
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Comparison of RRT Connect and RRT Smart

Path Planning for Higher Dimensional Robots*

Saandeep Sreerambatla

Department of Electrical Engineering, Case Western Reserve University, Cleveland, OH, USA

Email: sxs2452[at]case.edu

Abstract: Sampling based planning algorithms such as RRT Connect, RRT* and other sampling-based algorithms are extensively used

for path planning of mobile robots. These algorithms are probabilistically complete and can easily be applied for higher dimensional

complex problems. RRT* is an algorithm from the RRT family of algorithms which helps in faster convergence and this gives us the

shortest path possible. This paper presents an analytical review of the two algorithms. Impact of different parameters on algorithm’s

performance is evaluated. Moreover, performance comparison of different criteria like run time and total number of nodes in the tree is

performed through a simulation on a 6 DOF robot in an environment with minimal obstacles. For simplicity, obstacles are considered as

circles in this experiment.

Keywords: Path Planning, RRT Connect, RRT*, mobile robots, Comparison

1. Introduction

Path Planning for mobile robots has many applications in

autonomous cars [1], Unmanned Aerial Vehicles (UAVs) [2],

and industrial forklifts [3]. The goal of the path planning

algorithms is to find a collision-free path from initial

configuration to the goal configuration with optimal cost.

Sampling Based Planning (SBP) algorithms have been used

for path planning of mobile robots in recent years [4, 5]. SBP

planning algorithms provide quick solutions for higher

dimensional problems using random sampling in the search

space [6,7]. Lavelle [8] proposed Rapidly exploring Random

Tree (RRT) [8, 9], which is a well-known SBP algorithm.

RRT supports dynamic environments and non-holonomic

constraints for car-like robots [9] very well. Lavelle applied it

successfully to problems comprising of up to twelve degrees

of freedom with both holonomic and non-holonomic

constraints. However, the path generated by RRT was not

optimal. Karaman and Frazzoli [5] proposed a variation of

RRT called RRT* with proven asymptotically optimal

property. RRT* improved path quality by introducing major

features of tree rewiring and best neighbor search. However,

it obtained asymptotic optimality at the cost of execution time

and slower path convergence rate. RRT and RRT* have

numerous successful applications in robotics. Significant

body of research has addressed the problem of optimal path

planning using RRT* in recent years. These methodologies

have gained tremendous success in solving single-query high

dimensional complex problems. This paper presents a

simulation-based experimental comparison of the

aforementioned algorithms in an environment cluttered with

obstacles. The effect of different parameters on the

performance of these approaches is discussed. Further,

limitations and future directions for improvement are also

suggested. The next section describes the methodology of

RRT and RRT* path planning approaches. Experimental

results along with comparative analysis are presented in

Section 3. Section 4 discusses future recommendations,

followed by the conclusion in the last section.

2. Environment Overview

Environment Creation: Created a 6-DOF revolute robot

with 4m length of links. The robot has provided a start

configuration and goal configuration to reach. The

environment also has multiple obstacles which the robot has

to avoid in reaching the final goal configuration. The below

figure explains the initial position of the robot in green and

the final configuration in red, and the obstacles are also

plotted in the graph.

Figure 1: Initial and goal configuration along with obstacles

3. Algorithm Overview

Problem Statement: RRT Connect and RRT* operate in a

configuration space with all set of possible transformations

for a robot to operate. Let the given state space be denoted by

a set Z R nN n, where n represents the dimension of the given

search space. The area of the search space which is occupied

by obstacles is represented by Z obs Z and region free from

obstacles is represented by Z free Z Zobs = / . goal Z free z

represents goal and init Z free z represents starting point. init

z and goal z are provided to planner as inputs. The problem is

to find a collision free path between initial init z and goal z

states in Z free, in least possible time t R , with minimum path

cost.

Paper ID: SR24509122201 DOI: https://dx.doi.org/10.21275/SR24509122201 1542

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:sxs2452@case.edu

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

RRT Connect:

The RRT-Connect planner method is based on two ideas: the

Connect heuristic that attempts to move over a longer

distance, and the growth of RRTs from both qinit and qgoal.

The Connect heuristic is a greedy function that can be

considered as an alternative to the EXTEND function in basic

RRT. Instead of attempting to extend an RRT by a single step,

the Connect heuristic iterates the EXTEND step until q or an

obstacle is reached. Below images show the RRT CONNECT

PLANNER algorithm, which may be compared to the Basic

BUILD RRT algorithm. Two trees, Ta and Tb, are maintained

at all times until they become connected and a solution is

found. In each iteration, one tree is extended, and an attempt

is made to connect the nearest vertex of the other tree to the

new vertex. Then, the roles are reversed by swapping the two

trees. This causes both trees to explore Cfree, while trying to

establish a connection between them. The growth of two

RRTs was also proposed for kinodynamic planning; however,

in each iteration, both trees were incrementally extended

toward a random configuration. The current algorithm

attempts to also grow the trees towards each other, which has

been found to yield much better performance. The below

Algorithm 1 is the basic RRT Connect algorithm. Algorithm

2 explains the initial tree and free random configuration.

Algorithm 3 explains the target trying to connect to the new

random configuration to which the initial tree is connected.

Algorithm 4 is the planner algorithm which takes the q

configuration and divides it into multiple steps so that the

trees are able to connect.

Algorithm 1 RRT CONNECT:

Ta.initialize(qstart)

Tb.initialize(qgoal)

success = False

for i = 1 to MAXNODES do

 qrand = RANDOMCONFIG()

 [result, Ta, qtarget] = RRTEXTENDSINGLE(Ta, qrand,

steplength)

 if (result == TRUE)

 [result2, Tb, qconnect] =

RRTEXTENDMULTIPLE(Tb, qtarget, steplength)

 if (result2 == TRUE)

 success = True

 return (success, qconnect, Ta, Tb)

 end if

 end if

 SWAP(Ta, Tb)

end for

return (success)

Algorithm 2 RRT EXTEND SINGLE:

qtarget = []

qnear = FINDNEAREST(Ta, qrandom)

qint = LIMIT(qrandom, qnear, steplength)

result = LOCALPLANNER(qnear, qint, stepsize)

if (result == TRUE)

 Ta = ADDNODETOTREE(Ta, qint)

 qtarget = qint

end if

return (result, Ta, qtarget)

Algorithm 3 RRT EXTEND MULTIPLE:

qconnect = []

qnear = FINDNEAREST(Tb, qtarget)

qint = LIMIT(qtarget, qnear, steplength)

qlast = qnear

numsteps = CEIL(NORM(qtarget - qnear) / steplength)

for i = 1:numsteps do

 result = LOCALPLANNER(qint, qlast, stepsize)

 if (result == FALSE)

 return (result, Tb, qconnect)

 end if

 Tb = ADDNODETOTREE(Tb, qint)

 qconnect = qint

 if (i < numsteps)

 qlast = qint

 qint = LIMIT(qtarget, qint, steplength)

 end if

end for

return (result, Tb, qconnect)

Algorithm 4 LOCAL PLANNER:

deltaq = q2 - q1

numsteps = CEIL(NORM(deltaq) / steplength)

q = q1

for i = 1:numsteps do

 q = q + step

 collision = collision || CHECKCOLLISION(q, obstacles)

end for

success = !collision

return (success)

RRT*: RRT* inherits all the properties of RRT and works

similar to RRT. However, it introduced two promising

features called near neighbor search and rewiring tree

operations. Near neighbor operations find the best parent

node for the new node before its insertion in the tree. This

process is performed within the area of a ball of radius defined

by

K =
𝑙𝑜𝑔𝑛(

1

𝑑
)

𝑛(
1

𝑑
)

where d is the search space dimension and is the planning

constant based on environment. Rewiring operation rebuilds

the tree within this radius of area k to maintain the tree with

minimal cost between tree connections as shown in Figure 2

[12]. Space exploration and improvement of path quality is

shown in Figure 3. As the number of iterations increase,

RRT* improves its path cost gradually due to its asymptotic

quality, whereas RRT does not improves its jaggy and sub

optimal path. The below algorithm explains RRT*

implementation.

Paper ID: SR24509122201 DOI: https://dx.doi.org/10.21275/SR24509122201 1543

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Algorithm 5 T= (V, E) → RRT*(zini)

T = (V, E) → RRT*(zinit)

T → InitializeTree();

T → InsertNode(Ø, zinit, T)

for i = 0 : n do

 zrand → Sample(i)

 znearest → Nearest(T, zrand)

 (znew, Unew) → Steer (znearest, zrand)

 if ObstacleFree(znew) then

 znear → Near(T, znew, |V|)

 zmin → ChooseParent(znear, znearest, znew)

 T → InsertNode(zmin, znew, T)

 T → Rewire(T, znear, zmin, znew)

 end if

end for

return T

4. Experiments and Simulated Results

In this section analysis of two algorithms RRT Connect and

RRT* is presented. To simulate the experiment the

experiments are conducted in MATLAB in the environment

explained in the section 2, in a windows 10 PC. Experiments

were carried out different number of times using RRT

Connect and RRT*. The below figure explains the collision

free path for RRT Connect in the environment.

Figure 2: RRT-Connect collision free path

The below figure explains the collision free path from RRT*

algorithm.

It is observed that RRT connect converges to the path faster

than RRT*. RRT* needs more nodes and more time to create

the final collision free path. It is also observed that RRT*

though takes more time to converge it will always give the

shortest path in the given environment.

Figure 3: RRT* collision free path

5. Conclusion

We can conclude that both RRT Connect and RRT* work

decently in a higher dimensional environment. If we need a

faster convergence, we would need to use RRT Connect as it

converges faster, and if we have enough processing and time

and if we are interested in shortest path, we would go for

RRT*

Acknowledgement

I would like to express my sincere gratitude to Prof. M. Cenk

Cavusoglu for his guidance and patience.

References

[1] S. Thrun, W. Burgard, and D. Fox, “Probabilistic

Robotics (Intelligent Robot and Autonomous Agents)”,

MIT Press, 2005.

[2] X. Lan, and S. Di Cairano, "Continuous Curvature Path

Planning for Autonomous Vehicle Maneuvers Using

RRT*", presented at the European Control Conference

(ECC), 2015.

[3] D. Alejo, J. A. Cobano, G. Heredia, J. R. Martínez De

Dios, and A. Ollero, "Efficient Trajectory Planning for

WSN Data Collection with Multiple UAVs", in

Cooperative Robots and Sensor Networks, vol. 604, ed:

Springer International Publishing, 2015, pp. 53-75.

[4] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S.

Teller, "Anytime Motion Planning using the RRT*",

presented at the IEEE International Conference on

Robotics and Automation (ICRA), 2011.

[5] S. M. Lavalle, Planning Algorithms, Cambridge

University Press, 2006.

[6] S. Karaman, and E. Frazzoli, "Sampling-based

Algorithms for Optimal Motion Planning", The

International Journal of Robotics Research, vol. 30, pp.

846-894, 2011.

[7] M. Elbanhawi, and M. Simic, "Sampling-Based Robot

Motion Planning: A Review Survey", IEEE Access, vol.

2, pp. 56-77, 2014.

[8] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S.

Teller, "Anytime Motion Planning using the RRT",

presented at the IEEE International Conference on

Robotics and Automation (ICRA), 2011.

[9] S. M. Lavalle, "Rapidly-Exploring Random Trees: A

New Tool for Path Planning", 1998.

Paper ID: SR24509122201 DOI: https://dx.doi.org/10.21275/SR24509122201 1544

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 11, November 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[10] J. J. Kuffner, and S. M. Lavalle, "RRT-Connect: An

Efficient Approach to Single-Query Path Planning", in

Proceedings of IEEE International Conference on

Robotics and Automation, 2000, pp. 1-7.

[11] J. Nasir et al., "RRT*-SMART: A Rapid Convergence

Implementation of RRT*", International Journal of

Advanced Robotic Systems, vol. 10, pp. 1-12, 2013.

[12] Y. K. Hwang, "Gross Motion Planning-A Survey",

ACM Computing Surveys, vol. 24, pp. 219-291, 1992.

[13] J. W. Loeve, "Finding Time-Optimal Trajectories for

the Resonating Arm using the RRT* Algorithm",

Master of Science, Faculty Mechanical, Maritime and

Materials Engineering, Delft University of Technology,

Delft, 2012

Paper ID: SR24509122201 DOI: https://dx.doi.org/10.21275/SR24509122201 1545

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

