
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

FVCARE: Formal Verification of Security

Primitives in Resilient Embedded SoCs

Avani Dave

Student Member, IEEE, Nilanjan Banerjee, Member, IEEE and Chintan Patel, Member, IEEE

Abstract: With the increased utilization, the small embedded and IoT devices have become an attractive target for sophisticated attacks

that can exploit the device’s security-critical information and data in malevolent activities. Secure boot and Remote Attestation (RA)

techniques verifies the integrity of the device’s software state at boot-time and runtime. Correct implementation and formal

verification of these security primitives provide strong security guarantees and enhance user confidence. The formal verification of these

security primitives is considered challenging, as it involves complex hardware- software interactions, semantics gaps and requires bit-

precise reasoning. To address these challenges, this paper presents FVCARE an end-to-end system co-verification framework. It also

defines the security properties for resilient small embedded systems. FVCARE divides the end-to-end system co-verification problem into

two modules: 1) verifying the (bit precise) initial system settings, registers, and access control policies by hardware verification

techniques, and 2) verifying the system specification, security properties, and functional correctness using source-level software

abstraction of the hardware. The evaluation of proposed techniques on SRACARE based systems demonstrates its efficacy in security co-

verification.

Keywords: secure boot, formal verification, resilient system, onboard recovery, attack resilient system, small embedded systems.

1. Introduction

The utilization of small embedded and IoT devices has

increase multi-fold in recent times for collecting, processing,

and transferring security-critical information and user data.

It has also enabled sophisticated attackers such as [1]–[5] to

leak, tweek, slink or exploit the security-critical information

of the device for use in malevolent activities. Denial of

Service (DoS) [6] can flood the communication interface of

an application and disrupt the normal operation. Therefore,

software state assurance (at run-time and boot-time) and se-

cure communication have become essential building blocks

for device security. Security primitives such as 1) secure boot

measures integrity and authenticity of the software state of

the device at boot-time. 2) Remote Attestation (RA) is a

client-server security service, which uses a trusted third-

party verifier (Vr) to send the integrity verification request to

an un-trusted prover (Pr) device at runtime. The Pr computes

the digest and sends the report to the Vr. Therefore, if

correctly implemented, these security primitives provide a

strong security guaranty about the software state of the

device. Formal verification techniques are used to verify that

the system posses the correct specification and security

properties.

Some of the currently available verification techniques

require manual inspection or hacking skills [7], [8] and they

can be repeated, scaled, or completely automated. Further-

more, they are to miss the bugs as manual involvement. Other

existing formal verification approaches can be broadly

classified in two categories: 1) Representing the firmware

code in hardware by instruction level abstraction or by com-

piling the firmware as assembly code, and using hardware

verification tools such as [9]–[11] for subsequent analysis.

2) representing the abstraction of hardware as software and

using software verification tools such as [12]–[15] to verify

the necessary security properties. The former approach uses

the complex instruction-level abstraction process that makes

it ISA specific and difficult to scale. The latter approach

focuses on abstracting security-specific hardware features in

software.

Formal verification of security primitives such as secure boot

and RA is considered a challenging problem, as it involves

multiple complex hardware-software interactions. For

example, in the case of a hybrid SRACARE based system

(discussed in section IV), it initializes a set of hardware

registers during system boot-up and applies access control

policies. The verification technique needs to verify

appropriate hardware registers setting (along with other

firmware software features), which cannot be verified by

software abstractions. Furthermore, currently available

formal verification techniques use bounded model checking

(BMC) [] only and do not cover all system specifications,

security properties edge cases. It also lacks in providing co-

verification techniques of modules interaction as discussed

in subsection III., Therefore, to bridge this gap, This paper

presents hardware-firmware co-verification framework

FVCARE. The formal co-verification process in FVCARE is

com- presses of 1) defining the system using a suitable

mechanical model, 2) identifying and documenting the

desired system properties in a succinct and intelligible way,

and 3) providing proof that set system properties are satisfied.

For providing proof of step (3)) FVCARE framework

divides end-to- end system verification tasks into two

categories: First, it uses automated hardware formal

verification technique similar to that of vrased [16].

Secondly, it uses the abstraction of hardware representation

in software techniques for performing not only bounded

model checking but also assertion and weakness prediction

checking. It uses modular plugins with Frama-C [17] tool for

software-based design specifications and security properties

formal verification.

Research Contributions: The design and implementation

of the proposed FVCARE framework presents the following

research contributions:

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1503

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Design Specifications & Challenges: It defines the

secure system design specification, Hardware (Hw), and

Firmware (Fw) interactions during the authentication,

secure boot, and RA computation. It also highlights the

Hw-Fw co-verification challenges.

• Defines Security Properties: It defines the security

properties for SRACARE based small embedded de- vice.

• Formal (Hw-Fw) Co-Verification Framework: It

demonstrates the practicality of security properties

specific hardware abstraction in software. It also

performs formal verification using Frama-C [17] tool.

Frama-C tool with three new plugins provides Weakness

Pre- diction (WP), Value (assertions), and Linear

Temporal Logic (LTL) specifications checking.

• Formal Hw Verification: It presents a formal hard- ware

verification approach by converting system verilog

hardware modules (for specific properties checking only)

to SMV using Verilog2SMV. It verifies the specific

security property using NuSMV [18] tool.

By combining all these, FVCARE presents the first formal

co-verification framework to verify the security primitives

and properties of complex firmware codes in a small em-

bedded System on Chip (SoC) (example: SRACARE based

system).

Organization

Section II covers the background, discusses the design

challenges for formal verification framework, presents

related work and security properties. Section III presents

targeted system design, operation, adversarial model, and

scope of verification. It is followed by section IV, covering

the formal verification methodologies, discussing the

hardware- software verification approaches used by

FVCARE. Section V provides the evaluation summary of the

FVCARE framework by sharing verification results and

findings. FVCARE evaluates the state-of-the-art system

design approaches and formal verification techniques.

Section VI provides the concluding remarks for formal co-

verification work of SRACARE based SoC design.

2. Background & Related Work

This section provides a brief overview of the background and

related work of formal verification techniques.

2.1 Background

Although previous implementations of secure boot [19]–

[26] and RA [16], [27], [28], have provided strong security

guarantees about the software state of the device, the

majority of them lack in providing prevention or recovery

techniques, the device will be kept in hang or un-operational

state upon detection of malicious code modification attacks,

the device needs code reflash, which can be done by

manually or over-the-air code reflash conventionally. In the

event of a smart attacker corrupting the networking stack,

over- the-air code reflash becomes unsuitable. Often manual

code reflash becomes not feasible due to placement of the

targeted devices in applications such as home security

cameras, smart controllers in automotive, aviation, or

industrial systems. This necessitates some form of onboard

recovery techniques as represented by CARE [29]. Recent

work presented in SRACARE [30] extends CARE [29] by

enabling RA and secure communication. Therefore,

FVCARE has selected recent SRACARE based secure RA

with onboard recovery system as shown in fig 1 for end-to-

end formal verification. The high-level system operation can

be summarized in two

Figure 1: Highlights the proposed SRACARE system design

flow. It represents the lightweight authenticated secure

communication protocol and a new RA and secure boot

architecture using custom CARE module

Steps:1) authentication of Vr and Pr devices using a secure

communication protocol (steps 1 to 4) and 2) performs either

remote attestation (run-time) or secure-boot (boot- time) with

onboard recovery, depending on the result of step 1) Upon

authentication failure, Pr sends a flag (C=0), and Vr closes

the communication. Pr sends Flag (C=1) when authentication

passes. Vr sends Flag (F) and payload to the Pr device to

perform either secure boot with CARE or RA (as shown in

steps 5 and 6). The details of system design and working

are covered in subsection §IV-A and subsection §IV-B.

2.2 Related Work

Previous work presented in [31], performs system-level

verification by writing specification and code in dafny

[32] language, which supports automated verification using

Z3 [33] SMT solver. Their tools convert dafny code to

boogieX86 [34] verifiable assembly language. The entire

system is verified at assembly level using boogie verifier

[35]. The work presented in [36] formally verifies the

UEFI secure boot system by validating PCR’s content using

TPM. Another co-verification approach shown by [37] uses

instruction-level abstraction (ISA) of hardware and applies

SMACK solver to formally verify specific security

properties of access control and DMA. Recent work in

[12] demonstrates a framework for adversary modeling and

security specification problem, followed by verification by

using hyperfuzing. Another recent implementation [38] uses

security properties specific hardware abstraction in software

and uses SMACK solver. Vrased [16] verifies the hardware

module using Linear Temporal Logic (LTL) specifications

and forces the system to reset upon security properties

failure.

Therefore, previous research work for end-to-end security

co-verification can be divided into two categories: 1)

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1504

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

information flow analysis [39], [40] and 2) property

verification through model checking [16], [38], [41].

FVCARE belongs to the second category as it uses a software

model checker to verify the security properties of complex

Hw-Fw interactions. The general techniques of hardware

abstraction into software and using software model checkers

on the composition to verify Hw-Fw interactions are not

new [16], [38], [42]. However, the end-to-end co-verification

of security properties and specification (as per subsection IV-

C) for SRACARE based systems are yet to be explored.

For example, in Fig 1 the Pr device computes and checks the

digest of each flash frame during the secure boot process. If

the verification fails, the RE re-flashes the correct flash

memory region, locks the write access, and continues the

subsequent boot process. In this case, an attacker can change

the recovery code’s start location or redirect the system to

measure boot integrity from the wrong memory region. The

device requires adequate Physical Memory Protection (PMP)

to prevent the write access to configuration registers and

redirection of the code execution. Such scenarios require

verification of hardware firmware and interaction, and any

error can result in a security failure. FVCARE focuses on

concrete multi-level model checking (not just bounded)

experiments along with showcasing automated hardware

verification techniques, which distinguishes it from previous

works.

3. Verification Framework Design Challenges

The scalable hardware firmware co-verification framework

design faces three major challenges: 1) correct system-level

abstraction, 2) definition of security properties, and 3) co-

verification technique implementation.

3.1 System Design Abstraction

The system to be verified can be represented either hardware

abstraction as software or firmware/software mod- ules can

be represented in hardware-based models. Both techniques

require precisely captured sequential states of the hardware,

firmware, and interacting modules. The in- correct model

representation can lead to invalid verification results, a badly

designed and attack-prone system. Therefore, precisely

defined system security properties and boundaries for each

hardware firmware components functioning are critically

important for design abstraction. Section V-A covers the

available types of abstraction models and the approach used

by FVCARE.

3.2 Security Properties Specification

Another challenge is a system and security property

specification. The hardware/firmware-based registers are

setting, and component initialization, Atomicity, based

temporal logic of the system can be verified by

Computational Tree Logic (CTL) or Linear Temporal Logic

(LTL). However, temporal logic cannot represent security

properties such as controlled invocation, confidentiality, and

availability. They can be verified by information flow

properties analysis. Furthermore, specification of the shared

system interconnect (bus) and specific SPI boundaries

specification requires LTL, assertions, and weakness

detection to protect the devices from [43] attacks. A

combination of system security specification tools is required

for system representation and exhaustive analysis.

3.3 System Verification Techniques

The co-verification of the security properties specified in

either LTL, assertions, or another language needs to be

checked for correctness and security assurance. This

checking can be performed using Theorem Proving (TP) or

Model Checking (MC). The Satisfiability Modulo Theories

(SMT) solvers can be used for theorem proving. The model-

checking can be used to verify the system correctness

properties of finite-state transition systems [44], [45]. The

model checking can be further classified into two types: 1)

Unbounded model checking explores all reachable system

transition states. 2) Bounded Model Checking (BMC) [46]

restricts the search to all states reachable within the first k

(bound) transitions of the system. Therefore, the selection of

proper techniques becomes a crucial design component to

perform exhaustive system verification. Following sub-

section V-A covers the methodology used by FVCARE.

4. Overview of SRACARE

Before going into the details of verification methodology,

this section covers the summary of system design and

operation of SRACARE [30] based system used for formal

verification in proposed FVCARE.

a) System Design

SRACARE system’s top-level design overview is presented

in Fig 2. The core security enhancing features of SRACARE

based system are: 1) It implements lightweight, secure

communication protocol and 2) It demonstrates the

Figure 2: Highlights the system design and key

contributions of SRACARE: 1) Novel lightweight, secure

authenticated communication protocol (steps 1 to 12), and

2) Secure boot with CARE and remote attestation

architecture for the Pr device (steps 13 to 20)).

lightweight implementation of secure boot system with on

board recovery engine (by using CARE module). It also

implements sample RA architecture for run-time software

state assurance of the Pr device. The notations and definitions

used for the communication are listed in Table I. The detailed

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1505

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

working of the secure communication protocol (steps (1) to

(12) from Fig 2) is covered in subsection §IV-B. The

proposed secure communication protocol has two advantages

over conventional authenticated communication protocols:

(1) It authenticates both end devices (the Pr and Vr) in the

communication and provides resilience from [3], [5], and

[6] attacks. (2) It does not require additional computation-

ally heavy system resources such as TRNG, Authenticated

Encryption with Associated Data (AEAD), Elliptic Curve

Digital Signature Algorithm (ECDSA) or complex Message

Authentication Code (MAC) to satisfy A3 security properties

listed in section §IV-C. Fig 3 shows the internal architecture

design of Pr device to satisfy the security properties from A1,

A2, A4 to A12 from subsection §IV-C. SRACARE based Pr

system follows design choices to , as highlighted in Fig

3. The Pr performs either the RA or secure boot with CARE

by following steps 13 to 20 from Fig 2. The detailed working

of the system is covered in section §IV-B.

b) System Operation

The system operation of SRACARE based system is divided

into four main steps: 1) Secure Communication Protocol, 2)

Secure Boot, 3) Resilience and Recovery, and 4) Remote

Attestation.

1) Secure Communication Protocol: The secure

communication starts when the Vr sends nonce n1 to the Pr

device.

Table 1: Notations and description
Notation Description

n1 Vr’s nonce for freshness
n2 Pr’s nonce for freshness
 n2 = Hmac(K, T)

 T = hash(CHIP INFO.) ⊕ n1

K Symmetric key for HMAC

Hmac(K, m) H((K′ ⊕ 0x5C5C) || H((K′ ⊕ 0x3636) || m))

A A = Hmac(K, n1) >> n2

B B = Hmac(K1, n2)

C C is a true or false result of the validation of B.

D
D consists of parameters Saddr and L as payload for

attestation

F Reset Flag

Saddr Start address of flash memory for hashing

L Lenth of the memory region to be hashed

R Final Result

K′ H(K) K is larger than the block size K otherwise

m Memory region to be attested, derived from Saddr, L

H Cryptographic hash function

K′ Key derived from the secret key K

K1 K1= (Hmac(K, n1) ⊕ n1 ⊕ n2))

|| Denotes concatenation

⊕ Denotes bitwise exclusive or (XOR)

CA Code Authentication

RE Resilience Engine

RA Remote Attestation

Figure 3: Shows the architecture design of SRACARE

based Pr system, highlighted are the key design modules.

The pass arrows indicate that only the known good code

will be allowed to be executed on the RISC-V core at any

given time.

The un-trusted Pr device uses novel n2 generation techniques

by computing Hmac(K, T).

n2 = Hmac (K, T)

T = hash(CIstart, 16) xor n1 (1)

Where T is computed by xoring the digest of first 16 Bytes

of the chip info memory and n1. The term CIstart indicates the

starting location of Chip Info (CI) memory. The Pr generates

A = (Hmac(K, n1) >> n2) by appending n2 with Hmac(K,n1)

and sends it to the Vr. The Vr validates the authenticity of

the Pr by recomputing Hmac(K, n1) and matching it with

the received value. The Vr derives the new secret key K1,

computes Hmac(K1, n2), and sends the result to the Pr. The

Pr follows the appropriate generation and validation steps to

authenticate the Vr and sends the result Flag C (step 11 from

Fig 2) to the Vr. SRACARE closes the POC UART

connection (it can be Xbee or other) between the Pr and Vr

devices when the Vr receives (C==0) (in step 12 from Fig 2),

else it sends the Flag F defining the next action and

associated payload to the Pr.

2) Secure Boot: If the received Flag (F) is set (F==1),

then the Pr calls system reset function and performs the

secure boot with CARE. Note that steps 4 to 6 in Fig 2

are represented differently to denote that those steps will be

part of both RA or secure boot. However, the sequence of

execution will be different. As depicted in Fig 3, the secure

boot sequence starts with the system power-on. It locates and

executes the First Stage Boot Loader (FSBL) code from

secure ROM to initialize the SPI and flash controllers, read

chip information such as - device UUID, board version,

symmetric share key, and hand off the control to the second

stage boot code called the bootstrap. The bootstrapping

process divides the flash image into a 1 KB frame chunks and

sends it one at a time to the host via SPI bus for integrity and

authenticity check. Each frame consists of the header and

associated payload, as indicated in Fig 4. The header

Figure 4: Represents the frame data structure. The header

contains the digest of the entire frame, frame number, and

flash offset location. The payload contains corresponding

data for each frame.

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1506

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Section of the data frame contains the digest of the entire

frame, frame number, and the flash offset location. The offset

location is the flash memory offset location used for the

frame reflashing. The payload contains the corresponding

data for each frame. This work has leveraged the Hash- based

Message Authentication Code’s (HMAC) feature for signing

(authenticating) the data and the SHA256 feature for integrity

check for each frame to reduce hardware footprint and cost.

Secure boot follows steps 4-5-15-16-17-18-6 from Fig 2 for

each frame, and upon digest mismatch detection, the Pr

triggers the RE else the device will continue the normal boot

process.

3) Resilience Engine: RE follows steps 16-17-18 from Fig

2 to locate the affected memory region, reflashes the

corrupted flash memory region with the known good

software code from secure ROM, and locks the

unauthorized access to the flash region using Physical

Memory Protection (PMP) mechanism of the RISC-V

processor.

4) Remote Attestation: If the received Flag (F==0) value

is not set, the Pr performs remote attestation based on the

payload provided by the Vr, which consists of the start

location and the length of the information to be attested. The

Pr follows steps 4-5-6 sequence from Fig 2 to compute the

digest and it sends the report to the Vr (steps 19 and 20 from

Fig 2).

c) Security Properties

FVCARE has identified twelve (A1- A12) security

properties for targeted SRACARE [30] based system with

secure boot, RA, and onboard recovery needs to satisfy for

end-to-end co-verification. They can be broadly classified

into four domains: 1) System Initialization & Secure

Communication, 2)Key Protection, 3)Safe Execution, and

4) Safe Recovery.

1) System Initialization & Secure Communication:

This subsection defines required security properties during

the startup of the system & peripherals initialization. It

also focuses on defining security properties for derived keys

generation and device authentication at the Pr side. A1.

Start-up Checking: The startup security properties require

the correct implementation of start addresses and range

of ROM, RAM, flash memory regions, and MMIO device

mapping, based on the system’s design specification. A2.

Peripheral Initialization: This security property includes

initialization of system registers, flash controller, SPI, and

baud rate setting of UART. It involves the function calls from

firmware to initialize the respective hardware modules

(UART, SPI) and registers. A3. Secure Communication:

The design under test uses a secure device authentication

protocol for Pr & Vr devices authentication. As discussed in

subsection IV-B, it uses novel derived key and nonce

generation techniques. This security property requires

proper derived key and nonce generation techniques.

2) Key Protection: This property ensures that all the secure

device information, crypto, and derived keys are stored in

secure ROM regions and protected by access control

policies. A4. Key Confidentiality: This security property

validates that the secure key (K) and derived K’ are stored

in a protected ROM memory region. A5. Access Control

Enforcement: It defines the PMP access control policies to

protect the system from unauthorized memory accesses. It

involves both hardware and software system modules.

3) Safe Execution: This property ensures the correct

implementation, controlled invocation, and un-interrupted

execution of the secure boot code. A6. Functional

Correctness: This security property requires the

implementation and functional correctness of hardware-

based crypto-core. A7. Atomicity: This specification

ensures that once triggered; the code execution should not

be interrupted. A8. Error Free Execution: All the hardware

(IPs) and software sub-modules should have error-free

execution. A9. Controlled Invocation: The security

property defines no interrupt execution, DMA operations,

and debugger usage are allowed during the secure boot

process.

4) Safe Recovery: The correct implementation and

error-free execution of RE sub-module code execution for

recovery. of A10. Attack Detection: This security property

ensures that the corrupted flash memory region is identified

correctly during the secure boot process. A11. Secure

Reflash: This property defines ensures that the affected

device is re-flashed with the appropriate recovery code (from

secure ROM). It requires validation of the start address and

size of the flash memory and recovery data. A12. Access

Controls: This security property ensures that proper access

control policies are applied after recovery code reflash from

secure ROM. It protects the device from future flash

modification attacks.

d) Scope of Verification

This work provides a formal co-verification framework for

SRACARE based system with secure boot, RA, and on-

board recovery. All system specification, security properties,

and the hardware-software modules setting & interactions

are formally verified. However, formal verification of the

processor is out of scope for this work. The hardware system

model (crypto-core and other TCB modules) are represented

in Register Transfer Level (RTL), and software - boot

process, bootstrapping, and resilience engine codes are

written in C programming language. The functionality and

security properties are specified in Linear Temporal Logic

(LTL) and assertions. The model checker NuSMV [18] is

used for hardware verification. The RTL to SMV model

specifications are generated using Verilog2SMV [47] tool.

For the formal software verification, Frama-C [17] tool with

three different plugins was used for functional, specification,

weakness prediction, and LTL model checking.

5. Formal Verification Approach

This section covers the FVCARE’s approach for end-to- end

system modeling, abstraction, and formal verification.

a) Formal Co-Verification Methodology

As discussed earlier, the end-to-end security properties

verification of a system with secure boot, RA, and recovery

engine becomes a complex problem, and we argue that

only hardware verification or verification of only software

abstraction of hardware can miss out on critical security bugs

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1507

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

during the security properties setting or interaction. There-

fore, the FVCARE framework proposed two-step end-to-end

security properties verification for the system under test. In

the first step of the verification, 1) it verifies the security-

critical hardware components of the FVCARE system using

hardware verification technique and 2) for the overall system

and software verification, it uses source level (C) abstraction

of hardware technique.

A pictorial overview of the verification methodology is

shown in Fig 5. The goal is to co-verify the firmware, soft-

ware, and interacting hardware components. Fig 5(a) shows

firmware verification is a complex task as it involves multiple

interactions between software and hardware modules. In the

first step, Boot Rom firmware code (FW-1) initializes the

UART, internal registers with boot settings (HW module

Figure 5: Formal Verification Methodology

1), and transfers the control to second stage Boot Strap

firmware code (FW-2). The FW-2 code initializes the SPI,

applies the access control policies (HW module 2), and

performs a chain of integrity & authenticity measurements

using hardware crypto-core (HW module 3). The hardware

verification method is shown in Fig5(b) and covered in

subsection V-B. The framework uses the source level

abstraction of the hardware module for end-to-end security

properties verification by software abstraction approach.

Software verification is presented by Fig 5(c) and covered in

subsection V-C.

b) Hardware Verification Technique

The framework formally verifies the security-critical hard-

ware component - crypto-engine HMAC-SHA256 ’s security

properties and functional correctness. It also verifies the

access control policies and internal registers settings for

UART’s baud rate, SPI’s initialization, and the flash

controller. The formal verification of all other hardware

modules, including the processor, is out of this work scope.

The hardware module listed above are written in system

Verilog. Linear Temporal Logic (LTL) is used to formalize

the system specifications, security properties (A1-A6) from

subsection IV-C, and invariant that should hold throughout

boot code execution. FVCARE automates the system Verilog

to SMV conversion process by using Verilog2SMV [47]

tool. It then uses the NuSMV [18] model checker to verify

the correctness of LTL specifications. Upon failure of the

formal verification, the hardware module was redesigned for

security assurance.

Figure 6: Top-level design of hardware verification

framework. The RTL design is converted to SMV using

verilog2SMV tool. The hardware specifications and

security properties represented in LTL logic are verified

using NuSMV (SMT solver) and pass or fail results are

generated.

c) Software Verification Technique

For end-to-end system modeling Instruction Level

Abstraction (ILA) of the software of the system. ILA

approaches [9]–[11] involves the deep understanding and

cycle-accurate conversion of the software system into

instructions for that processor, and it cannot scale for fast

pace changing markets. Another approach uses the hardware

mod- ules’ abstraction into suitable software code (C

programs), as shown in Fig 5(c). After source-level

abstraction, FVCARE uses Frama-C [17] (FRAmework for

Modular Analysis of C code) for software verification tool.

The Frama-c tool can be used for buffer-overflow, pointer

safety, exceptions, termination, K-induction, and invariant

checking. It can also be used for specific system properties

checking using assertions and LTL specifications. The

Frama-c framework has a collection of interoperable,

scalable, and sound software analysis tools. In this work, the

Frama-c framework is used with three main plugins: 1)

Abstract interpolation-based Value plugin 2) Weak

prediction (WP) for deductive verification, and 3) System

specification & security properties verification using LTL

specifications.

• The abstract interpretation framework based on the

VALUE plugin is used to compute the over-

approximations of possible values of program variables

at each program end-point. It uses formal behavioral

specification language ACSL (ANSI/ISO C Specification

Language) to specify the C program’s functional

properties and contracts. ACSL uses clauses for

precondition verification, ensures clauses for post-

condition verification, assign for global variables, and

loop invariant clauses are used for loop iterations.

• The Weak Prediction (WP) plugin verifies that the given C

code satisfies its specification expressed as ACSL

annotations. The weak prediction provided by [48]

reduces any deductive verification problem to

establishing the validity of first-order formulas called

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1508

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

verification conditions. FVCARE framework then uses

Alt-Ergo SMT solver to prove the verification conditions

generated by WP.

• The Aorai plugin is used to verify the system properties

represented in LTL specifications. The software

verification framework setup with Frama-c and Aorai

plugin is shown in Fig 7.

Figure 7: Presents the architecture design of the proposed

framework. The pass arrows indicate that only the known

good code will be passed to the RISC-V processor core for

execution in any given case.

The Frama-c pre-processor module converts the C program

into annotation calculus. The LTL2BA tool converts the LTL

specification into Buchi automaton, combined with

annotation calculus to generate an annotated C program. Alt-

Ergo SMT solver is used to prove the verification conditions

with fail or pass results formally. The functions and code

were modified to satisfy the security properties specified in

A1 to A12.

6. Evaluation

This section covers details of verification techniques se-

lection for each of the security components in SRACARE

based design under test. It shows verification results and

timing analysis. Finally, it compares the proposed FVCARE

framework with state-of-the-art secure boot, RA, and

formally verified systems. Based on the security properties

specification in subsection IV-C and system operation in sub-

section IV-B, the end-to-end system verification is divided

into the following subtasks.

a) Verification of System Initialization

The formal verification of start addresses and range of ROM,

RAM, flash memory regions, MMIO device mapping

(security property A1), and registers initialization (A2) is

performed by using the hardware verification technique V-B.

The peripheral initialization for security property A2 is

verified using co-verification techniques.

b) Verification of Secure Communication

To limit the secure formal communication verification

problem, the FVCARE focuses only on verifying the Pr side

security properties. Therefore, this work’s verification efforts

assume that nonce n1 and Flag selection values are provided

to the prover (Pr) device. The LTL model was designed

based on the system specifications to validate novel nonce

generation techniques, and assertions were passed.

c) Verification of Secure Boot

The secure boot verification process involves multiple

transactions between Hw-fw. Therefore, it uses software

abstraction of the hardware. The verification of security

properties A3 to A9 was also included in this work. The

security properties were passed in LTL formulas, assertions,

and annotations in Frama-C. The hardware verification of

crypto- core (HMAC-SHA256) is covered in subsection VI-

F.

d) Verification of Remote Attestation

To reduce the complexity of verifying RA communication

protocol, FVCARE checks the preset flag condition (F=1

from Fig 2), start location, and the flash region size. The

annotations validation, LTL specification checking for digest

computation is performed using Frama-C. Formal

verification of 1 KB of the digest computation requires 0.02s

on intel NUC i-7 8th generation running @ 3.4GHz.

e) Verification of Resilience Engine

Since the RE module was implemented in software, the

verification is also performed using the software-based

Frama-C tool with plugins. The important verification parts

in this are to validate frame numbers and flash memory

locations. The framework also verifies proper access locks

during and after the code reflash.

f) Verification of Security properties

The security properties specification, formal verification

approach (Hw or Fw based), execution time, and results

are represented in Table III. It also provides details about

hardware or firmware-based formal verification techniques

usage for set property. Selected set of the security properties,

their verification technique (Hw/Fw), the time required on

Intel Next Unit of Computing (NUC) i7 @3.4Ghz.

Table III: Security Properties verification results on i7-

NUC @3.4GHz
Security Properties Specification Time (s) Hw Fw Results

Start-up Checking 0.02 yes no

Peripheral Initialization 0.03 yes yes

Key Confidentiality 0.02 yes no

Access Control Enforcement 0.03 yes yes

Controlled Invocation 0.02 yes no

Attack Detection 0.02 yes yes

Correct Frame Locations 0.02 no yes

Validate Frame Size 0.02 no yes

Functional Correctness 0.2 yes yes

Note that FVCARE verifies the crypto-core’s functional

correctness using hardware verification as discussed in sub-

section V-B. Furthermore, the system’s functional correct-

ness of secure boot and RA features is validated using

the hardware approach’s software abstraction. The formal

verification of the secure boot for the test application of

5.6 KB takes 0.2 seconds.

7. Comparison with the state-of-the-art

solutions

For the state-of-the-art comparison, FVCARE has identified

several recent implementations of secure boot and RA

techniques as listed in Table II. As can be seen from Tabel II

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1509

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

majority of the available, secure boot and RA

implementations focus on detecting and preventing

malicious code modification attacks. However, it lacks

protection from attacks and mostly restarts the system or

leaves it in a non-operational state. Recent

implementations Healed and [49] provides recovery, but

they do not have secure boot, RA, and formal verification

support. Other implementation [16] shows formal

verification of RA module using LTL specification, with two

unsuitable design choices: 1) it uses software-based crypto-

core (HACL*) for digest computation in RA, 2) it does not

have secure boot support, and 3) it recommends systems

reset to prevent the attacks. Work presented by [38] uses the

instruction-level abstraction of hardware approach for formal

verification of security primitives such as secure boot. ILA

approach is very restrictive, ISA specific, and limited to

scale. Therefore, not suitable for scalable end-to-end system

verification. Another work presented in [41] demonstrates

the use of the source-level abstraction of the hardware and

bounded model checking for industry-standard SoC’s

security verification. Furthermore, Recent implementations

CARE [29] and SRACARE [30] demonstrates resilient small

embedded system design with secure boot, RA and on-board

recovery techniques. For various security reasons and

practical use-cases, our hypothesis required secure boot, RA,

and onboard recovery such as CARE [29], and SRACARE

[30]. FVCARE uses the source- level abstraction of the

hardware approach and enhances the model checking

capabilities by using the Frama-C tool with different K-

induction plugins, Weakness prediction, assertion, and

bounded model checking using LTL. Thus, FVCARE is the

first implementation that integrates hardware and software

verification methods and demonstrates the end-to-end co-

verification technique for SRACARE based systems with

secure boot, RA, and onboard recovery mechanisms.

8. Conclusion

FVCARE provides the end-to-end co-verification frame-

work for SRACARE based systems with secure boot, RA,

and onboard recovery. It uses the abstraction of hardware as

a software technique for formal verification of design

specifications, security properties, and the system’s

functional correctness. Also, it uses hardware verification

techniques for verification of initial system and registers

settings, access control policies. It demonstrates formal

verification of hardware using Linear Temporal Logic (LTL)

properties and using model checking NuSMV tool. FVCARE

leverages the software abstraction of the hardware approach

for software verification and uses a novel Frama-C

framework with different plugins for formal verification of

the system rep- resented as software abstraction of the

hardware. FVCARE demonstrates the first practical

implementation of a formal co-verification framework.

Table II: Qualitative comparison between secure boot/RA techniques targeting lightweight embedded devices
Parameters [30], [29] Healed Ref. [49] Ref. [25] Sanctum Ref. [38] Ref. [16] Ref. [41]

Design Type Hybrid SW Hybrid HW Hybrid Hybrid Hybrid Hybrid

Secure Communication yes no no yes yes yes no no

Secure boot yes no no yes yes yes no no

Remote Attestation yes no no no yes no yes no

Malicious Code Modification Attacks Detection yes yes yes yes yes yes yes yes

Malicious Code Modification Attacks Protection yes no yes yes yes yes yes yes

Recovery from Malicious Code Modification Attacks yes yes yes partial no no no no

Formal Verification of Hardware no no no no no yes yes yes

Formal Verification of Software no no no no no yes yes yes

Formal hardware/software co-Verification no no no no no yes yes yes

References

[1] Furtak, Y. Bulygin, O. Bazhaniuk, J. Loucaides, A.

Matrosov, and M. Gorobet, “Bios and secure boot

attacks uncovered,” 2014.

[2] J. Vijayan, “Stuxnet renews power grid security

concerns,”

https://www.computerworld.com/article/2519574/stuxn

et-renews- power-grid-security-concerns.html, June

2010.

[3] “Man-in-the-middle Attack,”

https://en.wikipedia.org/wiki/Man-in- the-middle

attack.

[4] D. Schneider, “Jeep hacking 101,”

http://spectrum.ieee.org/cars-that-

think/transportation/systems/jeep-hacking-101.html,

2015.

[5] “Replay Attack,” https://en.wikipedia.org/wiki/Replay

attack.

[6] DoS Attacks, “What is a denial of service

attack (DoS)?”

https://www.paloaltonetworks.com/cyberpedia/what-is-

a-denial-of- service-attack-dos, 2017.

[7] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L. Wang,

“Challenges and trends in modern soc design

verification,” IEEE Design Test, vol. 34, no. 5, pp. 7–

22, 2017.

[8] S. Ray and Y. Jin, “Security policy enforcement in

modern soc designs,” in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design,

ser. ICCAD ’15. IEEE Press, 2015, p. 345–350.

[9] Schmidt, C. Villarraga, J. Bormann, D. Stoffel, M.

Wedler, and W. Kunz, “A computational model for sat-

based verification of hardware-dependent low-level

embedded system software,” in 2013 18th Asia and

South Pacific Design Automation Conference (ASP-

DAC), 2013, pp. 711–716.

[10] Grobe, U. Ku¨hne, and R. Drechsler, “Hw/sw co-

verification of embedded systems using bounded

model checking,” in Proceedings of the 16th ACM

Great Lakes Symposium on VLSI, ser. GLSVLSI ’06.

New York, NY, USA: Association for Computing

Machinery, 2006, p. 43–48. [Online]. Available:

https://doi.org/10.1145/1127908.1127920

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1510

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.computerworld.com/article/2519574/stuxnet-renews-
http://www.computerworld.com/article/2519574/stuxnet-renews-
http://spectrum.ieee.org/cars-that-
http://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-
http://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-
http://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] S. Malik and P. Subramanyan, “Invited:

Specification and mod- eling for systems-on-chip

security verification,” in 2016 53nd ACM/EDAC/IEEE

Design Automation Conference (DAC), 2016, pp. 1–6.

[12] S. K. Muduli, G. Takhar, and P. Subramanyan,

“Hyperfuzzing for soc security validation,” in 2020

IEEE/ACM International Conference On Computer

Aided Design (ICCAD), 2020, pp. 1–9.

[13] S. Ray, N. Ghosh, R. J. Masti, A. Kanuparthi,

and J. M. Fung, “Formal verification of security

critical hardware-firmware interactions in commercial

socs,” in Proceedings of the 56th Annual Design

Automation Conference 2019, ser. DAC ’19. New

York, NY, USA: Association for Computing

Machinery, 2019. [Online]. Available:

https://doi.org/10.1145/3316781.3323478

[14] R. Mukherjee, M. Purandare, R. Polig, and D.

Kroening, “Formal techniques for effective co-

verification of hardware/software co- designs,” in

Proceedings of the 54th Annual Design Automation

Conference 2017, ser. DAC ’17. New York, NY, USA:

Association for Computing Machinery, 2017.

[Online]. Available: https://doi.org/

10.1145/3061639.3062253

[15] B. Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik,

“Formal security verification of concurrent firmware

in socs using instruction- level abstraction for

hardware*,” in 2018 55th ACM/ESDA/IEEE Design

Automation Conference (DAC), 2018, pp. 1–6.

[16] D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M.

Steiner, and G. Tsudik, “VRASED: A verified

hardware/software co-design for remote attestation,”

in 28th USENIX Security Symposium (USENIX

Security 19). Santa Clara, CA: USENIX Association,

Aug. 2019, pp. 1429–1446. [Online]. Available:

https://www.usenix.org/conference/

usenixsecurity19/presentation/de-oliveira-nunes

[17] F. Bobot, “Verilog2smv: A tool for word-level

verification,” https: //git.frama-c.com/pub/frama-c,

2016.

[18] Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,

M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella,

“Nusmv 2: An opensource tool for symbolic model

checking,” in Proceedings of the 14th International

Conference on Computer Aided Verification, ser. CAV

’02. Berlin, Heidelberg: Springer-Verlag, 2002, p.

359–364.

[19] “TPM wiki,” https://en.wikipedia.org/wiki/Trusted

Platform Module, 2010.

[20] H. Raj, S. Saroiu, A. Wolman, R. Aigner,

J. Cox, P. England, C. Fenner, K. Kinshumann, J.

Loeser, D. Mattoon, M. Nystrom, D. Robinson,

R. Spiger, S. Thom, and D. Wooten, “ftpm: A

software-only implementation of a TPM chip,” in

25th USENIX Security Symposium (USENIX Security

16). Austin, TX: USENIX Association, Aug. 2016,

pp. 841–856. [Online]. Available:

https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/raj

[21] “Opentitan: Secure boot SoC design,”

https://opentitan.org/, 2019.

[22] Lee, D. Kohlbrenner, S. Shinde, D. X. Song, and K.

Asanovic, “Keystone: A framework for architecting

tees,” ArXiv, vol. abs/1907.10119, 2019.

[23] Lebedev, K. Hogan, and S. Devadas, “Invited paper:

Secure boot and remote attestation in the sanctum

processor,” in 2018 IEEE 31st Computer Security

Foundations Symposium (CSF), July 2018, pp. 46– 60.

[24] M. M. Wong, J. Haj-Yahya, and A. Chattopadhyay,

“Smarts: secure memory assurance of risc-v trusted

soc,” 06 2018, pp. 1–8.

[25] J. Haj-Yahya, M. M. Wong, V. Pudi, S. Bhasin, and A.

Chattopadhyay, “Lightweight secure-boot architecture

for risc-v system-on-chip,” in 20th International

Symposium on Quality Electronic Design (ISQED),

March 2019, pp. 216–223.

[26] NSA Cyber Report, “UEFI DEFENSIVE

PRACTICES

[27] GUIDANCE,”

https://www.nsa.gov/Portals/70/documents/what-we-

do/cybersecurity/professional-resources/ctr-uefi-

defensive-practices- guidance.pdf, 2017.

[28] Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. K.

Khosla, “Scuba: Secure code update by attestation in

sensor networks,” in WiSe ’06, 2006.

[29] Perito and G. Tsudik, “Secure code update for

embedded devices via proofs of secure erasure,” in

ESORICS, 2010.

[30] Dave, N. Banerjee, and C. Patel, “Care: Lightweight

attack resilient secure boot architecture with onboard

recovery for risc-v based soc,”

https://arxiv.org/pdf/2101.06300.pdf, 2020.

[31] ——, “Sracare: Secure remote attestation with code

authentication and resilience engine,” in 2020 IEEE

International Conference on Embedded Software and

Systems (ICESS), 2020, pp. 1–8.

[32] Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,

B. Parno, D. Zhang, and B. Zill, “Ironclad apps: End-

to-end security via automated full-system

verification,” in 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

14). Broomfield, CO: USENIX Association, Oct.

2014, pp. 165–

[33] 181. [Online]. Available:

https://www.usenix.org/conference/osdi14/ technical-

sessions/presentation/hawblitzel

[34] K. R. M. Leino, “Dafny: An automatic program verifier

for functional correctness,” in Logic for Programming,

Artificial Intelligence, and Reasoning, E. M. Clarke

and A. Voronkov, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 348–370.

[35] L. de Moura and N. Bjørner, “Z3: An efficient smt

solver,” in Tools and Algorithms for the Construction

and Analysis of Systems, C. R. Ramakrishnan and J.

Rehof, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008, pp. 337–340.

[36] J. Yang and C. Hawblitzel, “Safe to the last instruction:

Automated verification of a type-safe operating

system,” in Proceedings of the 31st ACM SIGPLAN

Conference on Programming Language Design and

Implementation, ser. PLDI ’10. New York, NY, USA:

Association for Computing Machinery, 2010, p. 99–

110. [Online]. Available:

https://doi.org/10.1145/1806596.1806610

[37] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and

K. R. M. Leino, “Boogie: A modular reusable verifier

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1511

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.usenix.org/conference/
http://www.usenix.org/conference/
http://www.nsa.gov/Portals/70/documents/what-we-
http://www.nsa.gov/Portals/70/documents/what-we-
http://www.usenix.org/conference/osdi14/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 12, December 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

for object-oriented programs,” in Formal Methods for

Components and Objects, F. S. de Boer, M. M.

Bonsangue, S. Graf, and W.-P. de Roever, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp.

364–387.

[38] M. Nelson, “Modeling the secure boot protocol

using actor net- work theory,”

https://scholarspace.manoa.hawaii.edu/bitstream/10125

/ 62288/2017-12-ms-nelson.pdf, 2017.

[39] S. Ray, N. Ghosh, R. J. Masti, A. Kanuparthi,

and J. M. Fung, “Formal verification of security

critical hardware-firmware interactions in commercial

socs,” in Proceedings of the 56th Annual Design

Automation Conference 2019, ser. DAC ’19. New

York, NY, USA: Association for Computing

Machinery, 2019. [Online]. Available:

https://doi.org/10.1145/3316781.3323478

[40] Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik,

“Formal security verification of concurrent firmware

in socs using instruction- level abstraction for

hardware*,” in 2018 55th ACM/ESDA/IEEE Design

Automation Conference (DAC), 2018, pp. 1–6.

[41] M. Balliu, M. Dam, and R. Guanciale, “Automating

information flow analysis of low level code,” in

Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS

’14. New York, NY, USA: Association for Computing

Machinery, 2014, p. 1080–1091. [Online]. Available:

https://doi.org/10.1145/2660267.2660322

[42] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J.

M. Fung, “Verifying information flow properties of

firmware using symbolic execution,” 2016 Design,

Automation & Test in Europe Conference & Exhibition

DATE, pp. 337–342, 2016.

[43] S. Ray, N. Ghosh, R. J. Masti, A. Kanuparthi,

and J. M. Fung, “Formal verification of security

critical hardware-firmware interactions in commercial

socs,” in Proceedings of the 56th Annual Design

Automation Conference 2019, ser. DAC ’19. New

York, NY, USA: Association for Computing

Machinery, 2019. [Online]. Available:

https://doi.org/10.1145/3316781.3323478

[44] R. Mukherjee, M. Purandare, R. Polig, and D.

Kroening, “Formal techniques for effective co-

verification of hardware/software co- designs,” in

Proceedings of the 54th Annual Design Automation

Conference 2017, ser. DAC ’17. New York, NY, USA:

Association for Computing Machinery, 2017.

[Online]. Available: https://doi.org/

10.1145/3061639.3062253

[45] N. Jacob, J. Heyszl, A. Zankl, C. Rolfes, and G.

Sigl, “How to break secure boot on fpga socs through

malicious hardware,” IACR Cryptology ePrint

Archive, vol. 2017, p. 625, 2017.

[46] K. L. Mcmillan, “Symbolic model checking,”

https://apps.dtic.mil/sti/ pdfs/ADA250924.pdf, 1993.

[47] M. C. O. Grumberg and D. Peled, “Model checking,”

MIT Press, 1999.

[48] Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y.

Zhu, “Bounded model checking,” ser. Advances in

Computers. Elsevier, 2003, vol. 58, pp. 117 – 148.

[Online]. Available: http://www.

sciencedirect.com/science/article/pii/S00652458035800

32

[49] A. C. A. G. M. Roveri and R. Sebastiani,

“Verilog2smv: A tool for word-level verification,”

http://disi.unitn.it/rseba/papers/ verilog2smv-

proceeding-version.pdf, 2016.

[50] W. Dijkstra, “Guarded commands, nondeterminacy

and formal derivation of programs,” Commun. ACM,

vol. 18, no. 8, p. 453–457, Aug. 1975. [Online].

Available: https://doi.org/10.1145/360933.360975

[51] D. Perito and G. Tsudik, “Secure code update for

embedded devices via proofs of secure erasure,” in

ESORICS, 2010.

Author Profile

Avani Dave PhD. Candidate, CSEE, University of

Maryland Baltimore County, MD, USA.

Nilanjan Banerjee, Professor, CSEE, University of

Maryland Baltimore County, MD, USA.

Chintan Patel Member, IEEE, Associate Professor,

CSEE, University of Maryland Baltimore County, MD,

USA.

Paper ID: SR24628131028 DOI: https://dx.doi.org/10.21275/SR24628131028 1512

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www/
http://disi.unitn.it/rseba/papers/
https://doi.org/10.1145/360933.360975

