
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

New Feature Verification Simplified with

Automated Verification Component Build,

Centralized Test Plan and Guidelines for DUT

Boundaries and Integration Strategies

Ankit Chandankhede

Abstract: Modern applications demand newer architectures and enhanced feature to process tasks at high speed. Such architectural

changes or newer mega features necessitates modification to existing architecture or completely newer architecture and often affects

different design units of the architectures. Monumental changes across the architecture introduces numerous controls, finite state

machine, newer pipeline, data paths and configurations. These heavy changes are highly prone to architectural gaps and design bugs.

Thus, different pre silicon verification strategies are absolute to meet essential to not only meet the high functional quality of design as

well as performance. Verification of new mega features faces numerous challenges such as comprehensive testplanning, bringing up of

these new features and executions of test plan. Addressing these challenges is critical to flawless execution to achieve high quality of

design for A0 production and meet the timelines to market. This paper proposes an alternative approach to existing pre - silicon

verification of mega new features such as multi - context, ray tracing and multiple compute pipeline in addition to existing compute and

3D shading pipelines of graphics architecture [1]. Our novel approach provides improvements in every step of the pre - silicon

verification stages including test planning, feature integration, bring up, building for API, test constraint for building basic testcases

and protocol related coverages based on the protocol definitions of packet information to finding bugs in early stages of design such as

interoperability and exposing architectural gaps. This paper details challenges in verification of process and precise steps to overcome

these challenges using automating scripts, regression management and effective debugging strategies.

Keywords: presilicon verification, architecture changes, feature integration, design challenges, debugging strategies

1. Introduction

Different verification methodologies such as simulation,

emulation, formal, gate level simulation performance and

post silicon verification to ensure the quality of design in

terms of functionality and performance [4] [3]. Each

verification strategy can be deployed at appropriate level of

DUT due to its advantages and disadvantages which are

explained later in this paper, thus deploying particular pre -

silicon verification strategies at particular DUT to find the

bug early in design cycles allows to converge on

functionality as well as performance of architecture and

design. This paper focuses on improving pre - silicon

verification for new mega feature verification. Approach

deploys automation on creating testing constraints, base

sequences based on the protocol description, automated

register testing, building and reusability of APIs and

verification components including BFM, coverages,

scoreboards and checkers, integration of design containers,

defining synchronous DUT boundaries for effective

verification and centralized test planning.

2. Implementation

Centralized Test planning:

Verification of an architecture or product is stages at

different levels of verification DUTs, ranging from

verification at IP, sub system, super sub system and SOC

[5]. Each DUT and team usually creates test plan based off

of the architectural and design specifications which are

tailored to a particular DUT. Unit level and subsystem test

plans are often covers more extensive testing. It covers

scenario pertaining to a unit level design specification but

may lack testing from system level point of view as it

focuses in boundary checks and internals of unit’s scenarios

such as finite state machines, flushing of internal

cache/SRAM, clearing internal temporary registers and

stressing of credits on interfaces.

Whereas subsystem and System on Chip (SOCs) DUTs

focuses on system level scenario and interoperability across

units or subsystems. Cross feature scenarios are also covered

extensively from system level point of view. Mega Feature

enabling such as multi - context or raytracing at higher

subsystems across other features is critical to ensure the

protocols, interoperability and architectural assumptions are

functional and meets the performance.

Due to differences of scenarios at different levels of DUT,

there is chance of missing scenario between system level to

unit level testing as feature testing at unit as opposed to SOC

may show different sequencing than real time workload and

hence synchronizing system level scenarios and sequencing

at SOC and Unit level is critical. This can be achieved by

creating system level scenarios per feature, protocols and

data paths. Further system level feature or testcases in

graphics processors can be controlled by submitting system

command in particular sequence which allows test

sequences to be matching the real - world scenarios. Thus,

system level scenarios and test sequencing can be scaled to

different levels of DUT and allows reusability.

Since the system level testcases can be run at unit level, it

provides opportunity to clear the functionality of feature at

IP or subsystem level and hence reduces the debugging and

bringing up cycle at SOC [9].

Paper ID: SR24730214843 DOI: https://dx.doi.org/10.21275/SR24730214843 1762

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Verification component building and reusing strategies:

Verification testbenches at different level such as IP,

subsystem and SOC has different boundaries of designs and

often shared same boundaries of design and other part of

designs are mimicked through behavioral functional model

(BFM), UVC which includes monitors and drivers. Drivers

models the protocol to drive the packet information on to

interface of design whereas monitors collects the

information from the interface of design which can be used

to in slave BFM to respond back with appropriate response

or collect coverage or feed to checkers for checking the

integrity of the packet information from design. This

infrastructure can be shared and reused as boundaries of

DUTs are same or shared similar protocol such as AXI.

As each interface follows specific packet information and

protocol and monitor and drivers needs specific class based

on struct, constraints, enumeration data types and memory

components. These protocols and packet information can be

easily combined to automatically create enum, constraints

[6] [7], packet information and thus sequence items using

script which provides compile clean and early head start to

build sequence items and structural code for building

systemverilog or UVM based API and UVCs.

For confidentiality the concept will explained using

hypothetical protocol

Hypothetical Memory packet

information (Field)

Subfields Dependencies Valid values Width

Cmd READ=0,

WRITE=1, ATOMIC=2

3: 0

Address Cmd==ATOMIC 0 - 3ffe_ffff 31: 0

Address Cmd==SYS_MEM_WRITE,

Cmd==SYS_MEM_READ

fff0_ 0000 - 4000_0000

Address Cmd==READ 0 - 3fef_ffff

Address Cmd==WRITE 0 - 3fef_ffff

SIZE Cmd==ATOMIC 2: 5 3: 0

SIZE Cmd==READ 0: f

SIZE Cmd==WRITE 0: f

Vld 1

Data All 255: 0

Datavld 1

Data_byte_enable Cmd==ATOMIC 0 - fff0

 Cmd==WRITE/READ 0 - ffff

System_Command Cmd_type Flush=0, Compute=1, pixel_shader=2,

geometry_shader=3, Vertex_shader=4

3: 0

System_Command Cmd_vld 0: 1 1

System_Command Cmd_header All 255: 0

Above table 1. Shows the standard tabulating field of the

packet information as follows:

• Fields are listed with its dependencies, valid values and

width.

• The dependencies of fields within the packet information

on specific value of field to be constraint to a specific

values are mentioned in valid values column.

• If the values mentioned in valid value column are “All”,

all values are valid for that particular field.

• Width of the fields

• If a field has subfield, subfileds are considered as an

entry of Field and script creates struct

Enumeration type generation:

Script generates enumeration as follows:

typedef enum bit [3: 0] {READ, WRITE, ATOMIC,

SYS_MEM_READ, SYS_MEM_WRITE} Cmd_e;

typedef enum bit [3: 0] {Flush, compute, pixel_shader,

geometry_shader, vertex_shader} Cmd_type_e;

Struct generation:

If a field includes subfield, that field is considered for a

struct and automatic structs are created as follows with

specific subfields mentioned until the next entry is

mentioned in field entry.

typedef struct {

Cmd_type_e cmd_type; bit Cmd_vld;

bit [255: 0] Cmd_header;

} System_command_e;

Packet /Sequence item structure with constraints:

Based on the table provided, script generates the automated

packets with fields and subfields with constraint and

dependencies which provides compile clean and base

sequence items for sequences or API [7].

class packet;

/* Field decleration:

Fields are created based off the table with enum and struct

created in previous steps //

*/

rand bit [31: 0] Address; rand Cmd_e Cmd;

rand bit [3: 0] SIZE; rand bit vld;

rand bit [255: 0] Data; rand bit Datavld;

rand bit [15: 0] Data_byte_enable;

rand System_command_e System_command;

/*Constraints:

Constraints are created with dependencies and value

expected for mentioned values of the fields.

Following autogenerated constraints shows address range

being constrained based on the type of command as has been

reflected from table 1.

*/

constraint Address_c { solve Cmd before Address;

 (Cmd==ATOMIC) - > Address inside { [0: 32'hffe_ffff]};

Paper ID: SR24730214843 DOI: https://dx.doi.org/10.21275/SR24730214843 1763

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 (Cmd==SYS_MEM_WRITE) - > Address inside {

[32'hfff0_0000: 32'h4000_0000]};

(Cmd==SYS_MEM_READ) - > Address inside {

[32'hfff0_0000: 32'h4000_0000]}; (Cmd==READ) - >

Address inside { [0: 32'h3ffe_ffff]};

 (Cmd==WRITE) - > Address inside { [0: 32'h3ffe_ffff]};

}

constraint vld_c { vld ==1;

}

constraint SIZE_c { solve Cmd before SIZE;

 (Cmd==ATOMIC) - > SIZE inside { [0: 4'hf]};

(Cmd==READ) - > SIZE inside { [0: 4'hf]};

(Cmd==WRITE) - > SIZE inside { [0: 4'hf]};

}

constraint Data_byte_enable_c { solve Cmd before

Data_byte_enable;

 (Cmd==ATOMIC) - > Data_byte_enable inside { [0:

16'hfff0]};

 (Cmd==WRITE || Cmd==READ) - > Data_byte_enable

inside { [0: 16'hffff]};

}

endclass

API building:

System commands are used in compute architectures by

Firmware in order to submit a particular workload.

Firmware uses different software languages such as C++, C

sharp, java scripts and hence integrating different

frameworks for interactive firmware with presilicon

testbenches such as simulation and emulation raises

complexity of testbench environment and demands expertise

in different languages. In order to overcome this challenge,

system level firmware commands should be modelled in

either SystemVerilog or UVM as these test frameworks are

used in most of the testbenches due to its universal

acceptance. Automated frameworks propose in this paper

provides base for creating systemverilog based function task

to create system commands and write into system memory

which is also modelled in systemVerilog.

As shown in earlier examples, automated framework

provides enumerated and struct data types concentrated on

type of system command mentioned in architectural or

firmware definitions. These commands are put into format

of table 1 and script thus is able to be created struct and

enumerated types. These struct and enum data type are

integrated in individual classes of each type of commands to

randomize different fields of the commands based on the

restrictions put in table 1. Randomized commands are

submitted into the system memory from which the design

fetches when the system addresses are provided to design

through different register programming or explicit write sent

to MMIO space depending on the design

specifications.

Since system level APIs can be used at different levels of

DUTs, test created based on system level API can be scaled

and reused at different DUTs which refences into system

memory for commands. Furthermore, these system level

tests can be scaled to stress the pipelines. For example,

Compute and 3D pipeline uses similar system commands

and are independent pipelines in graphics architecture

however shares same execution pipelines which includes

arbiters, execution units, instruction cache and system cache,

thus submitting independent system level commands at same

time for compute and 3D engines provides an opportunity to

stress the shared resource by graphics 3d shaders with

compute shaders [2].

Integration:

In order to create efficient verification environments, each

DUT must be able to run test and debug faster, following

aspects should be taken into account.

a) Boundary of the DUT

b) Size of the design under testing environment

c) Number of BFMs required

d) Scalability of testcases across DUTs

e) Checker and scoreboard scalability across DUTs

Boundaries of the DUTs should be decided based on the

factors as mentioned above. Particularly graphics

architecture includes multiple pipelines, shared resources

across pipelines and protocols. In order to keep nimble

DUT, design under testing environment should be

configurable and can be achieved by chopping the

architecture into multiple clusters. Clusters should be

configurable as well and can be managed by creating the

containers of designs ad pipelines which can be instantiated

multiple times using configurable options and thus DUT can

be scaled from single instances of design or pipelines to

multiple instances. Configurability of DUT results in quicker

compilation of DUT and quicker testing time. Further the

boundary of the DUT should be considered from design

verification component perspective such that verification

component can be shared across DUTs and thus reducing the

development cycle of component significantly. These

components can be reusable as it follows the standard

protocols across boundaries. Further the boundaries of the

DUTs can be efficiently managed by keeping the boundaries

at input or output of arbiters as it not only needs less number

of BFMs but also follows same protocols. These boundary

guidelines also provides opportunity to effectively manage

number of BFMs required at simulation and thus can also

help emulation to reduce number of board required for the

emulation environment.

Since BFM or verification components used across DUTs

are same, follows the system command and memory

component, test can be not only synchronized with real time

firmware but also scaled across the DUTs and further

resulting into quicker bringing up of testcases for specific

features at concise DUTs.

As the protocols and boundaries of DUTs are similar,

creating scoreboard and reusability increases which not only

helps in integration but also maintaining the scoreboard

checks.

Integration of such shared components and design can

configurable with above suggested guidelines and simplified

efficient approach.

3. Benefits and Future Directions

Suggested implementations offers efficient way of building

Paper ID: SR24730214843 DOI: https://dx.doi.org/10.21275/SR24730214843 1764

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 2, February 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

API, testbench components, test development and

scoreboard.

Efficiency:

API, sequence items and data structure are automatically

created through script based on the table 1 mentioned above.

This provides a head start in developing verification

components and fewer engineering efforts. As boundaries of

the DUTs are decided based on the guidelines provides the

testbench can be configurable, provides flexibility, easy to

integrate design and verification components and debug.

Additionally, configurability and reusability of test

sequences based off of system level APIs provides

scalability and efficiently manage the engineering effort and

shorten the verification cycle.

Accuracy:

Centralized testplan provides unique opportunity to bridge

gap in testplan between SOC, subsystem and IP. Due to

automated approach in creating test constraints and API

structures, code will compile successfully in first attempt

and thus implementing the recompiling cycle due to human

errors and increases accuracy of the code. Due to reusability

of the verification components, system level testing can

match the firmware real time scenarios and hence pre silicon

verification can match the real time scenarios in the product

and find early bugs.

Scalability:

Test bench components, system level APIs and test bench

configurability provide opportunity to scale the size of the

DUT and test sequence to stress overall architecture. As

system level APIs can be reused across the DUTs and also

scalable across different projects [8].

Future Enhancements:

As complexity of the architecture increases, there is always

chance of improving the DUT which can be further

improved using automation to create coverage and converge

on the functional and code coverage. Further the existing test

sequences can be fed back with coverage hit in order to self -

create sequences using AI and machine learning. Debugging

failures in complex architecture remains the critical aspect of

verification execution cycle, simplified approach and

developing tools to either automate or aid the debugging

process will allow debug quicker and reduce the verification

cycle.

4. Conclusion

Complexity of architecture of graphics, CPU and AI

accelerators are exponentially increasing and verification of

cycle is also proportionally expanding which will delay the

timelines for product to be launched in market. It is

paramount important to reduce the verification cycles and

engineering heads required for each project and can be

achieved through proposed frameworks. Automated

framework proposed in this paper reduces effort for

developing API, test constraint development and provides

guidelines on deciding the boundaries of the DUT. System

level testing framework and verification component

reusability adds to the efficiency and accuracy of testplan

executions.

References

[1] Youngsok Kim; Jae - Eon Jo; Hanhwi Jang; Minsoo

Rhu; Hanjun Kim; Jangwoo Kim “GPUpd: A Fast and

Scalable Multi - GPU Architecture Using Cooperative

Projection and Distribution”

[2] Intel corporation “Introduction to the Xe - HPG

Architecture White Paper”

[3] Yingpan Wu; Lixin Yu; Wei Zhuang; Jianyong Wang

“A Coverage - Driven Constraint Random - Based

Functional Verification Method of Pipeline Unit”

[4] Amr Hany; Ahmed Ismail; Ahmed Kamal; Mohamed

Badran “Approach for a unified functional verification

flow”

[5] Segev, E.; Goldshlager, S.; Miller, H.; Shua, O.; Sher,

O.; Greenberg, S.; , "Evaluating and comparing

simulation verification vs. formal verification approach

on block level design, " Electronics, Circuits and

Systems, 2004. ICECS 2004. Proceedings of the 2004

11th IEEE International Conference on, 2004

[6] Anantharaj Thalaimalai Vanaraj; Marshal Raj;

Lakshminarayanan Gopalakrishnan

[7] “Functional Verification closure using Optimal Test

scenarios for Digital designs”, 2020 Third International

Conference on Smart Systems and Inventive

Technology (ICSSIT)

[8] S. Yang, R. Wille, D. Groβe and R. Drechsler,

"Minimal Stimuli Generation in Simulation - Based

Verification", 2013 Euromicro Conference on Digital

System Design, pp.439 - 444, 2013.

[9] Wei Ni; Jichun Zhang “Research of reusability based

on UVM verification”, 2015 IEEE 11th International

Conference on ASIC (ASICON)

[10] He Zhang; Chunyu Wu; Wenjing Zhang; Jiwei Wang

“Design on SOC module - level functional verification

platform”, 2011 Second International Conference on

Mechanic Automation and Control Engineering

Paper ID: SR24730214843 DOI: https://dx.doi.org/10.21275/SR24730214843 1765

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://ieeexplore.ieee.org/author/37085464907
https://ieeexplore.ieee.org/author/37086095778
https://ieeexplore.ieee.org/author/37085546428
https://ieeexplore.ieee.org/author/38265603700
https://ieeexplore.ieee.org/author/38265603700
https://ieeexplore.ieee.org/author/37086206636
https://ieeexplore.ieee.org/author/37085348592
https://cdrdv2-public.intel.com/758302/introduction-to-the-xe-hpg-architecture-white-paper.pdf
https://cdrdv2-public.intel.com/758302/introduction-to-the-xe-hpg-architecture-white-paper.pdf
https://ieeexplore.ieee.org/author/37900632800
https://ieeexplore.ieee.org/author/37419054400
https://ieeexplore.ieee.org/author/37089683317
https://ieeexplore.ieee.org/author/37899846800
https://ieeexplore.ieee.org/author/37070722400
https://ieeexplore.ieee.org/author/37070894800
https://ieeexplore.ieee.org/author/37070652200
https://ieeexplore.ieee.org/author/37564583100
https://ieeexplore.ieee.org/author/37564583100
https://ieeexplore.ieee.org/author/37088525201
https://ieeexplore.ieee.org/author/37086962112
https://ieeexplore.ieee.org/author/37086881145
https://ieeexplore.ieee.org/xpl/conhome/9203793/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9203793/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9203793/proceeding
https://ieeexplore.ieee.org/author/37085424454
https://ieeexplore.ieee.org/author/37085860813
https://ieeexplore.ieee.org/document/7517189/
https://ieeexplore.ieee.org/document/7517189/
https://ieeexplore.ieee.org/xpl/conhome/7506193/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7506193/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7506193/proceeding
https://ieeexplore.ieee.org/author/37087643816
https://ieeexplore.ieee.org/author/37087644393
https://ieeexplore.ieee.org/author/37087359263
https://ieeexplore.ieee.org/author/37087642805
https://ieeexplore.ieee.org/document/5987881/
https://ieeexplore.ieee.org/document/5987881/
https://ieeexplore.ieee.org/document/5987881/
https://ieeexplore.ieee.org/xpl/conhome/5963833/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5963833/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5963833/proceeding

