize complexity and

help to launch new payment types much faster.

• Real - World Examples of Microservices in Payment

Systems: Netflix employs the use of microservices to

handle subscription payments and integrate them with

several online platforms reliably during intense

transaction processing. Likewise, the technology giant

Amazon applies microservices when building its payment

system for heavy event traffic such as Prime Day. Yet, it

coordinates them with many payment processors for

transaction processing at optimal velocity and system

robustness.

2. Literature Survey

2.1 Evolution of Payment Systems

One of the most profound developments is in the sphere of

payments where societies have transformed physically base

methods of payment to contemporary developed mechanisms.

This change has been driven by technological advancement in

the processing of financial transactions with more efficiency,

convenience, and security.157 The first forms of payment

were cash and checks, which were usually slow - paying and

easily forged. [4 - 8] Electronic payment systems, which

continued into the end of the Twentieth Century, started to

introduce new technologies such as Automated Clearing

House (ACH) transfers and credit/debit cards. Over time

Secure Socket Layers (SSL) have been used for secure online

conversation, and proper cryptographic techniques have been

used in the implementation of security measures to protect the

sensitive financial data while doing the transactions. As

clients expect instant processing and related improved

experience, payment systems are constantly innovated, the

literature of recent years suggests. Companies are now having

more complex measures to detect fraud and/ or compliance

with regulatory standards such as the PCI - DSS. This

evolution corresponds with the need for payment systems to

have additional aggressive features in line with technological

innovation and consumers’ behaviors while ensuring security

and reliability.

2.2. Java and Spring Boot in Modern Software

Development

By analyzing Java in the literature, this paper will reveal and

explain how it has been very vital, especially in the

development of the application including the ones within the

enterprise systems. However, it does appear somewhat

obsolete at some points, given its sheer dependency, usage,

and portability, Java still stands as a foundation for many a

financial application that helps businesses build stable means

of accomplishing transactions. This is due to many available

libraries and frameworks that allow to creation of a new

solution rapidly but still have strong and safe backgrounds.

The new project called Spring Boot originated in the year

2014, which revolutionized the development scene, especially

when microservices are used for payment model creation.

Thus, developers can build exactly those applications, which

can then be run with production environments without any

further difficulties. Based on a brief literature review both in

the academic literature and practitioners’ work, it is evident

that Spring Boot has useful qualities to the researchers, and it

is accepted warmly due to the following reasons: Dependency

Injection, Server Embedding, and compatibility with other

sources. When, for instance, firms are interested in improving

the use of payment, Java coupled with Spring Boot is now the

optimal solution to build sustainable, secure, and efficient

applications that would help to meet the diverse needs within

the financial sector.

2.3. Security Challenges in Payment Systems

For some reason, payment systems are innately interesting to

hackers and are fraught with many security issues, such as

data compromise, fraud, and DoS. This paper finds that it is

the case that where the payment systems change, so do the

methods that the criminals within a system use, and as such,

the security of systems needs to be strong. The key emerging

strategies noted in the recent past research include (i)

encryption as well as tokenization as crucial building blocks

of the payment systems security and (ii) multi - factor

authentication. People set up encryptions to ensure that no one

gets to see vital info, while tokenization helps reduce the

chances of exposure of actual payment - related data during

transactions. In addition, MFA as a security solution enables

organizations to receive not only strong authentication but

also multiple forms of identification from the users before

authorizing them to the financial systems. The latest research

points to the importance of design security as a constituent

part of payment solutions architecture, not as an additive. Java

and Spring Boot have a lot of embedded security mechanisms

for implementing OAuth2 security authentication as well as

come with ample encryption frameworks for developers to

make robust payment systems that can adapt to new forms of

security threats. While the payment process keeps evolving,

the mentioned security challenges should still be considered

critical and shape consumer and business protection.

3. Methodology

3.1 Design of the Payment Solution Architecture

However, there are only a few crucial stages to designing

payment solution architecture, and each one provides the

necessary functionality, flexibility, safety, and legal

requirements. [9 - 13] As described above, the following

system architecture components are part of the above

architecture: Module and microservices are very important in

developing a reliable system as they serve as the base.

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1592

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Design of the Payment Solution Architecture

3.2 Building Payment Gateways

Payment gateways are, in fact, critical components of any

payment system to be implemented, as these are the channels

through which transaction information is relayed between the

user and the payment processor. Payment gateway in Java -

based payment solution using Spring Boot must be designed

to support integration with multiple third - party processors

while maintaining overall functionality and security

throughout the payment process. It is in this section where the

author expounds on the important classes that are useful in

creating a sound payment gateway solution using Java and

Spring Boot.

Figure 4: Building Payment Gateways

• Payment Processor Integration: Payment processor

integration is one of the essential components that any

payment gateway should provide. It is about creating and

sustaining encrypted bridging between the application and

third - party vendors such as Stripe, PayPal, and

Authorize. net. Spring Boot makes it easy to integrate this

option because it uses RESTful APIs to help developers

build scalable applications for handling various types of

payments. According to the spirit of Java language and

considering using various payment processors, the

gateway can support users of many options such as credit

cards, bank transfers, e - wallets, and others. This makes it

easier to develop a Payment system that will assist in

carrying out international transactions and multiple

currency conversions.

• Security Measures: One cannot underestimate the need

to ensure that payment information received is secured to

the hilt. What is more, to become efficient and appreciated

by buyers, a well - designed payment gateway must

incorporate complex security measures for transaction

data. JEC in Java delivers powerful libraries of encryption

that ensure it can protect numeric credit cards and other

personal user data. Encapsulation is another layer of

protection; the tokenization process substitutes precise

data values for non - identical tokens that are used during

the transactions, excluding risks of data exposure. Spring

Boot’s Spring Security module puts on more shields,

presenting valid authentication methods and safe transfer

methods like HTTPS and TLS to minimize the likelihood

of data leaks and unauthorized access during a payment

process.

• Error Handling: Learning has a great impact on getting

a powerful error - handling mechanism and creating

reliable payment gateways. Sometimes when making

payments, several problems like network hitches, lack of

funds, or problems with processing can happen. Since a

transaction execution may fail, there is a need to

incorporate an efficient way of handling errors that can

lead to attempts of a retry. With logging and monitoring

tools in Spring Boot, developers can see the failed

transactions, thus affording them some understanding of

why the errors occurred and how to have them fixed. For

temporary failures, for example, because of a network

outage, automated retries prevent a loss of money and

increase the likelihood of a successful payment transaction

for the end user.

3.3 Transaction Management and Database Integration

The primary business use of payment systems is TPM or

transaction management since it enables accurate

documentation of the financial flows. The transaction

management unit is one of the best in prop given; it is mainly

because of the declarative transaction, which is supported; it

is as simple as saying that necessary transactional boundaries

are derived with. This eliminated one chance of having

different data uploaded and downloaded in the same database,

especially where there are many services offered over the

network. Spring Boot also supports working with different

types of databases; MySQL and PostgreSQL are examples of

relational databases. The usage of JPA (Java Persistence API)

aids in creating a method of disguising the multifaceted nature

of working with databases – in the case of the payment

system’s use of transactions. This integration helps to

maintain the business characteristics of work like the

Atomicity, Consistency, Isolation, and Durability otherwise

known as the ACID properties of work in processing

payments. In some special situations, high availability is

needed for the success of the system; replication and sharing

are applied to the database. Perhaps one can input the data into

various servers so that when it is busy, they can handle a

massive number of transactions. In addition, exceptional

forms like Redis or Memcached can be incorporative if

performance should be bolstered, as the cache holds the most

accessed data types in memory. This reduces the possibility

of having many queries on the databases, especially when the

payment system is heavily in use.

3.4 Testing and Deployment

A payment system must undergo some testing to ascertain

how the system will function under certain situations. [14, 15]

The testing phase includes several types of tests:

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1593

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Testing and Deployment

• Unit Testing: Java and Spring Boot come with

standard/unit testing frameworks such as JUnit and

Mockito. Unit tests are based on testing the separate parts

of the payment solution, to analyze if all components work

in the same efficient way being isolated from other

components.

• Integration Testing: It checks how the various elements

of the payment system operate in unison, for example, the

payment gateway, the transaction manager, or the

database. Integration testing supported by Spring Boot

provides an opportunity for the developers to test the

system in its totality by modeling real - life transactions.

• Load Testing: Payment systems require processing high

volumes of transactions including those during holidays

and sales promotions. To test the system’s capability and

robustness, JMeter is used to put a lot of ‘preliminary’

users into the system and monitor the results.

Deployment strategies also partially influence how well the

payment system can remain scalable and fault - tolerant when

taken into production. Critic and Mercurial may also be used

to containerize the application and to orchestrate the

application’s deployment in different environments through

the use of Docker and Kubernetes. Docker provides a way of

maintaining development, testing, and production parity, and

Kubernetes provides the ability to scale an application

depending on the load it is receiving. Integration with AWS,

Azure, or Google Cloud means that Spring Boot can be easily

deployed in the cloud - native mode. It is also possible for the

system to auto - scale based on transaction loads, which

means that the payment solution can grow in tandem with the

surge in the demand for the payment solution.

4. Results and Discussion

In this section, the results of performance tests carried out on

the identified payment solution created using Java and Spring

Boot are discussed. Moreover, best practice examples of

companies using similar solutions are highlighted, and the

outcomes skeptics are gaining from their products are

described.

4.1 Performance of Java - Spring Boot Payment Solutions

After developing the Java - Spring Boot payment solution, the

following performance indicators were tested: TPs,

transaction latency, fault tolerance, and security. The load

factors under which these metrics were measured are shown

below in the following table. Of further importance, the

security tests performed also affirm the reliability of the

security features that are inherent in Spring Boot.

• Transaction Throughput and Latency: Transaction

throughputs are an essential parameter to measure the

number of Transactions done Per Second (TPS).

Throughput capacity is critical in payment systems and,

more especially, over a short period within which there is

increased traffic, such as over the black weekend.

However, by latency, what is meant is the time it takes to

complete a transaction cycle from initiation to completion.

Concerning payments, therefore, higher throughput means

a better - quality experience for consumers: Purchases

seem to occur immediately with no lag time.

• Security Testing Results: Since payment systems are

highly confidential, therefore security is always of higher

priority. The security tests were intended to assess the

preparedness of the system to prevent exposure of the

information to different risks, for example, SQL injection,

Cross - site scripting (XSS), and Man - in - the - Middle

(MITM) attacks. Moreover, a compliance audit of the PCI

- DSS was conducted to verify compliance as well as

compliance with encryption, tokenization, handling, and

storage of data functions of the system.

Table 1: The performance metrics during testing

Test Scenario

Transaction

Throughput

(TPS)

Latency

(ms)

Fault

Tolerance

(%)

Low Load (100 TPS) 98 50 99.8%

Medium Load (1000 TPS) 950 75 99.5%

High Load (5000 TPS) 4800 120 99.2%

Stress Load (10, 000 TPS) 9500 200 99.0%

Figure 6: The performance metrics observed during testing

4.2 Case Studies

In this section, we get to discuss real - world examples of Java

and Spring Boot to address payment intents and solutions.

These case studies prove that organizations use these

technologies to improve their efficient payment systems, with

positive impacts on scalability, security, and end - user

quality.

4.2.1 Case Study 1: E - Commerce Platform

One e - commerce site was achieved using a payment system

based on the microservice architecture using Java and Spring

Boot that could be easily scaled to meet the demand at

respective periods of the year, such as during the festive

seasons or a flash sale event. This flexibility ensured the

platform had a high TPS that was achieved coupled with very

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1594

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

low downtimes important in serving customers and making

more money during busy times. Modularity also helped in

integrating with payment processors and used Stripe, PayPal,

and a custom payment processor. These solutions of payment

options diversified the payment gateway and provided a

number of options to the customers depending on their choice

they preferred and enhanced the conversion rates drastically.

Working with Java and Spring Boot, it was possible to

introduce a lot of changes and improvements very quickly or,

at least, it did not take much time to do it, which allowed

providing updates to the payment system based on new

requirements of business and conditions on the market.

Table 2: Case Study E - Commerce Platform
Attribute Details

System Type Microservices - based Payment System

Key Benefits Scalability, Reduced Downtime, High TPS

Integration Stripe, PayPal, Custom Payment Processor

4.2.2. Case Study 2: Financial Services Firm

A firm in the financial services industry created an intra - and

internet payment interface to connect to the internal payment

sub - system and third - party external payment gateway WEB

APIs using Java Spring Boot and Authorize. net API’s. This

structure enabled the firm and reduce or even minimize

external contact with sensitive financials, such as inflows and

outflows, while outsourcing payment processing from outside

parties. Implementations of encryption and featuring the

bearer of the Spring Boot were beneficial in enhancing the

payment gateway security providentially. Additionally, it was

built with fault tolerance components, and because of this, it

was only offline for not more than 45 minutes per quarter or

approximately 0.001% of the time. Bring this reliability to the

financial sector, because time lost is money and reputation

lost. The firm was able to observe improved customer loyalty

since users were confident of the security of their information

when using the services to accomplish the transactions. In

addition, it was general to use Java so that the firm could make

further modifications as I was proving new threats and to

make sure it was compliant with new regulations during the

project.

Table 3: Case Study Financial Services Firm
Attribute Details

System Type Hybrid Payment Gateway

Key Benefits Enhanced Security, Fault Tolerance

Integration Authorize. net, Internal Payment Systems

5. Conclusion

The inclusion of Java and Spring Boot in payment solutions

improves on so many factors such as scalability, security, and

performance. These technologies allow for the establishment

of loosely coupled, microservices - based architectures

capable of processing enormous studies of transactions – a

prerequisite for contemporary financial software. Java has

great possibilities for concurrency management, which,

together with the minimalism of Spring Boot, guarantees that

the payment systems are simultaneously flexible and simple

to develop. Security is improved in handling payments thanks

to Java’s large and powerful encryption libraries and Spring

Boot employment of tokenization services, TLS encryption

services which ensure that financial data is not exposed to

unauthorized persons and meet PCI - DSS standards.

It has been identified that payment processing is always and

will continue developing and becoming more complex and

fast with increased demand; Java and Spring Boot can handle

the challenges and demands in the field of finance. New

trends, which include the use of AI in the identification of

fraud and customized financial services, are expected to

transform the payment system. In contrast, the blockchain as

a technology that will lead to decentralized, secured payments

is another promising trend. These advancements will further

increase transaction velocity, security, and transparency,

further making the next generation of payment platforms

secure. The openness of Java and Spring Boot makes it

possible that these technologies will continue to play a role in

the development of payment systems to meet future needs of

innovation and efficiency.

References

[1] Abrazhevich, D. (2014). Electronic Payment Systems: A

User - Centered Perspective and Interaction Design.

Routledge.

[2] Kokkola, T. (Ed.). (2010). The payment system:

Payments, securities and derivatives, and the role of the

Eurosystem. BCE. Banco Central Europeo.

[3] Walls, C. (2016). Spring in Action, Manning

Publications.

[4] Stinson, D. R. (2005). Cryptography: theory and

practice. Chapman and Hall/CRC.

[5] de Oliveira, C. E., Turnquist, G. L., & Antonov, A.

(2018). Developing Java Applications with Spring and

Spring Boot: Practical Spring and Spring Boot solutions

for building effective applications. Packt Publishing

Ltd.

[6] Khan, M. (2020). Scalable invoice - based B2B

payments with microservices.

[7] Shabani, I., Mëziu, E., Berisha, B., & Biba, T. (2021).

Design of modern distributed systems based on

microservices architecture. International Journal of

Advanced Computer Science and Applications, 12 (2).

[8] Chandramouli, R. (2019). Microservices - based

application systems. NIST Special Publication, 800

(204), 800 - 204.

[9] Guo, W. (2008, July). Design of architecture for mobile

payments system. In 2008 Chinese Control and

Decision Conference (pp.1732 - 1735). IEEE.

[10] Guan, S. U., & Hua, F. (2003). A multi - agent

architecture for electronic payment. International

Journal of Information Technology & Decision Making,

2 (03), 497 - 522.

[11] Kumar, S. B. R., & Rabara, S. A. (2010). An

Architectural Design for Secure Mobile Remote Macro

- Payments. J. Next Gener. Inf. Technol., 1 (2), 75 - 84.

[12] Gligor, V., & Popescu - Zeletin, R. (1986). Transaction

management in distributed heterogeneous database

management systems. Information Systems, 11 (4), 287

- 297.

[13] Hanemann, A., Liakopoulos, A., Molina, M., & Swany,

D. M. (2006). A study on network performance metrics

and their composition. Campus - Wide Information

Systems, 23 (4), 268 - 282.

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1595

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[14] Eastman, C. M., & Kutay, A. (1989, November).

Transaction management in design databases. In

Workshop on Computer - Aided Cooperative Product

Development (pp.334 - 351). Berlin, Heidelberg:

Springer Berlin Heidelberg.

[15] Wang, Q., Zhang, S., Kanemasa, Y., Pu, C., Palanisamy,

B., Harada, L., & Kawaba, M. (2019). Optimizing n -

tier application scalability in the cloud: A study of soft

resource allocation. ACM Transactions on Modeling

and Performance Evaluation of Computing Systems

(TOMPECS), 4 (2), 1 - 27.

[16] Wu, S. I., & Chuang, Y. C. (2018). Effects of the

Experience in Using the Third - Party Payment on the

Payment Model of Online Shopping. International

Journal of Business and Management, 13 (7), 107 - 107.

[17] Sakharova, I. (2012, June). Payment card fraud:

Challenges and solutions. In 2012 IEEE International

Conference on Intelligence and Security Informatics

(pp.227 - 234). IEEE.

[18] Williams, J. G., & Premchaiswadi, W. (2011). Online

credit card payment processing and fraud prevention for

e - business. In Global Business: Concepts,

Methodologies, Tools and Applications (pp.699 - 717).

IGI Global.

Paper ID: SR211101102708 DOI: https://dx.doi.org/10.21275/SR211101102708 1596

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

