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Abstract: We formulate the SEIR mathematical model for the transmission dynamics of COVID-19. We study the stability of the 

equilibrium points for the system of differential equations modeling the disease. We obtain conditions for the local and global stabilities 

of the disease-free and endemic equilibria of the SEIR model. The basic reproduction number for the model is also derived. Values of 

the parameters used in the model are estimated and numerical simulation is conducted using the Scilab software application. The result 

of the simulation shows that the whole population becomes susceptible and the disease dies out very rapidly within a very short time, 

when the basic reproduction number is less than one. On the other hand, when the basic reproduction number is greater than one, a 

large proportion of the population gets infected while a much larger proportion die or recover from the disease. 
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1. Introduction 
 

The COVID-19 (Coronavirus disease, 2019) pandemic, is an 

ongoing global pandemic, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [18]. The outbreak 

was first identified in Wuhan, China, in December2019 [19], 

[2]. The World Health Organization declared the outbreak a 

Public Health Emergency of International Concern on 30 

January 2020 and a pandemic on 11 March 2020 [21]. The 

virus is mostly spread between people during close contact. 

The mode of transmission is often via small droplets 

produced by coughing, sneezing and talking [5]. Symptoms 

commonly include fever, fatigue, cough, loss of sense of 

smell, and shortness of breath [20]. Complications often 

include acute respiratory distress syndrome and pneumonia 

[17]. The average incubation period of the disease is 

estimated to be 6.4 days [6], although typically ranges from 

one to fourteen days [15]. According to [15], for people with 

mild disease, the average recovery time is about 2 weeks. 

For people with severe symptoms, recovery is between 3 to6 

weeks. 

 

Several authors: [22], [23], [1], [8], [24], [16], [4], [25], 

[10], [14], have recently developed mathematical models for 

the transmission dynamics of COVID-19. 

 

In this study, we formulate a simple compartmental model to 

represent the dynamics of COVID-19. We investigate the 

stability analysis for the mode lands obtain conditions for 

the stability of the steady states. 

 

2. Seir Model of COVID-19 
 

2.1 Model Assumptions 

 

 The population under consideration is divided into four 

disjoint classes which change with time (t).These classes 

are: The Susceptible class, denoted by (S), the Exposed 

class, denoted by (E), the Infective class, denoted by (I) 

and the Removed class (which comprises of individuals 

removed from the population by either death or 

recovery), denoted by (R). 

 The population under consideration has a constant size N 

and is sufficiently large, so that the sizes of each class 

can be considered as continuous variables. 

 The population is homogeneously mixing. Individuals 

make contact at random and do not mix mostly in a 

smaller subgroup. 

 We assume that there is no immigration or emigration. 

 The model includes vital dynamics (births and deaths). 

We assume that the births and deaths occur at equal rates 

and all newborns are susceptible. Individuals are 

removed by death from each class at a rate proportional 

to the class size with proportionality constant𝛿 (the death 

or birth rate) 

 In the susceptible class 𝑆, a susceptible person becomes 

infected and moves into the Exposed class at a rate 

proportional to the product 𝑆𝐼with proportionality 

constant
𝛼

𝑁
. The contact rate 𝛼 (rate of infection) is the 

average number of adequate contacts per infective per 

unit time. An adequate contact of an infective is an 

interaction which results in infection of the other 

individual if he is susceptible. 

 From the exposed class (𝐸), an individual becomes 

infective and moves into the infective class at a rate 

proportional to the class size with proportionality 

constant 𝜆. 
 Individuals recover and leave the infective class  𝐼  at 

rates proportional to the class size 𝐼, with proportionality 

constants 𝜈1  𝑎𝑛𝑑 𝜈2 .  Individuals that don’t survive the 

disease die and leave the class  𝐼  with proportionality 

constant 𝛿1. 

 

2.2 Parameters of the Model 

 

 𝛿: Natural mortality rate (Birth or Death rate). The time 

unit is set at day. The constant natural mortality rate is 

assumed to be inversely proportional to the global 

average life expectancy of birth. This is taken to be 
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approximately 72 years [11]. 

𝛿 =
1

2628 0
= 0.000038𝑑𝑎𝑦−1. 

 𝛼: The rate of infection 𝛼 =(number of new cases over a 

time period)/ (total population at risk during the same 

time period). 

 𝛽: Transition rate from Exposed class to Infective class 

(We assumeit is inversely proportional to the latent 

period of the disease). In [25], it is reported that the 

median time prior to symptom onset (latent period), is 3 

days. If we take the latent period to be 3 days, (range 1-

24 days), we get; 𝛽 =
1

3
= 0.33𝑑𝑎𝑦−1. 

 𝑣1: Recovery rate for patients with mild symptoms. We 

assume it is inversely proportional to the average period 

of infectivity (the time between COVID-19 infection and 

recovery for people with mild symptoms). If we take the 

average recovery time for people with mild symptoms to 

be 2 weeks [15], we get; 𝑣1 =
1

14
= 0.07143𝑑𝑎𝑦−1. 

 𝑣2: Recovery rate for patients with more severe 

symptoms. We assume it is inversely proportional to the 

average period of infectivity(the time between COVID-

19 infection and recovery for people with severe 

symptoms). If we take the average recovery time for 

people with severe symptoms to be 4.5 weeks [15], we 

get: 𝑣2 =
1

31.5
= 0.03175𝑑𝑎𝑦−1 

 𝛿1:Disease-related death rate 𝛿1=(number of deaths over 

a defined period of time)/ (confirmed cases diagnosed 

within that time period). 

 

The transmission dynamics of the disease is represented by 

the following system of ordinary differential equations (The 

SEIR model): 

 
𝑑𝑆

𝑑𝑡
= 𝛿𝑁 −

𝛼

𝑁
𝑆𝐼 − 𝛿𝑆 

 
𝑑𝐸

𝑑𝑡
=

𝛼

𝑁
𝑆𝐼 −  𝛽 + 𝛿 𝐸 

                                                                                                   (2.1) 
𝑑𝐼

𝑑𝑡
= 𝛽𝐸 −  𝑣1 + 𝑣2 + 𝛿1 + 𝛿 𝐼 

 
𝑑𝑅

𝑑𝑡
=  𝑣1 + 𝑣2 + 𝛿1 𝐼 − 𝛿𝑅 

 

𝛿, 𝛼, 𝛽, 𝛿1, 𝑣1 , 𝑣2 > 0,  
 

𝑆, 𝐸, 𝐼, 𝑅 > 0 

 

2.3   Steady States 

 

From (2.1), we have;  

𝛿 𝑁 − 𝑆 −
𝛼

𝑁
𝑆 𝐼  = 0                                             (2.2) 

𝛼

𝑁
𝑆 𝐼  −  𝛽 + 𝛿 𝐸 = 0                                           (2.3) 

𝛽𝐸 −  𝜈1 + 𝜈2 + 𝛿1 + 𝛿 𝐼  = 0                                     (2.4) 

(𝜈1 + 𝜈2 + 𝛿1)𝐼  − 𝛿𝑅 = 0                                      (2.5) 
 

where (𝑆 , 𝐸 , 𝐼  , 𝑅 ) is the steady state or equilibrium point 

of the system (2.1) 

 

From (2.4) and (2.5), we get; 

𝐸 =
𝜈1 + 𝜈2 + 𝛿1 + 𝛿

𝛽
𝐼        𝑎𝑛𝑑   𝑅 =

𝜈1 + 𝜈2 + 𝛿1

𝛿
𝐼   

 

From (2.3), we have:  

 
𝛼

𝑁
𝑆 − (𝛽 + 𝛿)

𝜈1 + 𝜈2 + 𝛿1 + 𝛿

𝛽
 𝐼  = 0 

 

This gives us two possible solutions: 𝐼  = 0  and  

 
𝛼

𝑁
𝑆 − (𝛽 + 𝛿)

𝜈1 + 𝜈2 + 𝛿1 + 𝛿

𝛽
 𝐼  = 0             (2.6) 

 

Substituting 𝐼  = 0 into (2.4) and (2.5), we get: 𝐸 =
0   𝑎𝑛𝑑 𝑅 = 0.  From (2.2), we get 𝑆 =      𝑁. 

 

Hence the disease-free steady state of the system (2.1) is 

(𝑁, 0, 0, 0). 

 

From (2.6), we have,  

𝑆 =
𝑁 𝛽 + 𝛿  𝜈1 + 𝜈2 + 𝛿1 + 𝛿 

𝛼𝛽
                (2.7) 

Substituting (2.7) into (2.2), we get; 

𝐼  =
𝛽𝛿𝑁

(𝛽 + 𝛿)(𝜈1 + 𝜈2 + 𝛿1 + 𝛿)
−

𝛿𝑁

𝛼
            (2, 8) 

Putting (2.8) into (2.4), we get; 

𝐸 =
𝛿𝑁

𝛽 + 𝛿
−

𝛿𝑁 𝜈1 + 𝜈2 + 𝛿1 + 𝛿 

𝛼𝛽
               (2.9) 

Putting (2.8) into (2.5), we get; 

𝑅 =
𝛽𝑁

𝛽 + 𝛿
−

(𝜈1 + 𝜈2 + 𝛿1)𝑁

𝛼
 

 

Hence the endemic equilibrium of the system (2.1) is at; 

 𝑆 , 𝐸 , 𝐼  , 𝑅  

=  
𝑁(𝛽 + 𝛿)(𝜈1 + 𝜈2 + 𝛿1 + 𝛿)

𝛼𝛽
 ,

𝛿𝑁

𝛽 + 𝛿

−
𝛿𝑁 𝜈1 + 𝜈2 + 𝛿1 + 𝛿 

𝛼𝛽
 ,

𝛽𝛿𝑁

 𝛽 + 𝛿  𝜈1 + 𝜈2 + 𝛿1 + 𝛿 

−
𝛿𝑁

𝛼
 ,

𝛽𝑁

𝛽 + 𝛿
−

𝑁(𝜈1 + 𝜈2 + 𝛿1)

𝛼
  

 

2.4      Basic Reproduction Number 

 

Lemma 2.1The basic reproduction number for the model 

(2.1) is:   

𝑅0 =  
𝛼𝛽

(𝛽 + 𝛿)(𝜈1 + 𝜈2 + 𝛿1 + 𝛿)
 

 

Proof 

Using the next-generation matrix (NGM) method [9], from 

(2.1), we get the linearized infection subsystem: 
𝑑𝐸

𝑑𝑡
= 𝛼𝐼 −  𝛽 + 𝛿 𝐸 

𝑑𝐼

𝑑𝑡
= 𝛽𝐸 −  𝜈1 + 𝜈2 + 𝛿1 + 𝛿 𝐼 

 

From which we get; 

𝐴 =  
0 𝛼
𝛽 0

      and   

𝐵 =  
−(𝛽 + 𝛿) 0

0 −(𝜈1 + 𝜈2 + 𝛿1 + 𝛿)
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Where A is the transmission matrix and B is the transition 

matrix. We have; 

𝐹 = −𝐴𝐵−1 =  
0 𝛼
𝛽 0

 

 
 
 
 

1

𝛽 + 𝛿
0

0
1

𝜈1 + 𝜈2 + 𝛿1 + 𝛿 
 
 
 

=

 
 
 
 0

𝛼

𝜈1 + 𝜈2 + 𝛿1 + 𝛿
𝛽

𝛽 + 𝛿
0

 
 
 
 

 

From which we compute 𝑅0: 

𝑅0 = 𝜌 𝐹 =
1

2
(𝑡𝑟𝑎𝑐𝑒 𝐹 +   𝑡𝑟𝑎𝑐𝑒 𝐹 2 − 4 det 𝐹 

=  
𝛼𝛽

(𝛽 + 𝛿)(𝜈1 + 𝜈2 + 𝛿1 + 𝛿)
 

where 𝜌 is the spectral radius. 

                                                                                                                                           

2.5     Stability Analysis. 

 

Theorem 2.2     The disease-free equilibrium of the SEIR 

model is locally asymptotically stable if the basic 

reproduction number: 𝑅0 < 1, and is unstable otherwise. 

 

Proof 

The Jacobian matrix of the system (2.1) is given by; 

 

𝐽 =

 
 
 
 
 
 −𝛿 0

−𝛼

𝑁
𝑆 0

0 −(𝛽 + 𝛿)
𝛼

𝑁
𝑆 0

0 𝛽 −(𝜈1 + 𝜈2 + 𝛿1 + 𝛿) 0

0 0 𝜈1 + 𝜈2 + 𝛿1 −𝛿 
 
 
 
 
 

 

 

 At (𝑁, 0, 0, 0); 

𝐽 =  

−𝛿 0 −𝛼 0
0 −(𝛽 + 𝛿) 𝛼 0

0 𝛽 −(𝜈1 + 𝜈2 + 𝛿1 + 𝛿) 0
0 0 𝜈1 + 𝜈2 + 𝛿1 −𝛿

  

 
𝐽 − 𝜆𝐼

=  

−𝛿 − 𝜆 0 −𝛼 0
0 −(𝛽 + 𝛿) − 𝜆 𝛼 0

0 𝛽 − 𝜈1 + 𝜈2 + 𝛿1 + 𝛿 − 𝜆 0
0 0 𝜈1 + 𝜈2 + 𝛿1 −𝛿 − 𝜆

  

 

where 𝑎 = 𝛽 + 𝛿,  and  𝑏 = 𝜈1 + 𝜈2 + 𝛿1 + 𝛿 

 

det 𝐽 − 𝜆𝐼 = (−𝛿 − 𝜆)2  −𝑎 − 𝜆  −𝑏 − 𝜆 − 𝛼𝛽  
 

The characteristic equation: det 𝐽 − 𝜆𝐼 = 0   gives; 

 −𝛿 − 𝜆 2 = 0, 𝑜𝑟   −𝑎 − 𝜆  −𝑏 − 𝜆 − 𝛼𝛽 = 0 
We have;  

𝜆1,2 = −𝛿,    𝜆3 =
− 𝑎+𝑏 −  𝑎−𝑏 2+4𝛼𝛽

2
 ,    𝑎𝑛𝑑  𝜆4 =

− 𝑎+𝑏 + (𝑎−𝑏)2+4𝛼𝛽

2
 

𝜆3 < 0 ,     𝜆4 < 0   𝑖𝑓𝑓     (𝑎 − 𝑏)2 + 4𝛼𝛽 < 𝑎 + 𝑏 

This gives:  
𝛼𝛽

(𝛽+𝛿)(𝜈1+𝜈2+𝛿1+𝛿)
< 1     𝑜𝑟   𝑅0 < 1 

                                                                                                                                     

Theorem 2.3The endemic equilibrium of the SEIR model is 

locally asymptotically stable for 𝑅0 > 1  and is unstable 

otherwise. 

 

Proof 

At the endemic equilibrium, the Jacobian matrix is given by; 

𝐽 =

 
 
 
 
 
 
 

−𝛼𝛽𝛿

𝑎𝑏
0

−𝑎𝑏

𝛽
0

𝛼𝛽𝛿

𝑎𝑏
− 𝛿 −𝑎

𝑎𝑏

𝛽
0

0 𝛽 −𝑏 0
0 0 𝑏 − 𝛿 −𝛿 

 
 
 
 
 
 

 

 

det 𝐽 − 𝜆𝐼 =

 

 

−𝛼𝛽𝛿

𝑎𝑏
− 𝜆 0

−𝑎𝑏

𝛽
0

𝛼𝛽𝛿

𝑎𝑏
− 𝛿 −𝑎 − 𝜆

𝑎𝑏

𝛽
0

0 𝛽 −𝑏 − 𝜆 0
0 0 𝑏 − 𝛿 −𝛿 − 𝜆

 

 

 

Solving det 𝐽 − 𝜆𝐼 = 0, we get: 

 −𝛿 − 𝜆  (−𝜈 − 𝜆) −𝑎 − 𝜆  −𝑏 − 𝜆 − 𝑎𝑏 −𝜈 − 𝜆 

− 𝑎𝑏(𝜈 − 𝛿) = 0, 𝑤ℎ𝑒𝑟𝑒  𝜈 =
𝛼𝛽𝛿

𝑎𝑏
 

 −𝛿 − 𝜆 = 0  gives  𝜆1 = −𝛿 

 −𝜈 − 𝜆  −𝑎 − 𝜆  −𝑏 − 𝜆 − 𝑎𝑏 −𝜈 − 𝜆 − 𝑎𝑏 𝜈 − 𝛿 =
0  gives: 

−𝜆3 −  𝑎 + 𝑏 + 𝜈 𝜆2 − 𝜈 𝑎 + 𝑏 𝜆 − 𝑎𝑏 𝜈 − 𝛿 = 0 

Let 𝑓 𝜆 = −𝜆3 −  𝑎 + 𝑏 + 𝜈 𝜆2 − 𝜈 𝑎 + 𝑏 𝜆 −
𝑎𝑏 𝜈 − 𝛿 ,  then 

𝑓 −𝜆 = 𝜆3 −  𝑎 + 𝑏 + 𝜈 𝜆2 + 𝜈 𝑎 + 𝑏 𝜆 − 𝑎𝑏 𝜈 − 𝛿 
= 0                               (2.9) 

 

Based on Descartes’ rule [12], the number of negative roots 

of the characteristic equation (2.9) is equal to the maximum 

number of coefficient sign changes. Hence, (2.9) has three 

negative roots. If (2.9) is in the form of: 

𝐾 = 𝐿1𝜆
3 − 𝐿2𝜆

2 + 𝐿3𝜆 − 𝐿4 
where; 

𝐿1 = 1  
𝐿2 =  𝑎 + 𝑏 + 𝜈 

𝐿3 = 𝜈(𝑎 + 𝑏) 

𝐿4 = 𝑎𝑏(𝜈 − 𝛿) 

 

with the condition; 𝐿1 , 𝐿2, 𝐿3 , 𝐿4 > 0 

Hence we have; if 𝜈 > 𝛿   𝑎𝑛𝑑  𝐿1 , 𝐿2, 𝐿3, 𝐿4 >
0,   𝑡ℎ𝑒𝑛  𝜆2, 𝜆3, 𝜆4 < 0 

 

Therefore, the SEIR endemic equilibrium  𝑆1, 𝐸1 , 𝐼1 , 𝑅1  

is locally asymptotically stable if: 

𝜈 > 𝛿   𝑜𝑟   𝛼𝛽 > 𝑎𝑏    𝑜𝑟  
𝛼𝛽

 𝛽 + 𝛿  𝜈1 + 𝜈2 + 𝛿1 + 𝛿 
> 1                          

 

Theorem 2.4If 𝑅0 < 1,  then the disease-free equilibrium 

point  𝑁, 0, 0, 0  is globally asymptotically stable in the 

domain:    

𝐷1 =   𝑆, 𝐸, 𝐼, 𝑅 ∈ ℝ+
4 ∶ 𝑆 <

𝑁 𝛽 + 𝛿 

𝛼
  

 

Proof 

Define a Lyapunov function 𝐿 = 𝐸,  then: 
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𝑑𝐿

𝑑𝑡
=  

𝛼

𝑁
𝑆 −  𝛽 + 𝛿  𝐸 ≤ 0  𝑖𝑓  𝑆 <

𝑁 𝛽 + 𝛿 

𝛼
 

That is; 
𝑑𝐿

𝑑𝑡
≤ 0 in the domain 𝐷1 =   𝑆, 𝐸, 𝐼, 𝑅 ∈ ℝ+

4 ∶ 𝑆 <

𝑁𝛽+𝛿𝛼. 

 

So, for the positive definite function 𝐿, the derivative 
𝑑𝐿

𝑑𝑡
 is 

negative semi-definite in 𝐷1. Now, we consider the set 

where 
𝑑𝐿

𝑑𝑡
= 0. 

 

Let △=   𝑆, 𝐸, 𝐼, 𝑅 ∈ 𝐷1 ∶  
𝑑𝐿

𝑑𝑡
= 0 =   𝑆, 𝐸, 𝐼, 𝑅 ∈

𝐷1 :𝐸=0. 

 

Let 𝑇 be the largest invariant set in △. Then in △, we get; 

 
𝑑𝑆

𝑑𝑡
= 𝛿 𝑁 − 𝑆                                                 2.10  

𝑑𝐼

𝑑𝑡
= − 𝜈1 + 𝜈2 + 𝛿1 + 𝛿 𝐼                          2.11  

𝑑𝑅

𝑑𝑡
= −𝛿                                                            2.12  

 

From (2.12), we have 𝑅 → 0  as → ∞ . From (2.11), we 

have 𝐼 → 0  as  𝑡 → ∞.  From (2.10), we have 𝑆 → 𝑁  as  

𝑡 → ∞.  Hence 𝑇 is   𝑁, 0, 0, 0  .  Hence by the LaSalle-

Lyapunov theory [7], the disease-free equilibrium  𝑁, 0, 0,
0  is globally asymptotically stable in 𝐷1. 

 

Now, from 𝐷1,  𝑆 <
𝑁 𝛽+𝛿 

𝛼
  gives;  

𝛼

𝛽+𝛿
< 1,  and we have 

that; 
𝛼𝛽

 𝛽+𝛿  𝜈1+𝜈2+𝛿1+𝛿 
<

𝛼

𝛽+𝛿
< 1  implies that 𝑅0 < 1. 

                                                                                                                               

□ 

 

Theorem 2.5The endemic equilibrium point  𝑆1 , 𝐸1 , 𝐼1 ,
  𝑅1 is globally asymptotically stable in the region:  𝐷2=𝑆,  
𝐸,  𝐼,  𝑅∈ℝ+4 :1<𝐸1𝐸<𝐼1𝐼<𝑅1𝑅<𝑆1𝑆. 

 

Proof 

Consider a Lyapunov function 𝑉 defined as follows: 

𝑉 =  
𝑆 − 𝑆1

𝑆

𝑆

𝑆1

𝑑𝑆 +  
𝐸 − 𝐸1

𝐸

𝐸

𝐸1

𝑑𝐸 +  
𝐼 − 𝐼1

𝐼

𝐼

𝐼1

𝑑𝐼

+  
𝑅 − 𝑅1

𝑅

𝑅

𝑅1

𝑑𝑅       

We have; 
𝑑𝑉

𝑑𝑡
=  

𝑆−𝑆1

𝑆
 

𝑑𝑆

𝑑𝑡
+  

𝐸−𝐸1

𝐸
 

𝑑𝐸

𝑑𝑡
+  

𝐼−𝐼1

𝐼
 

𝑑𝐼

𝑑𝑡
+

 
𝑅−𝑅1

𝑅
 

𝑑𝑅

𝑑𝑡
=  𝑆 − 𝑆1  

𝛿𝑁

𝑆
−

𝛿𝑁

𝑆1
−

𝛼𝐼

𝑁
+

𝛼𝐼1

𝑁
 +  𝐸 −

𝐸1𝛼𝑁𝑆𝐼𝐸−𝛼𝑁𝑆1𝐼1𝐸1+𝐼−𝐼1𝛽𝐸𝐼−𝛽𝐸1𝐼1+𝑅−𝑅1𝜈1+𝜈2+
𝛿1𝐼𝑅−𝐼1𝑅1= 

 𝑆 − 𝑆1  𝛿𝑁
(𝑆1 − 𝑆)

𝑆𝑆1

+
𝛼

𝑁
 𝐼 − 𝐼1  

+  𝐸 − 𝐸1  
𝛼

𝑁
 𝑆 − 𝑆1  

+ 𝛽 𝐼 − 𝐼1 
(𝐸𝐼1 − 𝐼𝐸1)

𝐼𝐼1

+  𝜈1 + 𝜈2 + 𝛿  𝑅 − 𝑅1 
(𝐼𝑅1 − 𝐼1𝑅)

𝑅𝑅1

= 𝛿𝑁 𝑆 − 𝑆1 
𝑆1 − 𝑆

𝑆𝑆1

+
𝛼

𝑁
 𝑆 − 𝑆1  𝐼1 − 𝐼 

+
𝛼

𝑁
 𝐸 − 𝐸1 

 𝑆𝐼𝐸1 − 𝑆1𝐼1𝐸 

𝐸𝐸1

+ 𝛽 𝐼 − 𝐼1 
 𝐸𝐼1 − 𝐼𝐸1 

𝐼𝐼1

+  𝜈1 + 𝜈2 + 𝛿1  𝑅 − 𝑅1 
(𝐼𝑅1 − 𝐼1𝑅)

𝑅𝑅1

= −
𝛿𝑁

𝑆𝑆1

 𝑆1 − 𝑆 2 −
𝛼

𝑁
 𝑆1 − 𝑆  𝐼1 − 𝐼 

+
𝛼

𝑁
 𝐸 − 𝐸1 

 𝑆𝐼𝐸1 − 𝑆1𝐼1𝐸 

𝐸𝐸1

− 𝛽 𝐼1 − 𝐼 
 𝐸𝐼1 − 𝐼𝐸1 

𝐼𝐼1

−  𝜈1 + 𝜈2 + 𝛿1  𝑅1 − 𝑅 
 𝐼𝑅1 − 𝐼1𝑅 

𝑅𝑅1

< −
𝛿𝑁

𝑆𝑆1

 𝑆1 − 𝑆 2 −
𝛼

𝑁
 𝑆1 − 𝑆  𝐼1 − 𝐼 

+
𝛼

𝑁
 𝐸 − 𝐸1  𝑆1𝐼1𝐸1 − 𝑆1𝐼1𝐸 

− 𝛽 𝐼1 − 𝐼 
 𝐸𝐼1 − 𝐼𝐸1 

𝐼𝐼1

−  𝜈1 + 𝜈2 + 𝛿1  𝑅1 − 𝑅 
 𝐼𝑅1 − 𝐼1𝑅 

𝑅𝑅1

 

 

Since 1 <
𝐸1

𝐸
<

𝐼1

𝐼
<

𝑅1

𝑅
<

𝑆1

𝑆
 ,  we have;  1 <

𝑆1

𝑆
   and  1 <

𝐼1

𝐼
, 

which gives;  𝑆𝐼 < 𝑆1𝐼1.  From 

 which we get: 
𝑑𝑉

𝑑𝑡
= −

𝛿𝑁

𝑆𝑆1

 𝑆1 − 𝑆 2 −
𝛼

𝑁
 𝑆1 − 𝑆  𝐼1 − 𝐼 

−
𝛼

𝑁
𝑆1𝐼1 𝐸1 − 𝐸 2

− 𝛽
 𝐼1 − 𝐼  𝐸𝐼1 − 𝐼𝐸1 

𝐼𝐼1

−  𝜈1 + 𝜈2 + 𝛿1  𝑅1 − 𝑅 
 𝐼𝑅1 − 𝐼1𝑅 

𝑅𝑅1

< 0 
 

Hence, 
𝑑𝑉

𝑑𝑡
< 0  in the region:    𝑆, 𝐸, 𝐼, 𝑅 ∈ ℝ4

+ : 1 <

𝐸1𝐸<𝐼1𝐼<𝑅1𝑅<𝑆1𝑆 

                                                                                                                                    

3. Numerical Simulation 
 

3.1   Numerical plot of the SEIR model of COVID-19 for 

𝐑𝟎 < 1. 

 

Define a solution to the system (2.1) for the parameter 

values; 𝛿 = 0.000038, 𝛼 = 0.37, 𝛽 = 0.33, 𝜈1 =
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0.07143, 𝜈2 = 0.03175, 𝛿1 = 2.03,  subject to the initial 

conditions: 𝑠 0 = 0.7, 𝑒 0 = 0.15, 𝑖 0 = 0.1, 𝑟 0 =
0.05, where 𝑠 =

𝑆

𝑁
, 𝑒 =

𝐸

𝑁
 , 𝑖 =

𝐼

𝑁
 , 𝑟 =

𝑅

𝑁
 , the population 

N is taken to be 1000. 

 

 
Figure 1: Numerical plot of model for  𝑅0 < 1 

 

3.2    Scilab Code: 

 

function ydot=SEIRdmodel(t, y) 

ydot= [d-a*y(1)*y(3)-d*y(1);a*y(1)*y(3)- 

(n+d)*y(2);n*y(2)(v1+v2+d1+d)*y(3);(v1+v2+d1)*y(3)-

d*y(4)] 

endfunction 

d=0.000038; 

a=0.37; 

n=0.33; 

v1=0.07143; 

v2=0.03175;  

d1=2.08; 

y0= [0.7;0.15;0.1;0.05]; 

t0=0; 

t=0:7:365; 

sol=ode(y0, t0, t, SEIRdmodel); 

plot(t, sol(1, :), 'k-o-', t, sol(2, :), 'k-+-', t, sol(3, :), 'k-.', t, 

sol(4, :), 'k-x-') 

title("2D Plot of SEIR model of COVID-19 with rate of 

infection 0.37, causing the basic 

reproduction number to be less than one", "fontsize", 2) 

hl=legend( ['s';'e';'i';'r']); 

 

3.3   Numerical plot of the SEIR model of COVID-19 

for𝐑𝟎 > 𝟏 

 
Define a solution to the system (2.1) for the parameter 
values; 𝛿 = 0.000038, 𝛼 = 12, 𝛽 = 0.33, 𝜈1 =
0.07143,  𝜈2 = 0.03175, 𝛿1 = 3.11,  subject to the initial 
conditions:  𝑠 0 = 0.7, 𝑒 0 = 0.15, 𝑖 0 = 0.1, 𝑟 0 =

0.05,  where =
𝑆

𝑁
, 𝑒 =

𝐸

𝑁
, 𝑖 =

𝐼

𝑁
 , 𝑟 =

𝑅

𝑁
 . 
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Figure 2: Numerical plot of model for 𝑅0 > 1 

 

3.4 Scilab Code 

 

function ydot=SEIRdmodel(t, y) 

ydot= [d-a*y(1)*y(3)-d*y(1);a*y(1)*y(3)-

(n+d)*y(2);n*y(2)- 

(v1+v2+d1+d)*y(3);(v1+v2+d1)*y(3)-d*y(4)] 

endfunction 

d=0.000038; 

a=12; 

n=0.33; 

v1=0.07143; 

v2=0.03175; 

d1=3.11; 

y0= [0.7;0.15;0.1;0.05]'; 

t0=0; 

t=0:7:365; 

sol=ode( [0.7;0.15;0.1;0.05], t0, t, SEIRdmodel); 

plot(t, sol(1, :), 'k-o-', t, sol(2, :), 'k-+-', t, sol(3, :), 'k-.', t, 

sol(4, :), 'k-x-') 

title("2D Plot of SEIR model of COVID-19 with a high rate 

of infection: 12, causing the 

basic reproduction number to be greater than one", 

"fontsize", 3) 

hl=legend( ['s';'e';'i';'r']); 

 

4. Discussion of Results and Conclusion 
 

We have formulated an SEIR model for the transmission 

dynamics ofCOVID-19. Upon studying the stability of the 

steady states, we have found that, at the disease-free 

equilibrium point, if the basic reproduction number is less 

than one, the population remains disease-free. At the 

endemic equilibrium point, if the disease continues to spread 

and the basic reproduction number is greater than one, the 

disease persists in the population. 

 

The parameters of the model were estimated and the model 

was solved numerically using the scilab software. The result 

of the simulation shows that, if the basic reproduction 

number is less than one, the disease dies out very rapidly 

within a very short time. Also, a very small proportion of the 

population that get infected are rapidly removed by death 

and recovery, and we still have a very large proportion of 

the population remaining in the susceptible class. On the 

other hand, if the basic reproduction number is greater than 

one, a large proportion of the population gets infected within 

a short time. Also, a large proportion of the population gets 

removed by death or recovery. 

 

4.1 Recommendations 

 

If the basic reproduction number can be reduced by applying 

various preventive strategies like the use of face masks, 

social distancing, staying at home, avoiding crowded places, 

etc., the spread of the disease can at least be effectively 

controlled, and a lot of deaths can be prevented in the parts 

of the world where vaccines are yet to be administered. 
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