
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Real-Time Stream Processing of Big Data
1 2 3

Denis Patrick Bell , Eliasu Tambominyi , Yang Chunting

1School of Information and Electronic Engineering, Zhejiang University of Science and Technology,

No.318, Liu-he-Road, Hangzhou, Zhejiang Province, 310023, China

911808802009[at]zust.edu.cn

2School of Automation and Electrical Engineering, Zhejiang University of Science and Technology,

No.318, Liu-he-Road, Hangzhou, Zhejiang Province, 310023, China

911807802002[at]zust.edu.cn

3School of Information and Electronic Engineering, Zhejiang University of Science and Technology,

No.318, Liu-he-Road, Hangzhou, Zhejiang Province, 310023, China

yangct[at]zust.edu.cn

Abstract: The evolution of technology has enabled the continuous generation of massive data from connected devices and sensors. As,

more data becomes available, organizations are using cutting-edge tools and techniques to extract useful insight from the data

immediately they are generated. Therefore, the enterprise systems are evolving and shifting towards real-time systems. So, there is a

growing need for well-developed fault tolerant distributed scalable systems to handle this change with low latency. Recent years have

seen the emergence of several distributed systems whose popularity is as a result of the growing demand to efficiently analyze and

interpret voluminous data. This article will discuss distributed real-time stream processing of big data, the two main real-time big data

processing architectures: Lambda and Kappa and the popular frameworks used for processing real time big data.

Keywords: Real-time data processing, Big data, Batch processing, Lambda & Kappa architecture

1. Introduction

Real Time data streaming though not a new phenomenon

has seen considerable advancement in recent years. Progress

in technological development and implementation coupled

with increasing connectivity between human and

communication devices, through the internet in most cases is

constantly presenting the world with an insurmountable

proportion of data. This ever growing sea of data is the

reason for the growing demand and use of real time stream

processing.

Streaming data is often generated from multiple sources

continuously. For instance, data streams from sensors can be

produced several times in just a few second. A streaming

system need to constantly handle this data as they are

received. Big Data is often used to describe extremely large

volume of structured or unstructured data which are

generated in terabytes, petabytes, exabytes etc. This includes

data generated at high speed by sensors, web and mobile

data from social networks, e-commerce etc.

Big data and its challenges can be easily characterized by

five Vs: Volume, Velocity, Veracity, Variety, and Value
[1]

.Volume here represents the amount of data. The amount

of data stored is in many terabytes, petabytes and may soon

reachzeta-bytes in the nearby future. Velocity denotes the

actual speed of data processing. Data from sensors may need

to be process in few milliseconds in real time. Veracity is the

accuracy of the data. Variety is different types of data that

exist such as images, audio, video, text and so on. Data is

produced from various sources in different forms as

structured, semi structured or unstructured.

Data form an integral part of any enterprise. When size of

data collected is increased, the task of processing the data

for business intelligence becomes more challenging making

traditional techniques computationally expensive. Raw data

is useless unless processed to extract useful information.

Data can be process using basically two techniques: batch

processing and streaming (also called stream processing).

Batch processing involves grouping large volume of data

collected for a transaction over a period of time, then

processed to obtain batch results. Streaming on the other

hand is done in real time under streaming process
[1]

.

The shift towards more dynamic and user-generated content

in the web and the unstoppable emergence of smart devices

possessing modern communication utilities and other mobile

devices, in particular, have led to an abundance of

information that are only valuable for a short time and

therefore have to be processed immediately
[7]

. This ever

growing widespread use of smart devices has allowed the

end-user to share experiences online about services or

products almost immediately through either purchasing sites

or popular social networking sites which is figured by

companies as valuable and realistic. This has resulted in

many corporations and companies such Amazon, Taobao,

Alibaba, Netflix, Facebook, New York Stock Exchange etc.

to be already adapted at monitoring user activity for the

purpose of improving services. Twitter performs continuous

sentiment analysis to inform users on trending topics as they

come up and even Google has parted with batch processing

for indexing the web to minimise the latency by which it

reflects new and updated sites
[5]

. We can highlight two

major tasks of data processing
[4]

 stream which are

processing queries of data stream and data mining.

Data mining streams enables us to extract knowledge from

continuous data streams. Several technologies have emerged

Paper ID: SR21320045639 DOI: 10.21275/SR21320045639 1247

mailto:911807802002@zust.edu.cn

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

specifically to address the challenges of processing high-

volume, real-time data
[2]

.

The rest of this paper is organized as follows. In Section II,

we introduce stream processing. In section III, we present

some cutting-edge support tools for big data stream

processing. In section IV the discussion is based on the

Lambda and Kappa architecture. Section V and IV are

discussion and conclusion respectively.

2. Stream Processing

Massive data continuously generated from multiple sources

simultaneously in the form of data records is called

Streaming data. This data is obtained from a variety of

sources such as sensor networks, web or mobile application

click logs, Internet of Things (IoT) objects, tags (beacons),

machine to machine communications (M2M) etc.
[4]

. The

data requires processing on a record-by-record basis to draw

valuable information
[1]

.

Real-time analysis enables us to process data as they are

generated, therefore, we can get useful insights on the data

in motion. Stream processing is extremely useful in situation

where dynamic new data is generated continuously.

Nevertheless, numerous applications like environmental

monitoring and fraud detection applications require

continuous and timely processing of information
[2]

.

There are many use cases of data streaming in real-life some

of which are:

 Streams to provide relevant recommendations in web

applications in real-time thereby improving user

experience

 Stock price movements are tracked in the real time to

evaluate risks and portfolios are automatically balanced
[1]

 Banks collect real-time data to monitor transactions and

trigger alerts in case of fraud

 Real-time responsiveness to changing market conditions
[4]

 Streaming to provide trending topics on social media

platforms

 View recent modification on a website in real-time.

 Gaming platform used streaming to collect real-time data

for game-player communication and this enable the

players to take action.

 Monitor traffic streaming on a network
[4]

Figure 1: Real-time Application Implementation

3. Real-Time Stream Processing Framework

Popular real time streaming computation tools include:

3.1 Apache Spark

Apache Spark is an open-source unified analytics engine for

large-scale data processing that supports in-memory

processing to boost the performance of applications that

analyse big data
[3]

. Four years after it‘s inception as a UC

Berkeley project in 2009, it became a member of the Apache

Software Foundation in 2013 subsequently becoming a top-

level project. The current version of spark at the time of this

paper in the 2.x line is version 2.4.7 released on 12
th

September 2020 while in the 3.x line, version 3.0.1 was

released on 8
th

 September 2020.

 Apache spark achieves high performance for both batch and

streaming data using a state of the art DAG (Directed

Acyclic Graph) scheduler, a query optimizer and a physical

execution engine
[3]

. Spark is the most active project in terms

of community numbers and utilizes the micro batch

technique
 [2]

. Spark streaming is API used for handling

streaming data. A Spark deployment consists of a cluster

manager for resource management, a driver program for

application scheduling and several worker nodes to execute

the application logic
[7]

.

Spark Streaming
[17]

is an extension of the core Spark API

that enables scalable, high-throughput, fault-tolerant stream

processing of live data streams. Data can be ingested from

many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesis,

or TCP sockets, and can be processed using complex

algorithms expressed with high-level functions like map,

reduce, join and window (figure 2)
]
.

Figure2: Spark Streaming

Finally, processed data can be pushed out to files systems,

databases, and live dashboards. In fact, you can apply

Spark‘s machine learning and graph processing algorithms

on data stream
[4]

.

Apache Spark improves upon the Apache Hadoop

framework (Apache Software Foundation, 2011) for

distributed computing, and was later extended with

streaming support. To implement in-memory computations,

Spark uses a model called Resilient Distributed Datasets

(RDDs), its in-memory abstraction to work with data
[17]

. It

also consists of Spark SQL, Spark Streaming, machine

library and GraphX. The Spark Core is the foundation

responsible for basic input/output functions, task dispatching

and scheduling. Spark runs on top of Mesos, YARN or in

standalone mode in which case it may be used in

combination with Zoo Keeper to remove the master node
[7]

.

Spark Streaming shifts Spark‘s batch-processing approach

Paper ID: SR21320045639 DOI: 10.21275/SR21320045639 1248

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

towards real-time requirements by chunking the

stream of incoming data items into small batches,

transforming them into RDDs and processing them
[8]

. Spark

is lighting fast as it runs on memory clusters. Itis proven to

be ten times faster than Hadoop‘s disk-based Apache

Mahout due to the distributed memory-based Spark

architecture. It implements common algorithms to simplify

large scale machine learning pipelines, like logistic or linear

regression, decision trees or k-means clustering.

3.2 Apache Storm

Apache Storm is a free and open source distributed realtime

computation system which makes it easy to reliably process

unbounded streams of data, doing for realtime processing

what Hadoop did for batch processing
[8]

. The concept of

―stream‖ is used in apache storm to mean a distributed

abstraction of data in motion. It adopts a fault tolerant and

reliable model, which can be challenging to achieve with

traditional queues and workers architecture.

The Storm cluster consists of master nodes and worker

nodes. Master node runs a daemon called Nimbus, which is

the central component of Apache Storm
[11]

. Nimbus

responsibly analyzes, gather tasks and then execute

thetopology. The Nimbus distributes task to the available

worker node also called supervisor. The supervisor has one

or more worker process and delegate tasks to the worker

processes. Storm has an internal messaging system to

facilitate communication between the master and the worker

nodes. Storm is stateless and relies on Zookeeper framework

to maintain state. The reliability of the Zookeeper enables

the failed Nimbus to easily restart and continue the

execution of the topology.

Early versions of Storm introduced the common stream

abstraction and the corresponding Spout/Bolt/Topology API

that allowed developers to easily reason about streaming

computations. Storm now supports reliable state

implementations that can withstand and recover from

supervisor failure. Version 2.2.0 released on 30
th

 Jun 2020

enables HB timeout configurable on a topology level,

enables SSL credentials to autoload for storm user-interface,

LogViewer and DPRC server
[9]

. This version also allows

health check to pass on timeout.

3.3 Apache Samza

Apache Samza is a distributed stream processing framework

which uses Apache Kafka for messaging, and Apache

Hadoop YARN to provide fault tolerance, processor

isolation, security, and resource management
[2], [4]

. Samza

logically scales application by breaking it down into

multiple units known as tasks which consume data from

single partition of the input data
[11]

.

Samza was co-developed with the queueing system Kafka,

therefore relies on the same messaging semantics and

Apache YARN for the distribution of tasks among nodes in

a cluster
[7], [2]

. The main goals of Apache Samza are having

better fault tolerance, processor isolation, security, and

resource management
[10]

.

The architecture of Samza is similar to that of Hadoop which

uses HDFS (hadoop distributed file system) as storage layer,

YARN for execution layer and MapReduce as the

processing technique and programming model
[11]

.

In comparison to Storm, Samza requires a little more work

to deploy as it does not only depend on a Zookeeper cluster.

It runs on top of Hadoop YARN for fault tolerance
[7]

.

Samza allows tasks to maintain state by storing it on disk

(typically using Kafka)
[2]

.

Samza applications are made of streams and Jobs. Streams

basically are composed of immutable sequence of messages

of similar category. The Streams are partitioned and

messages (i.e. data items) inside the same partition are

ordered, whereas there is no order between messages of

different partitions
[7]

. Each stream is partition to allow

scalability of the system so that the system will be capable

of handling large scale data. Input streams of tuples are

decomposed and partitioned so that data flow graph is

created
[10]

. Jobs consume and process the set of input stream.

Jobs are then broken down into tasks which are smaller units

of execution used to scale the throughput of jobs processor.

Scalability is achieved through running a Samza job in

several parallel tasks each of which consumes a separate

Kafka partition; the degree of parallelism, i.e. the number of

tasks, cannot be increased dynamically at runtime
[7]

. The

messages are independent i.e. there is no particular order of

messages across the partitions. Therefore, task will be

executed independently.

3.4 Apache Flink

Apache Flinkis a framework and distributed stream process

engine for stateful computations over unbounded and

bounded data streams
[13]

. Flink is scalable, fault tolerant,

performs computations at in-memory speed and can work

for all common cluster environment. Apache Flink is a

distributed system for processing both bounded and

unbounded data. Bounded streams have a start and an end

while unbounded has a start but doesn‘t have an end.

Flink integrates well with Hadoop, YARN, Kubernates,

Apache Mesos but can also operate as stand-alone cluster.

Flink provides true stream processing with batch processing

support
[2]

.

Flink has a kappa architecture. Kappa architecture is used

for processing streaming data. Kappa architecture however

is use for both real-time and batch processing through a

single processing engine. Batch processing in kappa

architecture is a special case of streaming. This type of

architecture is helpful for analytics with a single technology

stack.

Flink architecture is similar to master-slave architecture

where the Job Manager acts as master and the Task Manager

as slave. The Job Manager is used for coordination of all the

computations in the Flink system, and the Task Managers

are being used as workers and execute parts of the parallel

programs
[10]

.

Paper ID: SR21320045639 DOI: 10.21275/SR21320045639 1249

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Flink keeps track of distributed tasks, decides when to

schedule the next task (or set of tasks), and reacts to finished

tasks or execution failures
[2]

. Flink is famous for its ability to

compute common operations such as hashing, very

efficiently
[10]

.

3.5 Other Real Time Stream Frameworks

Other frameworks worth noting include:

 Amazon Kinesis

Amazon kinesis is a popular open-source flexible data

streaming platform.

 Apache Kudu

Apache Kudu is used by Wall Street to uncover

fraudulent events and by Xiaomi (Cell Phone

Company)to collect error reports.

 Azure Stream Analytics

Azure Stream Analytics accommodates spontaneous data

processing and can effectively accomplish tasks in a

limited time period.

 Apache Nifi

Apache Nifi automates the flow of data between the data

point of origin and its destination. Nifi supports log files,

social feeds e.t.c

 Google Cloud Dataflow

This is an integration of cloud dataflow with python 3

and python sdk which works by removing meaningless

data that can decrease the rate of analysis.

4. Architecture

The need to manage different workloads under a coherent

architecture led to several design patterns with the most

popular being the ‗Lambda Architecture‘
[2]

.

The complexity of using different batch and streaming

architectures paved the way for the ‗Kappa architectural‘

pattern that fuses the batch and stream layers together
[2]

.

4.1 Lambda Architecture

Lambda architecture (LA) is a data processing technique

capable of processing massive quantities of data (i.e. Big

data). It‘s considered as a near real time data processing

architecture. Lambda architecture is an approach aimed
[14]

at satisfying the needs of a robust system that is fault-

tolerant, both against hardware failures and human mistakes,

being able to serve a wide range of workloads and use cases

in which low-latency reads and updates are required.

The lambda architecture
[12]

 is divided into three layers:

batch layer, serving layer, and speed layer.

The batch layer manages the master dataset and pre-

computes the batch views.

The serving layer is a data store that queries view from both

the batch and speed layers.

The speed layer creates real time views for the end-user.

(figure 3).

Figure 3:Lambda Architecture
[12]

The way Lambda architecture works is that an immutable

sequence of records is captured and fed into a batch system

and a stream processing system in parallel
[15]

. The new data

comes into the systems continuously and is dispatched to

both the batch layer and the speed layer, then the output

from the batch layer (batch views) and those coming from

the speed layer (near real-time views) get forwarded to the

serving layer which indexes the batch views so that they

can be queried in low-latency, ad-hoc way.

The lambda architecture is a scalable architecture for data

processing which leverages good balance between speed

and reliability. Batch layer manages historical data which

makes data recovery possible in case of system failure.

The lambda architecture too has some disadvantages. One

of the obvious problems here is coding overhead in which

the developer writes the same code twice one for batch and

the other for real-time layers.

In software engineering, we seek to solve the problem of

duplicating source code. Therefore, one proposed approach

to fixing this is to have a language or framework that

abstracts over both the real-time and batch framework
[18]

.

4.2 Kappa Architecture

Kappa architecture is software architectural pattern which

focus on stream processing. It‘s is derived from the

Lambda architecture but not the replacement for Lambda

architecture. The Kappa Architecture, in contrast to

Lambda Architecture, allows for more flexible adaptation

to changing processing and analytics requirements since the

overhead of a second processing layer is mitigated
[16]

. In

this architecture incoming data are streamed through the

real-time layer and the result then enters the serving layer

for queries. Providing increased flexibility and reduced

overhead, the Kappa Architecture is not without

compromise
[7].

The main drawback of this architecture

involves handling duplicate events and cross-referencing

events.

For this architecture, incoming data is streamed through a

real-time layer and the results of which are placed in the

serving layer for queries. The idea is to handle both real-

time data processing and continuous reprocessing in a

single stream processing engine. This requires that the

incoming data stream can be replayed (very quickly), either

Paper ID: SR21320045639 DOI: 10.21275/SR21320045639 1250

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

in its entirety or from a specific position. If there are any

code changes, then a second stream process would replay

all previous data through the latest real-time engine and

replace the data stored in the serving layer. The Kappa

architecture is simplified by keeping a single code base

unlike the Lambda architecture in which a code base is

maintained for every batch and speed layer. The operations

however are generally easier to do in batch processing.

5. Discussion

Table 1 shows a comparison of the characteristics of some of

the streaming technologies comparing features like

architecture, throughput, latency integration, fault tolerance

and their availability. Since each technology has its draw-

backs, it is fair to conclude that integration of some of these

technologies can make up for their short-falls by

complementing each other, there by augmenting outputs.

Except Apache spark which has a high latency, all the others

in the table have low latency; in some cases very low

latency. This distinction places Apache spark at a

disadvantage to the other technologies with respect to that

characteristic. Similarly Apache nifi is at a disadvantage to

the other technologies because of its lack of fault tolerance.

A broader issue relating to these comparisons is that there is

no single universal standard for evaluating distinctions

between these technologies. Even though it may seem like

the technologies listed in the table have almost all the same

properties, the varying strengths of the properties for a

particular technology distinguishes it from the others. As a

result, integration with one and the other can compensate for

their respective weakness. Effective streaming relyon

several features such as a high throughput, low latency, in-

memory storage for stateful operations and fault tolerance.

Almost all the technologies listed in the table are open

source but Apache spark has the largest developer

community because it integrates well with hadoop, has a

high throughput, high fault tolerance, integrate well with

many databases and can be used in machine learning.

Apache Samza integrates well with kafka taking advantages

of the strong features of kafka to complement it‘s streaming

capabilities.

Table 1: Comparison of real-time streaming platforms

6. Conclusion

This research focused on real-time stream processing of big

data with emphasis on the commonly used frameworks for

real time stream processing. Real time streaming is

becoming more eventful, which makes its relevance in our

daily life very important. This expanding era of automatic

data analysis is proving to be beneficial in all works of life

such as business, health care, banking and finance,

manufacturing, climate and weather, fraud and forensic

studies etc. It is a reflection of the importance of data in

real-time, uniquely showing the worth of distributed real

time streaming technologies. This literature has also

introduced the two important architectures concerned with

real time processing high-lighting both their advantages

and draw backs. This literature ends with Table

1comparing and contrasting the features of eight distributed

real-time systems.

References

[1] Bansal, Ankita & Jain, Roopal & Modi, Kanika.

(2019). Big Data Streaming with Spark

[2] Nicoleta Tantalaki, Stavros Souravlas & Manos

Roumeliotis (2019): A review on big data real-time

stream processing and its scheduling techniques,

International Journal of Parallel, Emergent and

Distributed Systems

[3] Apache Spark
TM

—Unified Analytics Engine for Big

Data. [Online]. Available: https://spark.apache.org/

[Accessed Oct. 2020]

[4] Namiot, Dmitry. (2015).On Big Data Stream

Processing. International Journal of Open Information

Technologies. 3. 48-5

[5] D.Peng and F.Dabek. Large scale incremental

processing using distributed transactions and

notifcations. In Proceedings of the 9th USENIX

Symposium on Operating Systems Design and

Implementation,2010

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa,

―Electron spectroscopy studies on magneto-optical

media and plastic substrate interface,‖ IEEE Transl. J.

Magn. Japan, vol. 2, pp. 740–741, August 1987

[Digests 9th Annual Conf. Magnetics Japan, p. 301,

1982].

[7] Wingerath, Wolfram & Gessert, Felix & Friedrich,

Steffen & Ritter, Norbert. (2016).Real-time stream

processing for Big Data. - Information Technology.

[8] M. Zaharia, T. Das, H. Li, et al. Discretized streams:

Fault tolerant streaming computation at scale. In

Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ‘13, pages

423–438, New York, NY, USA, 2013.

[9] Apache Storm. [Online]. Available:

https://storm.apache.org/ [Accessed October 2020]

[10] Nasiri, H., Nasehi, S. & Goudarzi, M. Evaluation of

distributed stream processing frameworks for IoT

applications in Smart Cities. J Big Data 6, 52 (2019).

[11] Samza-Architecture [Online]. Available:

http://samza.apache.org/learn/documentation/latest/intr

oduction/architecture [Accessed Oct. 2020]

[12] Lambda architecture [Online].Available:

http://lambda-architecture.net/ [Retrieved: Sep. 2020]

[13] Apache Flink [Online]. Available:

https://flink.apache.org/flinkarchitecture. [Retrieved:

Sep.2020]

Paper ID: SR21320045639 DOI: 10.21275/SR21320045639 1251

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[14] Apache Flume [Online]. Available:

https://flume.apache.org/ [Retrieved: Sep.2020]

[15] J.Kreps―, Questioning the Lambda Architecture‖

[Online]. Available:

https://www.oreilly.com/radar/questioning-the-

lambda-architecture/ [Acessed Sep.2020]

[16] Zschörnig, Theo & Wehlitz, Robert & Franczyk,

Bogdan. (2017). A Personal Analytics Platform for the

Internet of Things - Implementing Kappa Architecture

with Microservice-based Stream Processing.

[17] Spark Streaming

https://spark.apache.org/docs/latest/streaming-

programming-guide.html [Retrieved Oct.2020]

[18] Logs and Real Time Stream Processing [Online].

Available: https://www.oreilly.com/content/i-heart-

logs-realtime-stream-processing/ [Retrieved: Oct. 2020

]

[19] ci.apache.org [Online]. Available: [Retrieved: Oct.

2020]

[20] Top ten big data framework in 2020 | Jelvix

https://jelvix.com/blog/top-5-big-data-frameworks

[Retrieved: Oct. 2020]

Author Profile

Denis P. Bell received the B.Eng. in Computer Science from

Zhejiang University of Science and Technology in 2018. He is

currently pursuing a master‘s degree in Advance manufacturing

and Informatization in the same university. His interests span

database technologies, big data, web design & development and

computer networking.

EliasuTambominyi received the B.Eng. in Computer Science from

Zhejiang University of Science and Technology in 2018. He is

currently pursuing a master‘s degree in Intelligent Manufacturing

in the same university. His interests revolve around big data,

machine learning, neural networks and information security. With a

background in software and mobile developing, he is a keen web

and mobile developer with an apt for detecting and solving

problems associated with web and mobile applications

.

Paper ID: SR21320045639 DOI: 10.21275/SR21320045639 1252

https://www.oreilly.com/content/i-heart-logs-realtime-
https://www.oreilly.com/content/i-heart-logs-realtime-
https://jelvix.com/blog/top-5-big-data-frameworks

