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Abstract: Chikungunya is a tropical viral disease spread by the female Aedes mosquitoes infected with the Chikungunya virus 

(CHIKV). Non-structural protein 2 (nsP2) plays a crucial role in the viral life cycle by its proteolytic activity and hence it is one of the 

most important drug targets. There is currently no permanent treatment available to tackle the infection. In this molecular modeling-

based study, a combination of de novo ligand design, molecular docking, and ADMET-based screening is employed to identify novel 

inhibitor molecules targeting the active site of nsP2 protease of the CHIKV. A set of molecules have been shortlisted as potential 

inhibitors based on their binding affinity and drug-likeness score. Further experimental validation is required to verify the potency of 

the proposed leads against CHIKV nsP2 protease activity to combat the infection. 
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1. Introduction 
 

Chikungunya is a viral infectious disease spread by the bites 

of infected female Aedes mosquitoes. It produces fever, 

joint aches and swelling, muscle pain, muscle pain, nausea, 

headache, and rash. It was initially reported in Southern 

Tanzania, and it has now been detected in over forty 

countries worldwide[1]–[3]. It is an RNA virus, belongs to 

the Togaviridae family's alphavirus genus. The disease is 

mostly transmitted by two mosquito species known as Aedes 

aegyptiand Aedes albopictus[4]. The word "chikungunya" is 

originated from a phrase in the Makonde language that 

means "that which bends up," and refers to the hunched 

posture of people suffering from joint discomfort 

(arthralgia)[1]. 

 

The virus's genome is translated into nine proteins, five of 

which are structural (one capsid protein (C), two envelope 

glycoproteins (E1, E2), and two peptides, E3 and 6K) and 

four of which are non-structural (nsP1, nsP2, nsP3, and 

nsP4)[5], [6]. Among the structural proteins, capsid protein 

initiates the viral life cycle within the host cell via 

autoproteolysis, whilst envelope glycoproteins aid in the 

viral entrance[7]. nsP1 and nsP3 synthesize the negative 

sense of the RNA strand, while nsP4 controls virion 

polymerization in the host cell. The multifunctional protein 

nsP2 is a member of the papainsuperfamily of cysteine 

proteases, which is well recognized for its proteolytic 

activity and involvement in viral replication. Therefore, 

nsP2 is one of the most promising drug targets for 

developing drugs against the infection[8]. Several 

computational and experimental studies have been 

conducted in search of inhibitors of nsP2 through different 

routes such as molecular modeling, structure-based drug 

design, molecular docking, and MD simulation, 

pharmacophore mapping, biological evaluation, and many 

more[9]–[17]  

 

Deep learning contributes to the field of drug discovery in 

multiple ways from searching potential binding pockets on 

the surface of the protein [18]–[20] to generating novel 

molecules based on the protein pocket information [21]–

[24]. LiGANN uses deep learning-based generative 

adversarial networks (GANs) to generate ligands taking the 

protein structure information [21].  

 

In this in silico study, the crystal structure of CHIKV nsP2 

protease was obtained from protein databank [25] and, based 

on the active site information, novel lead compounds were 

created using LiGANN, a de novo drug design tool based on 

generative neural network (GNN) [21]. All of the suggested 

molecules are then manually docked to the nsP2 active site 

using PyRx, an autodock-embedded software [26], [27]. The 

highest scoring ligands' ADMET characteristics were 

evaluated using the SwissADME webserver [28]. Further 

studies are needed to investigate the efficiency of the 

suggested compounds in treating chikungunya virus 

infection.  

 

2. Materials and Methods 
 

Protein structure retrieval: The crystal structure of the 

chikungunya virus nsP2 protease has been downloaded in 

.pdb format from the RCSB PDB website (PDB ID: 3TRK). 

The crystallographic water molecules and the ions are 

removed and the protein surface is visualized using PyMol 

[29]. The catalytic dyad, CYS 1013 and HID 1083 is 

highlighted. 

 

de novo ligand design: The prepared protein pdb file has 

been uploaded as input in the LiGANN webserver 

(https://playmolecule.com/LiGANN/), number of ligand 

shape generations and decoding per shape has been set as 10 

and 10 respectively. A grid box has been generated 

centering the catalytic dyad (CYS 1013 and HIS 1083) of 

the protein.  
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Molecular docking: Then the protein has been processed 

and converted into. pdbqt using PyRx “Make 

macromolecule” utility. A total of 88 molecules have been 

generated by LiGANN, using Open Babel, the SMILES ID 

of the compounds are converted into .sdf file format[30]. All 

the downloaded compounds have been energy minimized 

and converted into. pdbqt format before docking using 

PyRx. A grid box has been created around the catalyticdyad 

(CYS 1013 and HIS 1083) and docking has been performed 

using the vina wizard utility of PyRx.The 2D depiction of 

interactions of the protein-ligand complexes has been 

created using Discovery Studio visualizer[31].  

 

ADMET prediction: ADMET stands for Absorption, 

Digestion, Metabolism, Excretion, and Toxicity, this is a 

measure of drug metabolism and pharmacokinetics (DMPK) 

which is crucial for drug discovery. ADMET and 

physicochemical properties, drug-likeness, synthetic 

accessibility of the top-scoring leads have been estimated 

using the SwissADME web server.  

 

3. Results and Discussions 
 

Protein structure retrieval: The crystal structure of the 

chikungunya virus nsP2 protease (3TRK) is downloaded in 

.pdb file format consists of 324 amino acids and has a 

resolution of 2.40 Å. The three-dimensional structure is 

visualized in cartoon representation; the catalytic dyads are 

shown in licorice representation (Figure 1).  

 

de novo ligand design: The modified pdb file is given as 

input on the LiGANN server, which results in 88molecules 

based on the protein active site information. The molecules 

belong to different chemical classes so that there’s a diverse 

group of ligands.  

 

Molecular docking: Among the 88 ligands, 17 ligands have 

a binding affinity score of ≤ -6.0 Kcal/mol; but all of them 

are not interacting with at least one of the catalytic dyad 

residues. In the case of the best scoring lead (Figure 2.A), 

molecule A (-7.6 kcal/mol) has a total of seven non-bonding 

interactions with the neighboring amino acids at the active 

site of the protein including two pi-sulfur interactions with 

CYS 1013(distance: 4.91 Å) and MSE 1238 

(Selenomethionine), a hydrogen bond with TYR 1047, two 

pi-sigma interactions with ALA 1046 and MSE 1242, two 

pi-alkyl interactions with ALA 1046 and TYR 

1079.Molecule D, H, L, M, N interacts with CYS 1013 with 

pi-sulfur non-bonded interactions while molecule Einteracts 

through pi-alkyl interaction. A list of all the interactions is 

listed in Table 1 and all the 2D protein-ligand interaction 

images are shown in Figure 2. 

 

ADMET prediction: The SwissADME web-server was 

used to determine various physicochemical parameters, 

leadlikeness, and synthetic accessibility of the top 17 lead 

compounds, as shown in Table 2. All the molecules have a 

molecular weight of ≤ 500 g/mol,the number of hydrogen 

acceptor atoms (HA) and hydrogen donor atoms (HD) are ≤ 

10 and ≤ 5 respectively which are the criteria in Lipinski’s 

rule of five for drug-likeness. According to Veber’s rule of 

drug-likeness, a drug-like molecule should have ≤ 10 

rotatable bonds and Topological Polar Surface Area (TPSA) 

of ≤ 140 Å², most of the molecules passed the first criterion 

(Molecule A,B, D, E, F, G, H, I, L,N, O) and all the 

molecules satisfied the second criterion. Log Po/w is a 

measure of lipophilicity of the molecules; here a consensus 

value is given as an average of five values predicted in 

different manners. A drug-like molecule must have optimal 

aqueous solubility; most compounds are moderately soluble 

in water. The bioavailability score indicates the percentage 

of the drug that may reach the target location; all molecules 

have a bioavailability score of 0.55. After summing up all 

the information related to leadlikeness, 6 molecules are 

found as leadlike (Molecule A, B, D, F, G, N) according to 

SwissADME predictions. Synthetic accessibility score, 

predicted by the server signifies the ease of synthesizing the 

molecules in the laboratory, where score 1 means the 

molecule can be synthesized very easily and 10 means it is 

very difficult to synthesize the molecule.  

 

4. Conclusions 
 

Chikungunya is a widespread threat to public health. There 

is currently no viable medicine or vaccination that can 

totally cure the disease. Using a deep learning methodology, 

this investigation discovers several new leads. The lead 

compounds demonstrate significant efficacy against one of 

the virus's most important therapeutic targets, nsP2, in terms 

of PyRx binding affinity score, protein-ligand non-bonding 

interactions, and physicochemical features. Further 

experimental research is necessary to confirm their 

effectiveness and find viable treatments for the viral 

infection.  

 
 

 

 

Table 1: Details of the binding affinities and interacting amino acid residues for top 17 ligands 

Molecule SMILES 

Binding 

affinity score 

(kcal/mol) 

Neighboring interacting residues 

A CN1CCC(CC1)C1ONC(N1)[C@@H]1CNc2c(CC1)cccc2 -7.6 
CYS 1013. ALA 1046(2), TYR 1047, 

TYR 1079, MSE 1238, MSE 1242 

B N1CC(C1)CNC1C(Cc2ccccc2)Cc2n1ncn2 -7.0 
TYR 1047, TYR 1079, TRP 1084, ASP 

1246 

C CCC(NC(=O)CSc1nnc(s1)NCCCN(Cc1ccccc1)C)C -6.7 

TRP 1014, ALA 1046, TYR 1047 (3), 

TYR 1079 (2), ASN 1082, TRP 1084, 

MSE 1242 

D Sc1nnc(n1CCC1CNCC1)CCc1ccccc1 -6.7 
CYS 1013, ALA 1046, LEU 1205, MSE 

1242, ASP 1246 
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E CNCCCC(=O)N1CCN(c2nnc(CCCN3CCCC3)n2C)CC1 -6.7 

CYS 1013, ALA 1046, TYR 1047, GLU 

1050, TYR 1079, ASN 1082, LYS 1091 

(unfavorable), MSE 1242 

F CN(C)CC(CNc1cccnn1)C1CCCc2ccccc21 -6.6 
ALA 1046, TYR 1047 (2), SER 1048, 

TYR 1079 

G CC1CC(CN)CN1c1nnc(Cc2ccccc2)n1CC1CC1 -6.5 ASN 1082, TRP 1084, LEU 1205 

H COCC(C)Nc1cc2ccccc2nn1 -6.4 

ASN 1011 (2), CYS 1013, ALA 1046 (2), 

TYR 1047, TYR 1079, ASN 1082, MSE 

1242 

I CN(C)CCN(CCc1ccccc1)Cc1ccccn1 -6.3 
TYR 1047, TYR 1079 (2), TRP 1084, 

LEU 1205, ASP 1246 

J CNCCCNC(=O)CCC(CN(C)C)NC(=O)OCc1ccccc1 -6.3 
TYR 1047, TYR 1079, ASN 1082, TRP 

1084, LYS 1091 

K CC(C)NC(=O)NCCCC(=O)NCCN(C)Cc1ccco1 -6.2 ASN 1082 (2), TYR 1079 

L CNC(C)(C)Cc1nc(CCCCc2ccccc2)no1 -6.2 
CYS 1013, ALA 1046 (2), TYR 1079, 

ASN 1082 

M C=CCN(CCN1CCC(C)(C(=O)OC)CC1)C(C)c1ccc(S(=O)(=O)N(CC)CC)cc1 -6.1 

CYS 1013, ALA 1046 (2), TYR 1079, 

ASN 1082, TRP 1084 (2), LEU 1205, 

MSE 1242 

N CC(C)N(Cc1ccccc1)Cc1nncn1C(C)C -6.0 CYS 1013, ALA 1046 (2), TYR 1079 (2) 

O CC(C)N=C(NCCc1cccs1)NCc1ccco1 -6.0 
ALA 1046, TYR 1079, TRP 1084 

(unfavorable) 

P CCN(C)CCNC(CCSCc1ccccc1)CN(C)CCc1nn[nH]n1 -6.0 
ALA 1046, TYR 1047, TYR 1079, ASN 

1082, TRP 1084, MSE 1242, ASP 1246 

Q COCCN1C2CCC1CC(N(C)CCCCN(Cc1ccccc1)Cc1ccccn1)C2 -6.0 TYR 1047 (2), TYR 1079, TRP 1084 

 

Table 2: Physicochemical properties, Lead likeness and synthetic accessibility of the top 17 leads 

Molecule 
MW 

(g/mol) 

Num. rotatable 

bonds 
HA HD 

TPSA 

(Å²) 

Consensus 

Log Po/w 

Water solubility 

class 

Bioavailability 

score 
Leadlikeness 

Synthetic 

accessibility 

A 316.44 2 4 3 48.56 1.94 Moderately soluble 0.55 YES 4.40 

B 283.37 5 4 2 54.77 1.46 Moderately soluble 0.55 YES 3.65 

C 407.60 13 4 2 123.69 3.39 Poorly soluble 0.55 NO 4.23 

D 302.44 6 3 1 81.54 2.59 Moderately soluble 0.55 YES 3.13 

E 377.53 10 5 1 69.53 1.05 Soluble 0.55 NO 3.81 

F 310.44 6 3 1 41.05 3.09 Poorly soluble 0.55 YES 3.44 

G 325.45 6 3 1 59.97 2.50 Moderately soluble 0.55 YES 3.96 

H 217.27 4 3 1 47.04 1.97 Moderately soluble 0.55 NO 2.60 

I 283.41 8 3 0 19.37 2.80 Poorly soluble 0.55 NO 2.21 

J 364.48 15 5 3 82.70 1.80 Moderately soluble 0.55 NO 3.58 

K 324.42 13 4 3 86.61 1.17 Moderately soluble 0.55 NO 2.89 

L 287.40 8 4 1 50.95 3.43 Poorly soluble 0.55 NO 3.36 

M 479.68 13 7 0 78.54 3.50 Moderately soluble 0.55 NO 4.31 

N 272.39 6 3 0 33.95 2.58 Moderately soluble 0.55 YES 2.41 

O 291.41 8 2 2 77.80 2.87 Moderately soluble 0.55 NO 3.26 

P 405.60 15 6 2 98.27 2.59 Poorly soluble 0.55 NO 4.12 

Q 450.66 13 5 0 31.84 3.91 Poorly soluble 0.55 NO 5.06 

 

 
Figure 1: (A) Cartoon representation, (B) Surface representation of the CHIKV nsP2 protease (Red: CYS 1013, Green: HIS 

1083) 
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Figure 2: 2D depiction of protein-ligand interactions 
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