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Abstract: Modern applications demand newer architectures and enhanced feature to process tasks at high speed. Such architectural 

changes or newer mega features necessitates modification to existing architecture or completely newer architecture and often affects 

different design units of the architectures. Monumental changes across the architecture introduces numerous controls, finite state 

machine, newer pipeline, data paths and configurations. These heavy changes are highly prone to architectural gaps and design bugs. 

Thus, different pre silicon verification strategies are absolute to meet essential to not only meet the high functional quality of design as 

well as performance. Verification of new mega features faces numerous challenges such as comprehensive testplanning, bringing up of 

these new features and executions of test plan. Addressing these challenges is critical to flawless execution to achieve high quality of 

design for A0 production and meet the timelines to market. This paper proposes an alternative approach to existing pre - silicon 

verification of mega new features such as multi - context, ray tracing and multiple compute pipeline in addition to existing compute and 

3D shading pipelines of graphics architecture [1]. Our novel approach provides improvements in every step of the pre - silicon 

verification stages including test planning, feature integration, bring up, building for API, test constraint for building basic testcases 

and protocol related coverages based on the protocol definitions of packet information to finding bugs in early stages of design such as 

interoperability and exposing architectural gaps. This paper details challenges in verification of process and precise steps to overcome 

these challenges using automating scripts, regression management and effective debugging strategies.  
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1. Introduction 
 

Different verification methodologies such as simulation, 

emulation, formal, gate level simulation performance and 

post silicon verification to ensure the quality of design in 

terms of functionality and performance [4] [3]. Each 

verification strategy can be deployed at appropriate level of 

DUT due to its advantages and disadvantages which are 

explained later in this paper, thus deploying particular pre - 

silicon verification strategies at particular DUT to find the 

bug early in design cycles allows to converge on 

functionality as well as performance of architecture and 

design. This paper focuses on improving pre - silicon 

verification for new mega feature verification. Approach 

deploys automation on creating testing constraints, base 

sequences based on the protocol description, automated 

register testing, building and reusability of APIs and 

verification components including BFM, coverages, 

scoreboards and checkers, integration of design containers, 

defining synchronous DUT boundaries for effective 

verification and centralized test planning.  

 

2. Implementation 
 

Centralized Test planning:  

Verification of an architecture or product is stages at 

different levels of verification DUTs, ranging from 

verification at IP, sub system, super sub system and SOC 

[5]. Each DUT and team usually creates test plan based off 

of the architectural and design specifications which are 

tailored to a particular DUT. Unit level and subsystem test 

plans are often covers more extensive testing. It covers 

scenario pertaining to a unit level design specification but 

may lack testing from system level point of view as it 

focuses in boundary checks and internals of unit’s scenarios 

such as finite state machines, flushing of internal 

cache/SRAM, clearing internal temporary registers and 

stressing of credits on interfaces.  

 

Whereas subsystem and System on Chip (SOCs) DUTs 

focuses on system level scenario and interoperability across 

units or subsystems. Cross feature scenarios are also covered 

extensively from system level point of view. Mega Feature 

enabling such as multi - context or raytracing at higher 

subsystems across other features is critical to ensure the 

protocols, interoperability and architectural assumptions are 

functional and meets the performance.  

 

Due to differences of scenarios at different levels of DUT, 

there is chance of missing scenario between system level to 

unit level testing as feature testing at unit as opposed to SOC 

may show different sequencing than real time workload and 

hence synchronizing system level scenarios and sequencing 

at SOC and Unit level is critical. This can be achieved by 

creating system level scenarios per feature, protocols and 

data paths. Further system level feature or testcases in 

graphics processors can be controlled by submitting system 

command in particular sequence which allows test 

sequences to be matching the real - world scenarios. Thus, 

system level scenarios and test sequencing can be scaled to 

different levels of DUT and allows reusability.  

 

Since the system level testcases can be run at unit level, it 

provides opportunity to clear the functionality of feature at 

IP or subsystem level and hence reduces the debugging and 

bringing up cycle at SOC [9].  
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Verification component building and reusing strategies:  

Verification testbenches at different level such as IP, 

subsystem and SOC has different boundaries of designs and 

often shared same boundaries of design and other part of 

designs are mimicked through behavioral functional model 

(BFM), UVC which includes monitors and drivers. Drivers 

models the protocol to drive the packet information on to 

interface of design whereas monitors collects the 

information from the interface of design which can be used 

to in slave BFM to respond back with appropriate response 

or collect coverage or feed to checkers for checking the 

integrity of the packet information from design. This 

infrastructure can be shared and reused as boundaries of 

DUTs are same or shared similar protocol such as AXI.  

 

As each interface follows specific packet information and 

protocol and monitor and drivers needs specific class based 

on struct, constraints, enumeration data types and memory 

components. These protocols and packet information can be 

easily combined to automatically create enum, constraints 

[6] [7], packet information and thus sequence items using 

script which provides compile clean and early head start to 

build sequence items and structural code for building 

systemverilog or UVM based API and UVCs.  

 

For confidentiality the concept will explained using 

hypothetical protocol 

 

 

Hypothetical Memory packet 

information (Field) 

Subfields Dependencies Valid values Width 

Cmd   READ=0, 

WRITE=1, ATOMIC=2 

3: 0 

Address  Cmd==ATOMIC 0 - 3ffe_ffff 31: 0 

Address  Cmd==SYS_MEM_WRITE, 

Cmd==SYS_MEM_READ 

fff0_ 0000 - 4000_0000  

Address  Cmd==READ 0 - 3fef_ffff  

Address  Cmd==WRITE 0 - 3fef_ffff  

SIZE  Cmd==ATOMIC 2: 5 3: 0 

SIZE  Cmd==READ 0: f  

SIZE  Cmd==WRITE 0: f  

Vld   1  

Data   All 255: 0 

Datavld   1  

Data_byte_enable  Cmd==ATOMIC 0 - fff0  

  Cmd==WRITE/READ 0 - ffff  

System_Command Cmd_type  Flush=0, Compute=1, pixel_shader=2, 

geometry_shader=3, Vertex_shader=4 

3: 0 

System_Command Cmd_vld  0: 1 1 

System_Command Cmd_header  All 255: 0 

 

Above table 1. Shows the standard tabulating field of the 

packet information as follows:  

• Fields are listed with its dependencies, valid values and 

width.  

• The dependencies of fields within the packet information 

on specific value of field to be constraint to a specific 

values are mentioned in valid values column.  

• If the values mentioned in valid value column are “All”, 

all values are valid for that particular field.  

• Width of the fields 

• If a field has subfield, subfileds are considered as an 

entry of Field and script creates struct 

 

Enumeration type generation:  

Script generates enumeration as follows:  

typedef enum bit [3: 0] {READ, WRITE, ATOMIC, 

SYS_MEM_READ, SYS_MEM_WRITE} Cmd_e;  

typedef enum bit [3: 0] {Flush, compute, pixel_shader, 

geometry_shader, vertex_shader} Cmd_type_e;  

 

Struct generation:  

If a field includes subfield, that field is considered for a 

struct and automatic structs are created as follows with 

specific subfields mentioned until the next entry is 

mentioned in field entry.  

typedef struct { 

Cmd_type_e cmd_type; bit Cmd_vld;  

bit [255: 0] Cmd_header;  

} System_command_e;  

 

Packet /Sequence item structure with constraints:  

Based on the table provided, script generates the automated 

packets with fields and subfields with constraint and 

dependencies which provides compile clean and base 

sequence items for sequences or API [7].  

class packet;  

/* Field decleration:  

Fields are created based off the table with enum and struct 

created in previous steps // 

*/ 

rand bit [31: 0] Address; rand Cmd_e Cmd;  

rand bit [3: 0] SIZE; rand bit vld;  

rand bit [255: 0] Data; rand bit Datavld;  

rand bit [15: 0] Data_byte_enable;  

rand System_command_e System_command;  

/*Constraints:  

Constraints are created with dependencies and value 

expected for mentioned values of the fields.  

Following autogenerated constraints shows address range 

being constrained based on the type of command as has been 

reflected from table 1.  

*/ 

constraint Address_c { solve Cmd before Address;  

 (Cmd==ATOMIC) - > Address inside { [0: 32'hffe_ffff]};  
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 (Cmd==SYS_MEM_WRITE) - > Address inside { 

[32'hfff0_0000: 32'h4000_0000]}; 

(Cmd==SYS_MEM_READ) - > Address inside { 

[32'hfff0_0000: 32'h4000_0000]}; (Cmd==READ) - > 

Address inside { [0: 32'h3ffe_ffff]};  

 (Cmd==WRITE) - > Address inside { [0: 32'h3ffe_ffff]};  

 

} 

constraint vld_c { vld ==1;  

} 

constraint SIZE_c { solve Cmd before SIZE;  

 (Cmd==ATOMIC) - > SIZE inside { [0: 4'hf]}; 

(Cmd==READ) - > SIZE inside { [0: 4'hf]}; 

(Cmd==WRITE) - > SIZE inside { [0: 4'hf]};  

} 

constraint Data_byte_enable_c { solve Cmd before 

Data_byte_enable;  

 (Cmd==ATOMIC) - > Data_byte_enable inside { [0: 

16'hfff0]};  

 (Cmd==WRITE || Cmd==READ) - > Data_byte_enable 

inside { [0: 16'hffff]};  

} 

endclass 

 

API building:  

System commands are used in compute architectures by 

Firmware in order to submit a particular workload. 

Firmware uses different software languages such as C++, C 

sharp, java scripts and hence integrating different 

frameworks for interactive firmware with presilicon 

testbenches such as simulation and emulation raises 

complexity of testbench environment and demands expertise 

in different languages. In order to overcome this challenge, 

system level firmware commands should be modelled in 

either SystemVerilog or UVM as these test frameworks are 

used in most of the testbenches due to its universal 

acceptance. Automated frameworks propose in this paper 

provides base for creating systemverilog based function task 

to create system commands and write into system memory 

which is also modelled in systemVerilog.  

 

As shown in earlier examples, automated framework 

provides enumerated and struct data types concentrated on 

type of system command mentioned in architectural or 

firmware definitions. These commands are put into format 

of table 1 and script thus is able to be created struct and 

enumerated types. These struct and enum data type are 

integrated in individual classes of each type of commands to 

randomize different fields of the commands based on the 

restrictions put in table 1. Randomized commands are 

submitted into the system memory from which the design 

fetches when the system addresses are provided to design 

through different register programming or explicit write sent 

to MMIO space depending on the design 

specifications.  

 

Since system level APIs can be used at different levels of 

DUTs, test created based on system level API can be scaled 

and reused at different DUTs which refences into system 

memory for commands. Furthermore, these system level 

tests can be scaled to stress the pipelines. For example, 

Compute and 3D pipeline uses similar system commands 

and are independent pipelines in graphics architecture 

however shares same execution pipelines which includes 

arbiters, execution units, instruction cache and system cache, 

thus submitting independent system level commands at same 

time for compute and 3D engines provides an opportunity to 

stress the shared resource by graphics 3d shaders with 

compute shaders [2].  

 

Integration:  

In order to create efficient verification environments, each 

DUT must be able to run test and debug faster, following 

aspects should be taken into account.  

a) Boundary of the DUT 

b) Size of the design under testing environment 

c) Number of BFMs required 

d) Scalability of testcases across DUTs 

e) Checker and scoreboard scalability across DUTs 

 

Boundaries of the DUTs should be decided based on the 

factors as mentioned above. Particularly graphics 

architecture includes multiple pipelines, shared resources 

across pipelines and protocols. In order to keep nimble 

DUT, design under testing environment should be 

configurable and can be achieved by chopping the 

architecture into multiple clusters. Clusters should be 

configurable as well and can be managed by creating the 

containers of designs ad pipelines which can be instantiated 

multiple times using configurable options and thus DUT can 

be scaled from single instances of design or pipelines to 

multiple instances. Configurability of DUT results in quicker 

compilation of DUT and quicker testing time. Further the 

boundary of the DUT should be considered from design 

verification component perspective such that verification 

component can be shared across DUTs and thus reducing the 

development cycle of component significantly. These 

components can be reusable as it follows the standard 

protocols across boundaries. Further the boundaries of the 

DUTs can be efficiently managed by keeping the boundaries 

at input or output of arbiters as it not only needs less number 

of BFMs but also follows same protocols. These boundary 

guidelines also provides opportunity to effectively manage 

number of BFMs required at simulation and thus can also 

help emulation to reduce number of board required for the 

emulation environment.  

 

Since BFM or verification components used across DUTs 

are same, follows the system command and memory 

component, test can be not only synchronized with real time 

firmware but also scaled across the DUTs and further 

resulting into quicker bringing up of testcases for specific 

features at concise DUTs.  

 

As the protocols and boundaries of DUTs are similar, 

creating scoreboard and reusability increases which not only 

helps in integration but also maintaining the scoreboard 

checks.  

 

Integration of such shared components and design can 

configurable with above suggested guidelines and simplified 

efficient approach.  

 

3. Benefits and Future Directions 
 

Suggested implementations offers efficient way of building 
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API, testbench components, test development and 

scoreboard.  

Efficiency:  

API, sequence items and data structure are automatically 

created through script based on the table 1 mentioned above. 

This provides a head start in developing verification 

components and fewer engineering efforts. As boundaries of 

the DUTs are decided based on the guidelines provides the 

testbench can be configurable, provides flexibility, easy to 

integrate design and verification components and debug. 

Additionally, configurability and reusability of test 

sequences based off of system level APIs provides 

scalability and efficiently manage the engineering effort and 

shorten the verification cycle.  

 

Accuracy:  

Centralized testplan provides unique opportunity to bridge 

gap in testplan between SOC, subsystem and IP. Due to 

automated approach in creating test constraints and API 

structures, code will compile successfully in first attempt 

and thus implementing the recompiling cycle due to human 

errors and increases accuracy of the code. Due to reusability 

of the verification components, system level testing can 

match the firmware real time scenarios and hence pre silicon 

verification can match the real time scenarios in the product 

and find early bugs.  

 

Scalability:  

Test bench components, system level APIs and test bench 

configurability provide opportunity to scale the size of the 

DUT and test sequence to stress overall architecture. As 

system level APIs can be reused across the DUTs and also 

scalable across different projects [8].  

 

Future Enhancements:  

As complexity of the architecture increases, there is always 

chance of improving the DUT which can be further 

improved using automation to create coverage and converge 

on the functional and code coverage. Further the existing test 

sequences can be fed back with coverage hit in order to self - 

create sequences using AI and machine learning. Debugging 

failures in complex architecture remains the critical aspect of 

verification execution cycle, simplified approach and 

developing tools to either automate or aid the debugging 

process will allow debug quicker and reduce the verification 

cycle.  

 

4. Conclusion 
 

Complexity of architecture of graphics, CPU and AI 

accelerators are exponentially increasing and verification of 

cycle is also proportionally expanding which will delay the 

timelines for product to be launched in market. It is 

paramount important to reduce the verification cycles and 

engineering heads required for each project and can be 

achieved through proposed frameworks. Automated 

framework proposed in this paper reduces effort for 

developing API, test constraint development and provides 

guidelines on deciding the boundaries of the DUT. System 

level testing framework and verification component 

reusability adds to the efficiency and accuracy of testplan 

executions.  
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