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Abstract: With the increased utilization, the small embedded and IoT devices have become an attractive target for sophisticated attacks 

that can exploit the device’s security-critical information and data in malevolent activities. Secure boot and Remote Attestation (RA) 

techniques verifies the integrity of the device’s software state at boot-time and runtime. Correct implementation and formal 

verification of these security primitives provide strong security guarantees and enhance user confidence. The formal verification of these 

security primitives is considered challenging, as it involves complex hardware- software interactions, semantics gaps and requires bit-

precise reasoning. To address these challenges, this paper presents FVCARE an end-to-end system co-verification framework. It also 

defines the security properties for resilient small embedded systems. FVCARE divides the end-to-end system co-verification problem into 

two modules: 1) verifying the (bit precise) initial system settings, registers, and access control policies by hardware verification 

techniques, and 2) verifying the system specification, security properties, and functional correctness using source-level software 

abstraction of the hardware. The evaluation of proposed techniques on SRACARE based systems demonstrates its efficacy in security co-

verification. 
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1. Introduction 
 

The utilization of small embedded and IoT devices has 

increase multi-fold in recent times for collecting, processing, 

and transferring security-critical information and user data. 

It has also enabled sophisticated attackers such as [1]–[5] to 

leak, tweek, slink or exploit the security-critical information 

of the device for use in malevolent activities. Denial of 

Service (DoS) [6] can flood the communication interface of 

an application and disrupt the normal operation. Therefore, 

software state assurance (at run-time and boot-time) and se- 

cure communication have become essential building blocks 

for device security. Security primitives such as 1) secure boot 

measures integrity and authenticity of the software state of 

the device at boot-time. 2) Remote Attestation (RA) is a 

client-server security service, which uses a trusted third- 

party verifier (Vr) to send the integrity verification request to 

an un-trusted prover (Pr) device at runtime. The Pr computes 

the digest and sends the report to the Vr. Therefore, if 

correctly implemented, these security primitives provide a 

strong security guaranty about the software state of the 

device. Formal verification techniques are used to verify that 

the system posses the correct specification and security 

properties. 

 

Some of the currently available verification techniques 

require manual inspection or hacking skills [7], [8] and they 

can be repeated, scaled, or completely automated. Further- 

more, they are to miss the bugs as manual involvement. Other 

existing formal verification approaches can be broadly 

classified in two categories: 1) Representing the firmware 

code in hardware by instruction level abstraction or by com- 

piling the firmware as assembly code, and using hardware 

verification tools such as [9]–[11] for subsequent analysis. 

 

2) representing the abstraction of hardware as software and 

using software verification tools such as [12]–[15] to verify 

the necessary security properties. The former approach uses 

the complex instruction-level abstraction process that makes 

it ISA specific and difficult to scale. The latter approach 

focuses on abstracting security-specific hardware features in 

software. 

 

Formal verification of security primitives such as secure boot 

and RA is considered a challenging problem, as it involves 

multiple complex hardware-software interactions. For 

example, in the case of a hybrid SRACARE based system 

(discussed in section IV), it initializes a set of hardware 

registers during system boot-up and applies access control 

policies. The verification technique needs to verify 

appropriate hardware registers setting (along with other 

firmware software features), which cannot be verified by 

software abstractions. Furthermore, currently available 

formal verification techniques use bounded model checking 

(BMC) [] only and do not cover all system specifications, 

security properties edge cases. It also lacks in providing co- 

verification techniques of modules interaction as discussed 

in subsection III., Therefore, to bridge this gap, This paper 

presents hardware-firmware co-verification framework 

FVCARE. The formal co-verification process in FVCARE is 

com- presses of 1) defining the system using a suitable 

mechanical model, 2) identifying and documenting the 

desired system properties in a succinct and intelligible way, 

and 3) providing proof that set system properties are satisfied. 

For providing proof of step (3)) FVCARE framework 

divides end-to- end system verification tasks into two 

categories: First, it uses automated hardware formal 

verification technique similar to that of vrased [16]. 

Secondly, it uses the abstraction of hardware representation 

in software techniques for performing not only bounded 

model checking but also assertion and weakness prediction 

checking. It uses modular plugins with Frama-C [17] tool for 

software-based design specifications and security properties 

formal verification.  

 

Research Contributions: The design and implementation 

of the proposed FVCARE framework presents the following 

research contributions: 
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• Design Specifications & Challenges: It defines the 

secure system design specification, Hardware (Hw), and 

Firmware (Fw) interactions during the authentication, 

secure boot, and RA computation. It also highlights the 

Hw-Fw co-verification challenges. 

• Defines Security Properties: It defines the security 

properties for SRACARE based small embedded de- vice. 

• Formal (Hw-Fw) Co-Verification Framework: It 

demonstrates the practicality of security properties 

specific hardware abstraction in software. It also 

performs formal verification using Frama-C [17] tool. 

Frama-C tool with three new plugins provides Weakness 

Pre- diction (WP), Value (assertions), and Linear 

Temporal Logic (LTL) specifications checking. 

• Formal Hw Verification: It presents a formal hard- ware 

verification approach by converting system verilog 

hardware modules (for specific properties checking only) 

to SMV using Verilog2SMV. It verifies the specific 

security property using NuSMV [18] tool. 

 

By combining all these, FVCARE presents the first formal 

co-verification framework to verify the security primitives 

and properties of complex firmware codes in a small em- 

bedded System on Chip (SoC) (example: SRACARE based 

system). 

 

Organization 

Section II covers the background, discusses the design 

challenges for formal verification framework, presents 

related work and security properties. Section III presents 

targeted system design, operation, adversarial model, and 

scope of verification. It is followed by section IV, covering 

the formal verification methodologies, discussing the 

hardware- software verification approaches used by 

FVCARE. Section V provides the evaluation summary of the 

FVCARE framework by sharing verification results and 

findings. FVCARE evaluates the state-of-the-art system 

design approaches and formal verification techniques. 

Section VI provides the concluding remarks for formal co-

verification work of SRACARE based SoC design. 

 

2. Background & Related Work 
 

This section provides a brief overview of the background and 

related work of formal verification techniques. 

 

2.1 Background 

 

Although previous implementations of secure boot [19]– 

[26] and RA [16], [27], [28], have provided strong security 

guarantees about the software state of the device, the 

majority of them lack in providing prevention or recovery 

techniques, the device will be kept in hang or un-operational 

state upon detection of malicious code modification attacks, 

the device needs code reflash, which can be done by 

manually or over-the-air code reflash conventionally. In the 

event of a smart attacker corrupting the networking stack, 

over- the-air code reflash becomes unsuitable. Often manual 

code reflash becomes not feasible due to placement of the 

targeted devices in applications such as home security 

cameras, smart controllers in automotive, aviation, or 

industrial systems. This necessitates some form of onboard 

recovery techniques as represented by CARE [29]. Recent 

work presented in SRACARE [30] extends CARE [29] by 

enabling RA and secure communication. Therefore, 

FVCARE has selected recent SRACARE based secure RA 

with onboard recovery system as shown in fig 1 for end-to-

end formal verification. The high-level system operation can 

be summarized in two 

 

 
Figure 1: Highlights the proposed SRACARE system design 

flow. It represents the lightweight authenticated secure 

communication protocol and a new RA and secure boot 

architecture using custom CARE module  

 

Steps:1) authentication of Vr and Pr devices using a secure 

communication protocol (steps 1 to 4 ) and 2) performs either 

remote attestation (run-time) or secure-boot (boot- time) with 

onboard recovery, depending on the result of step 1) Upon 

authentication failure, Pr sends a flag (C=0), and Vr closes 

the communication. Pr sends Flag (C=1) when authentication 

passes. Vr sends Flag (F) and payload to the Pr device to 

perform either secure boot with CARE or RA (as shown in 

steps 5 and 6 ). The details of system design and working 

are covered in subsection §IV-A and subsection §IV-B. 

 

2.2 Related Work 

 

Previous work presented in [31], performs system-level 

verification by writing specification and code in dafny 

[32] language, which supports automated verification using 

Z3 [33] SMT solver. Their tools convert dafny code to 

boogieX86 [34] verifiable assembly language. The entire 

system is verified at assembly level using boogie verifier 

[35]. The work presented in [36] formally verifies the 

UEFI secure boot system by validating PCR’s content using 

TPM. Another co-verification approach shown by [37] uses 

instruction-level abstraction (ISA) of hardware and applies 

SMACK solver to formally verify specific security 

properties of access control and DMA. Recent work in 

[12] demonstrates a framework for adversary modeling and 

security specification problem, followed by verification by 

using hyperfuzing. Another recent implementation [38] uses 

security properties specific hardware abstraction in software 

and uses SMACK solver. Vrased [16] verifies the hardware 

module using Linear Temporal Logic (LTL) specifications 

and forces the system to reset upon security properties 

failure. 

 

Therefore, previous research work for end-to-end security 

co-verification can be divided into two categories: 1) 
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information flow analysis [39], [40] and 2) property 

verification through model checking [16], [38], [41]. 

FVCARE belongs to the second category as it uses a software 

model checker to verify the security properties of complex 

Hw-Fw interactions. The general techniques of hardware 

abstraction into software and using software model checkers 

on the composition to verify Hw-Fw interactions are not 

new [16], [38], [42]. However, the end-to-end co-verification 

of security properties and specification (as per subsection IV-

C) for SRACARE based systems are yet to be explored. 

 

For example, in Fig 1 the Pr device computes and checks the 

digest of each flash frame during the secure boot process. If 

the verification fails, the RE re-flashes the correct flash 

memory region, locks the write access, and continues the 

subsequent boot process. In this case, an attacker can change 

the recovery code’s start location or redirect the system to 

measure boot integrity from the wrong memory region. The 

device requires adequate Physical Memory Protection (PMP) 

to prevent the write access to configuration registers and 

redirection of the code execution. Such scenarios require 

verification of hardware firmware and interaction, and any 

error can result in a security failure. FVCARE focuses on 

concrete multi-level model checking (not just bounded) 

experiments along with showcasing automated hardware 

verification techniques, which distinguishes it from previous 

works. 

 

3. Verification Framework Design Challenges 
 

The scalable hardware firmware co-verification framework 

design faces three major challenges: 1) correct system-level 

abstraction, 2) definition of security properties, and 3) co- 

verification technique implementation. 

 

3.1 System Design Abstraction 

 

The system to be verified can be represented either hardware 

abstraction as software or firmware/software mod- ules can 

be represented in hardware-based models. Both techniques 

require precisely captured sequential states of the hardware, 

firmware, and interacting modules. The in- correct model 

representation can lead to invalid verification results, a badly 

designed and attack-prone system. Therefore, precisely 

defined system security properties and boundaries for each 

hardware firmware components functioning are critically 

important for design abstraction. Section V-A covers the 

available types of abstraction models and the approach used 

by FVCARE. 

 

3.2 Security Properties Specification 

 

Another challenge is a system and security property 

specification. The hardware/firmware-based registers are 

setting, and component initialization, Atomicity, based 

temporal logic of the system can be verified by 

Computational Tree Logic (CTL) or Linear Temporal Logic 

(LTL). However, temporal logic cannot represent security 

properties such as controlled invocation, confidentiality, and 

availability. They can be verified by information flow 

properties analysis. Furthermore, specification of the shared 

system interconnect (bus) and specific SPI boundaries 

specification requires LTL, assertions, and weakness 

detection to protect the devices from [43] attacks. A 

combination of system security specification tools is required 

for system representation and exhaustive analysis. 

 

3.3 System Verification Techniques 

 

The co-verification of the security properties specified in 

either LTL, assertions, or another language needs to be 

checked for correctness and security assurance. This 

checking can be performed using Theorem Proving (TP) or 

Model Checking (MC). The Satisfiability Modulo Theories 

(SMT) solvers can be used for theorem proving. The model- 

checking can be used to verify the system correctness 

properties of finite-state transition systems [44], [45]. The 

model checking can be further classified into two types: 1) 

Unbounded model checking explores all reachable system 

transition states. 2) Bounded Model Checking (BMC) [46] 

restricts the search to all states reachable within the first k 

(bound) transitions of the system. Therefore, the selection of 

proper techniques becomes a crucial design component to 

perform exhaustive system verification. Following sub- 

section V-A covers the methodology used by FVCARE. 

 

4. Overview of SRACARE 
 

Before going into the details of verification methodology, 

this section covers the summary of system design and 

operation of SRACARE [30] based system used for formal 

verification in proposed FVCARE. 

 

a) System Design 

SRACARE system’s top-level design overview is presented 

in Fig 2. The core security enhancing features of SRACARE 

based system are: 1) It implements lightweight, secure 

communication protocol and 2) It demonstrates the 

 

 
Figure 2: Highlights the system design and key 

contributions of SRACARE: 1) Novel lightweight, secure 

authenticated communication protocol (steps 1 to 12), and 

2) Secure boot with CARE and remote attestation 

architecture for the Pr device (steps 13 to 20)). 

 

lightweight implementation of secure boot system with on 

board recovery engine (by using CARE module). It also 

implements sample RA architecture for run-time software 

state assurance of the Pr device. The notations and definitions 

used for the communication are listed in Table I. The detailed 
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working of the secure communication protocol (steps (1) to 

(12) from Fig 2) is covered in subsection §IV-B. The 

proposed secure communication protocol has two advantages 

over conventional authenticated communication protocols: 

 

(1) It authenticates both end devices (the Pr and Vr) in the 

communication and provides resilience from [3], [5], and 

[6] attacks. (2) It does not require additional computation- 

ally heavy system resources such as TRNG, Authenticated 

Encryption with Associated Data (AEAD), Elliptic Curve 

Digital Signature Algorithm (ECDSA) or complex Message 

Authentication Code (MAC) to satisfy A3 security properties 

listed in section §IV-C. Fig 3 shows the internal architecture 

design of Pr device to satisfy the security properties from A1, 

A2, A4 to A12 from subsection §IV-C. SRACARE based Pr 

system follows design choices  to , as highlighted in Fig 

3. The Pr performs either the RA or secure boot with CARE 

by following steps 13 to 20 from Fig 2. The detailed working 

of the system is covered in section §IV-B. 

 

b) System Operation 

The system operation of SRACARE based system is divided 

into four main steps: 1) Secure Communication Protocol, 2) 

Secure Boot, 3) Resilience and Recovery, and 4) Remote 

Attestation. 

 

1) Secure Communication Protocol: The secure 

communication starts when the Vr sends nonce n1 to the Pr 

device. 

 

Table 1: Notations and description 
Notation Description 

n1 Vr’s nonce for freshness  
n2 Pr’s nonce for freshness  
  n2 = Hmac(K, T) 

  T = hash(CHIP INFO.) ⊕ n1  

K Symmetric key for HMAC 

Hmac(K, m)  H((K′ ⊕ 0x5C5C) || H((K′ ⊕ 0x3636) || m)) 

A A = Hmac(K, n1) >> n2 

B  B = Hmac(K1, n2) 

C  C is a true or false result of the validation of B. 

D 
D consists of parameters Saddr and L as payload for 

attestation 

F Reset Flag 

Saddr  Start address of flash memory for hashing  

L Lenth of the memory region to be hashed  

R Final Result 

K′ H(K) K is larger than the block size K otherwise 

m Memory region to be attested, derived from Saddr, L 

H Cryptographic hash function 

K′ Key derived from the secret key K  

K1 K1= (Hmac(K, n1) ⊕ n1 ⊕ n2))  

|| Denotes concatenation 

⊕ Denotes bitwise exclusive or (XOR)  

CA Code Authentication 

RE  Resilience Engine 

RA  Remote Attestation 

 

 
Figure 3: Shows the architecture design of SRACARE 

based Pr system, highlighted are the key design modules. 

The pass arrows indicate that only the known good code 

will be allowed to be executed on the RISC-V core at any 

given time. 
 

The un-trusted Pr device uses novel n2 generation techniques 

by computing Hmac(K, T). 

n2 = Hmac (K, T ) 

T = hash(CIstart, 16) xor n1    (1) 

Where T is computed by xoring the digest of first 16 Bytes 

of the chip info memory and n1. The term CIstart indicates the 

starting location of Chip Info (CI) memory. The Pr generates 

A = (Hmac(K, n1) >> n2) by appending n2 with Hmac(K,n1) 

and sends it to the Vr. The Vr validates the authenticity of 

the Pr by recomputing Hmac(K, n1) and matching it with 

the received value. The Vr derives the new secret key K1, 

computes Hmac(K1, n2), and sends the result to the Pr. The 

Pr follows the appropriate generation and validation steps to 

authenticate the Vr and sends the result Flag C (step 11 from 

Fig 2) to the Vr. SRACARE closes the POC UART 

connection (it can be Xbee or other) between the Pr and Vr 

devices when the Vr receives (C==0) (in step 12 from Fig 2), 

else it sends the Flag F defining the next action and 

associated payload to the Pr. 

 

2) Secure Boot: If the received Flag (F) is set (F==1), 

then the Pr calls system reset function and performs the 

secure boot with CARE. Note that steps 4 to 6 in Fig 2 

are represented differently to denote that those steps will be 

part of both RA or secure boot. However, the sequence of 

execution will be different. As depicted in Fig 3, the secure 

boot sequence starts with the system power-on. It locates and 

executes the First Stage Boot Loader (FSBL) code from 

secure ROM to initialize the SPI and flash controllers, read 

chip information such as - device UUID, board version, 

symmetric share key, and hand off the control to the second 

stage boot code called the bootstrap. The bootstrapping 

process divides the flash image into a 1 KB frame chunks and 

sends it one at a time to the host via SPI bus for integrity and 

authenticity check. Each frame consists of the header and 

associated payload, as indicated in Fig 4. The header 

 

 
Figure 4: Represents the frame data structure. The header 

contains the digest of the entire frame, frame number, and 

flash offset location. The payload contains corresponding 

data for each frame. 
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Section of the data frame contains the digest of the entire 

frame, frame number, and the flash offset location. The offset 

location is the flash memory offset location used for the 

frame reflashing. The payload contains the corresponding 

data for each frame. This work has leveraged the Hash- based 

Message Authentication Code’s (HMAC) feature for signing 

(authenticating) the data and the SHA256 feature for integrity 

check for each frame to reduce hardware footprint and cost. 

Secure boot follows steps 4-5-15-16-17-18-6 from Fig 2 for 

each frame, and upon digest mismatch detection, the Pr 

triggers the RE else the device will continue the normal boot 

process. 

 

3) Resilience Engine: RE follows steps 16-17-18 from Fig 

2 to locate the affected memory region, reflashes the 

corrupted flash memory region with the known good 

software code from secure ROM, and locks the 

unauthorized access to the flash region using Physical 

Memory Protection (PMP) mechanism of the RISC-V 

processor. 

 

4) Remote Attestation: If the received Flag (F==0) value 

is not set, the Pr performs remote attestation based on the 

payload provided by the Vr, which consists of the start 

location and the length of the information to be attested. The 

Pr follows steps 4-5-6 sequence from Fig 2 to compute the 

digest and it sends the report to the Vr (steps 19 and 20 from 

Fig 2). 

 

c) Security Properties 

FVCARE has identified twelve (A1- A12) security 

properties for targeted SRACARE [30] based system with 

secure boot, RA, and onboard recovery needs to satisfy for 

end-to-end co-verification. They can be broadly classified 

into four domains: 1) System Initialization & Secure 

Communication, 2)Key Protection, 3)Safe Execution, and 

4) Safe Recovery. 

 

1) System Initialization & Secure Communication: 

This subsection defines required security properties during 

the startup of the system & peripherals initialization. It 

also focuses on defining security properties for derived keys 

generation and device authentication at the Pr side. A1. 

Start-up Checking: The startup security properties require 

the correct implementation of start addresses and range 

of ROM, RAM, flash memory regions, and MMIO device 

mapping, based on the system’s design specification. A2. 

Peripheral Initialization: This security property includes 

initialization of system registers, flash controller, SPI, and 

baud rate setting of UART. It involves the function calls from 

firmware to initialize the respective hardware modules 

(UART, SPI) and registers. A3. Secure Communication: 

The design under test uses a secure device authentication 

protocol for Pr & Vr devices authentication. As discussed in 

subsection IV-B, it uses novel derived key and nonce 

generation techniques. This security property requires 

proper derived key and nonce generation techniques. 

 

2) Key Protection: This property ensures that all the secure 

device information, crypto, and derived keys are stored in 

secure ROM regions and protected by access control 

policies. A4. Key Confidentiality: This security property 

validates that the secure key (K) and derived K’ are stored 

in a protected ROM memory region. A5. Access Control 

Enforcement: It defines the PMP access control policies to 

protect the system from unauthorized memory accesses. It 

involves both hardware and software system modules. 

 

3) Safe Execution: This property ensures the correct 

implementation, controlled invocation, and un-interrupted 

execution of the secure boot code. A6. Functional 

Correctness: This security property requires the 

implementation and functional correctness of hardware- 

based crypto-core. A7. Atomicity: This specification 

ensures that once triggered; the code execution should not 

be interrupted. A8. Error Free Execution: All the hardware 

(IPs) and software sub-modules should have error-free 

execution. A9. Controlled Invocation: The security 

property defines no interrupt execution, DMA operations, 

and debugger usage are allowed during the secure boot 

process. 

 

4) Safe Recovery: The correct implementation and 

error-free execution of RE sub-module code execution for 

recovery. of A10. Attack Detection: This security property 

ensures that the corrupted flash memory region is identified 

correctly during the secure boot process. A11. Secure 

Reflash: This property defines ensures that the affected 

device is re-flashed with the appropriate recovery code (from 

secure ROM). It requires validation of the start address and 

size of the flash memory and recovery data. A12. Access 

Controls: This security property ensures that proper access 

control policies are applied after recovery code reflash from 

secure ROM. It protects the device from future flash 

modification attacks. 

 

d) Scope of Verification 

This work provides a formal co-verification framework for 

SRACARE based system with secure boot, RA, and on- 

board recovery. All system specification, security properties, 

and the hardware-software modules setting & interactions 

are formally verified. However, formal verification of the 

processor is out of scope for this work. The hardware system 

model (crypto-core and other TCB modules) are represented 

in Register Transfer Level (RTL), and software - boot 

process, bootstrapping, and resilience engine codes are 

written in C programming language. The functionality and 

security properties are specified in Linear Temporal Logic 

(LTL) and assertions. The model checker NuSMV [18] is 

used for hardware verification. The RTL to SMV model 

specifications are generated using Verilog2SMV [47] tool. 

For the formal software verification, Frama-C [17] tool with 

three different plugins was used for functional, specification, 

weakness prediction, and LTL model checking. 

 

5. Formal Verification Approach 
 

This section covers the FVCARE’s approach for end-to- end 

system modeling, abstraction, and formal verification. 

 

a) Formal Co-Verification Methodology 

As discussed earlier, the end-to-end security properties 

verification of a system with secure boot, RA, and recovery 

engine becomes a complex problem, and we argue that 

only hardware verification or verification of only software 

abstraction of hardware can miss out on critical security bugs 
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during the security properties setting or interaction. There- 

fore, the FVCARE framework proposed two-step end-to-end 

security properties verification for the system under test. In 

the first step of the verification, 1) it verifies the security- 

critical hardware components of the FVCARE system using 

hardware verification technique and 2) for the overall system 

and software verification, it uses source level (C) abstraction 

of hardware technique. 

 

A pictorial overview of the verification methodology is 

shown in Fig 5. The goal is to co-verify the firmware, soft- 

ware, and interacting hardware components. Fig 5(a) shows 

firmware verification is a complex task as it involves multiple 

interactions between software and hardware modules. In the 

first step, Boot Rom firmware code (FW-1) initializes the 

UART, internal registers with boot settings (HW module 

 

 
Figure 5: Formal Verification Methodology 

 

1), and transfers the control to second stage Boot Strap 

firmware code (FW-2). The FW-2 code initializes the SPI, 

applies the access control policies (HW module 2), and 

performs a chain of integrity & authenticity measurements 

using hardware crypto-core (HW module 3). The hardware 

verification method is shown in Fig5(b) and covered in 

subsection V-B. The framework uses the source level 

abstraction of the hardware module for end-to-end security 

properties verification by software abstraction approach. 

Software verification is presented by Fig 5(c) and covered in 

subsection V-C. 

 

b) Hardware Verification Technique 

The framework formally verifies the security-critical hard- 

ware component - crypto-engine HMAC-SHA256 ’s security 

properties and functional correctness. It also verifies the 

access control policies and internal registers settings for 

UART’s baud rate, SPI’s initialization, and the flash 

controller. The formal verification of all other hardware 

modules, including the processor, is out of this work scope. 

 

The hardware module listed above are written in system 

Verilog. Linear Temporal Logic (LTL) is used to formalize 

the system specifications, security properties (A1-A6) from 

subsection IV-C, and invariant that should hold throughout 

boot code execution. FVCARE automates the system Verilog 

to SMV conversion process by using Verilog2SMV [47] 

tool. It then uses the NuSMV [18] model checker to verify 

the correctness of LTL specifications. Upon failure of the 

formal verification, the hardware module was redesigned for 

security assurance. 

 
Figure 6: Top-level design of hardware verification 

framework. The RTL design is converted to SMV using 

verilog2SMV tool. The hardware specifications and 

security properties represented in LTL logic are verified 

using NuSMV (SMT solver) and pass or fail results are 

generated. 

 

c) Software Verification Technique 

For end-to-end system modeling Instruction Level 

Abstraction (ILA) of the software of the system. ILA 

approaches [9]–[11] involves the deep understanding and 

cycle-accurate conversion of the software system into 

instructions for that processor, and it cannot scale for fast 

pace changing markets. Another approach uses the hardware 

mod- ules’ abstraction into suitable software code (C 

programs), as shown in Fig 5(c). After source-level 

abstraction, FVCARE uses Frama-C [17] (FRAmework for 

Modular Analysis of C code) for software verification tool. 

 

The Frama-c tool can be used for buffer-overflow, pointer 

safety, exceptions, termination, K-induction, and invariant 

checking. It can also be used for specific system properties 

checking using assertions and LTL specifications. The 

Frama-c framework has a collection of interoperable, 

scalable, and sound software analysis tools. In this work, the 

Frama-c framework is used with three main plugins: 1) 

Abstract interpolation-based Value plugin 2) Weak 

prediction (WP) for deductive verification, and 3) System 

specification & security properties verification using LTL 

specifications. 

• The abstract interpretation framework based on the 

VALUE plugin is used to compute the over-

approximations of possible values of program variables 

at each program end-point. It uses formal behavioral 

specification language ACSL (ANSI/ISO C Specification 

Language) to specify the C program’s functional 

properties and contracts. ACSL uses clauses for 

precondition verification, ensures clauses for post-

condition verification, assign for global variables, and 

loop invariant clauses are used for loop iterations. 

• The Weak Prediction (WP) plugin verifies that the given C 

code satisfies its specification expressed as ACSL 

annotations. The weak prediction provided by [48] 

reduces any deductive verification problem to 

establishing the validity of first-order formulas called 
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verification conditions. FVCARE framework then uses 

Alt-Ergo SMT solver to prove the verification conditions 

generated by WP. 

• The Aorai plugin is used to verify the system properties 

represented in LTL specifications. The software 

verification framework setup with Frama-c and Aorai 

plugin is shown in Fig 7. 

 
Figure 7: Presents the architecture design of the proposed 

framework. The pass arrows indicate that only the known 

good code will be passed to the RISC-V processor core for 

execution in any given case. 
 

The Frama-c pre-processor module converts the C program 

into annotation calculus. The LTL2BA tool converts the LTL 

specification into Buchi automaton, combined with 

annotation calculus to generate an annotated C program. Alt- 

Ergo SMT solver is used to prove the verification conditions 

with fail or pass results formally. The functions and code 

were modified to satisfy the security properties specified in 

A1 to A12. 

 

6. Evaluation 
 

This section covers details of verification techniques se- 

lection for each of the security components in SRACARE 

based design under test. It shows verification results and 

timing analysis. Finally, it compares the proposed FVCARE 

framework with state-of-the-art secure boot, RA, and 

formally verified systems. Based on the security properties 

specification in subsection IV-C and system operation in sub- 

section IV-B, the end-to-end system verification is divided 

into the following subtasks. 

 

a) Verification of System Initialization 

The formal verification of start addresses and range of ROM, 

RAM, flash memory regions, MMIO device mapping 

(security property A1), and registers initialization (A2) is 

performed by using the hardware verification technique V-B. 

The peripheral initialization for security property A2 is 

verified using co-verification techniques. 

 

b) Verification of Secure Communication 

To limit the secure formal communication verification 

problem, the FVCARE focuses only on verifying the Pr side 

security properties. Therefore, this work’s verification efforts 

assume that nonce n1 and Flag selection values are provided 

to the prover (Pr) device. The LTL model was designed 

based on the system specifications to validate novel nonce 

generation techniques, and assertions were passed. 

 

c) Verification of Secure Boot 

The secure boot verification process involves multiple 

transactions between Hw-fw. Therefore, it uses software 

abstraction of the hardware. The verification of security 

properties A3 to A9 was also included in this work. The 

security properties were passed in LTL formulas, assertions, 

and annotations in Frama-C. The hardware verification of 

crypto- core (HMAC-SHA256) is covered in subsection VI-

F. 

 

d) Verification of Remote Attestation 

To reduce the complexity of verifying RA communication 

protocol, FVCARE checks the preset flag condition (F=1 

from Fig 2), start location, and the flash region size. The 

annotations validation, LTL specification checking for digest 

computation is performed using Frama-C. Formal 

verification of 1 KB of the digest computation requires 0.02s 

on intel NUC i-7 8th generation running @ 3.4GHz. 

 

e) Verification of Resilience Engine 

Since the RE module was implemented in software, the 

verification is also performed using the software-based 

Frama-C tool with plugins. The important verification parts 

in this are to validate frame numbers and flash memory 

locations. The framework also verifies proper access locks 

during and after the code reflash. 

 

f) Verification of Security properties 

The security properties specification, formal verification 

approach (Hw or Fw based), execution time, and results 

are represented in Table III. It also provides details about 

hardware or firmware-based formal verification techniques 

usage for set property. Selected set of the security properties, 

their verification technique (Hw/Fw), the time required on 

Intel Next Unit of Computing (NUC) i7 @3.4Ghz. 

 

Table III: Security Properties verification results on i7-

NUC @3.4GHz 
Security Properties Specification Time (s) Hw Fw Results 

Start-up Checking 0.02 yes no 

 

Peripheral Initialization 0.03 yes yes 

Key Confidentiality 0.02 yes no 

Access Control Enforcement 0.03 yes yes 

Controlled Invocation 0.02 yes no 

Attack Detection 0.02 yes yes 

Correct Frame Locations 0.02 no yes 

Validate Frame Size 0.02 no yes 

Functional Correctness 0.2 yes yes 
 

Note that FVCARE verifies the crypto-core’s functional 

correctness using hardware verification as discussed in sub- 

section V-B. Furthermore, the system’s functional correct- 

ness of secure boot and RA features is validated using 

the hardware approach’s software abstraction. The formal 

verification of the secure boot for the test application of 

5.6 KB takes 0.2 seconds. 

 

7. Comparison with the state-of-the-art 

solutions 
 

For the state-of-the-art comparison, FVCARE has identified 

several recent implementations of secure boot and RA 

techniques as listed in Table II. As can be seen from Tabel II 
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majority of the available, secure boot and RA 

implementations focus on detecting and preventing 

malicious code modification attacks. However, it lacks 

protection from attacks and mostly restarts the system or 

leaves it in a non-operational state. Recent 

implementations Healed and [49] provides recovery, but 

they do not have secure boot, RA, and formal verification 

support. Other implementation [16] shows formal 

verification of RA module using LTL specification, with two 

unsuitable design choices: 1) it uses software-based crypto-

core (HACL*) for digest computation in RA, 2) it does not 

have secure boot support, and 3) it recommends systems 

reset to prevent the attacks. Work presented by [38] uses the 

instruction-level abstraction of hardware approach for formal 

verification of security primitives such as secure boot. ILA 

approach is very restrictive, ISA specific, and limited to 

scale. Therefore, not suitable for scalable end-to-end system 

verification. Another work presented in [41] demonstrates 

the use of the source-level abstraction of the hardware and 

bounded model checking for industry-standard SoC’s 

security verification. Furthermore, Recent implementations 

CARE [29] and SRACARE [30] demonstrates resilient small 

embedded system design with secure boot, RA and on-board 

recovery techniques. For various security reasons and 

practical use-cases, our hypothesis required secure boot, RA, 

and onboard recovery such as CARE [29], and SRACARE 

[30]. FVCARE uses the source- level abstraction of the 

hardware approach and enhances the model checking 

capabilities by using the Frama-C tool with different K-

induction plugins, Weakness prediction, assertion, and 

bounded model checking using LTL. Thus, FVCARE is the 

first implementation that integrates hardware and software 

verification methods and demonstrates the end-to-end co-

verification technique for SRACARE based systems with 

secure boot, RA, and onboard recovery mechanisms. 

 

8. Conclusion 
 

FVCARE provides the end-to-end co-verification frame- 

work for SRACARE based systems with secure boot, RA, 

and onboard recovery. It uses the abstraction of hardware as 

a software technique for formal verification of design 

specifications, security properties, and the system’s 

functional correctness. Also, it uses hardware verification 

techniques for verification of initial system and registers 

settings, access control policies. It demonstrates formal 

verification of hardware using Linear Temporal Logic (LTL) 

properties and using model checking NuSMV tool. FVCARE 

leverages the software abstraction of the hardware approach 

for software verification and uses a novel Frama-C 

framework with different plugins for formal verification of 

the system rep- resented as software abstraction of the 

hardware. FVCARE demonstrates the first practical 

implementation of a formal co-verification framework. 

 

Table II: Qualitative comparison between secure boot/RA techniques targeting lightweight embedded devices 
Parameters [30], [29] Healed Ref. [49] Ref. [25] Sanctum Ref. [38] Ref. [16] Ref. [41] 

Design Type Hybrid SW Hybrid HW Hybrid Hybrid Hybrid Hybrid 

Secure Communication yes no no yes yes yes no no 

Secure boot yes no no yes yes yes no no 

Remote Attestation yes no no no yes no yes no 

Malicious Code Modification Attacks Detection yes yes yes yes yes yes yes yes 

Malicious Code Modification Attacks Protection yes no yes yes yes yes yes yes 

Recovery from Malicious Code Modification Attacks yes yes yes partial no no no no 

Formal Verification of Hardware no no no no no yes yes yes 

Formal Verification of Software no no no no no yes yes yes 

Formal hardware/software co-Verification no no no no no yes yes yes 
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