
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Infrastructure as Code (IAC): Best Practices of

Implementing IAC, Especially in Automating

Infrastructure Provisioning and Management Using

Terraform

Gowtham Mulpuri

Silicon Labs, TX, USA

Email: gowtham. mulpuri[at]silabs.com

Abstract: Infrastructure as Code (IaC) is a paradigm shift in IT infrastructure management, advocating for the automation and

management of physical and virtual infrastructure through code. Terraform, a tool created by HashiCorp, has emerged as a leader in

this space. It allows for the definition, provisioning, and management of infrastructure across a variety of cloud providers and services

using a declarative configuration language. This paper aims to explore best practices in implementing IaC with an emphasis on

Terraform, covering concepts from code organization to operational considerations. Infrastructure as Code" (IaC) is a key practice in

the field of DevOps and cloud computing, where the infrastructure is provisioned and managed using code instead of through manual

processes. This approach enables developers and system administrators to automate the setup, deployment, and management of

infrastructure in a consistent and repeatable way. Below, I'll detail some best practices for implementing IaC, particularly with a focus

on Terraform. This paper discusses the concept of Infrastructure as Code (IaC), emphasizing its implementation using Terraform. It

explores best practices for automating infrastructure provisioning and management, highlighting the advantages and challenges of IaC

in modern cloud environments. The paper aims to guide IT professionals in effectively utilizing Terraform for scalable and efficient

infrastructure deployment.

Keywords: IAC, Terraform, HashiCorp, CICD Pipelines, Automation, Infrastructure Automation

1. Introduction

The traditional approach to infrastructure management

involved manual processes which were error - prone, non -

repeatable, and difficult to track. IaC introduces a systematic

approach where infrastructure is provisioned and managed

using code. This code is versioned, tested, and reused, leading

to more consistent and reliable environments. Terraform's

declarative syntax and provider ecosystem make it an ideal

choice for implementing IaC.

1.1 Definition of IaC

Infrastructure as Code (IaC) is a method of managing and

provisioning computing infrastructure through machine -

readable definition files, rather than physical hardware

configuration or interactive configuration tools. This

approach enables developers and IT operations teams to

automatically manage, monitor, and provision resources,

rather than manually setting up and configuring hardware or

virtual machines.

1.2 Importance of IaC:

1.2.1 Consistency and Standardization: IaC ensures that

the same configuration is applied uniformly, reducing the

likelihood of discrepancies or errors.

1.2.2 Speed and Efficiency: Automates the provisioning

process, enabling rapid deployment of infrastructure, which

is crucial in agile environments and for scaling operations.

1.2.3 Version Control and Documentation: Changes to the

infrastructure are version - controlled, providing a clear audit

trail and documentation.

1.2.4 Cost Reduction: Reduces the need for manual

intervention, thereby cutting down on labor costs and

minimizing the risk of human error.

1.2.5 Scalability and Flexibility: Facilitates easy scaling of

infrastructure to meet changing demands and supports the

management of a diverse and distributed infrastructure.

1.2.6 Disaster Recovery: Enhances the ability to quickly

recover from failures and reduce downtime by enabling

consistent redeployment of a specific infrastructure state.

1.3 Overview of Terraform

Terraform is an open - source infrastructure as code tool

created by HashiCorp. It allows users to define and provision

a datacenter infrastructure using a high - level configuration

language known as HashiCorp Configuration Language

(HCL), or optionally JSON.

1.3.1 Declarative Configuration: Terraform uses a

declarative approach where users specify the desired end -

state and Terraform works to achieve that state.

1.3.2 Provider Ecosystem: Supports multiple service

providers (like AWS, Azure, Google Cloud, etc.), allowing

users to manage a wide range of resources.

Paper ID: SR24402110036 DOI: https://dx.doi.org/10.21275/SR24402110036 1971

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1.3.3 State Management: Terraform maintains a state file

to keep track of the resources it manages, which aids in

change management and resource mapping.

1.3.4 Modularity and Reusability: Supports modules for

creating reusable components, promoting code reuse and

maintainability.

1.3.5 Idempotency: Running the same configuration

multiple times produces the same result, ensuring consistency

and stability.

1.3.6 Plan and Apply Workflow: Terraform generates an

execution plan before making any changes, allowing users to

review what will be done before it is executed, enhancing

control and visibility.

In summary, IaC, exemplified by tools like Terraform,

represents a significant shift in the way infrastructure is

managed, making it more consistent, efficient, and scalable.

Terraform, with its declarative approach and extensive

provider support, is a popular choice in this field.

2. Implementing IaC with Terraform:

2.1 Setting up Terraform:

Terraform, developed by HashiCorp, is an open - source

infrastructure as code software tool that enables users to

define and provision a datacenter infrastructure using a high -

level configuration language known as HashiCorp

Configuration Language (HCL), or optionally JSON. To

begin using Terraform for infrastructure management, a basic

setup involves the following steps:

2.1.1 Installation: Terraform is distributed as a single

binary. Users need to download and install the Terraform

binary from the official website¹

It is available for various platforms including Windows,

macOS, and Linux.

2.1.2 Configuration: Terraform uses configuration files to

describe the components needed to run a single application or

your entire datacenter. These files end with. tf or. tf. json to

indicate their HCL or JSON syntax, respectively.

2.1.3 Initialization: A Terraform configuration or project

is initialized using the terraform init command. This

command performs several different initialization steps to

prepare a working directory for use.

2.2 Basic Terraform Operations:

2.2.1 Write: The first step in using Terraform is to write

the infrastructure code. This code can be written in HCL or

JSON.

2.2.2 Plan: Before applying the changes, Terraform

performs a dry run to show what actions will be taken based

on the current configuration.

2.2.3 Apply: If the plan is acceptable, the terraform apply

command is used to execute the actions proposed in a

Terraform plan.

Figure 1: Terraform Provider

In this basic example listed in the Figure 1, Terraform is

configured to provision an AWS EC2 instance in the US West

(Oregon) region.

2.3 Advanced Terraform Features: Terraform also offers

advanced features such as:

2.3.1 Workspaces: Used to manage multiple distinct sets of

infrastructure resources or environments.

2.3.2 Remote Backends: For state management in a remote

shared store, which is essential for team collaboration.

2.3.3 Dependency Management: Terraform automatically

understands dependency relationships between resources.

3. Best Practices for IaC with Terraform:

3.1 Version Control

Keep all your Terraform configurations in a version control

system (like Git). This practice not only tracks changes over

time but also allows team collaboration.

3.2 Modularize Your Code

Structure your Terraform code into modules. Each module

should represent a logical component of your infrastructure

(like network, compute, storage) and can be reused in

different environments or projects.

3.3 Use Remote State

Terraform stores state about your managed infrastructure and

configuration. This state should be stored in a remote data

store like Terraform Cloud or AWS S3 for team access and to

avoid conflicts.

3.4 Immutable Infrastructure

Aim for an immutable infrastructure model where you replace

instances rather than updating them. This approach reduces

inconsistencies and potential errors during updates.

Paper ID: SR24402110036 DOI: https://dx.doi.org/10.21275/SR24402110036 1972

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.5 Environment Separation

Use different configurations or workspaces for different

environments (development, staging, production) to avoid

accidental changes in the production environment.

3.6 Automate Workflow

Integrate Terraform with your CI/CD pipeline for automated

testing and deployment of your infrastructure changes.

3.7 Least Privilege Access

Implement least privilege access in your Terraform scripts.

Ensure that the execution context (like a CI/CD pipeline) has

only the necessary permissions to perform its tasks.

3.8 Code Review and Testing

Just like application code, Terraform code should go through

code reviews and testing. Use tools like Terraform fmt and

Terraform validate for formatting and validating your code,

respectively.

3.9 Documentation

Document your Terraform configurations and modules. This

documentation should explain the purpose, usage, and any

variables or outputs of the modules.

3.10 Regularly Update and Refactor

Infrastructure needs change over time, and so should your

Terraform code. Regularly update and refactor your code to

align with best practices and new features of Terraform.

3.11 Disaster Recovery Plan

Always have a disaster recovery plan. Test your Terraform

configurations for disaster recovery scenarios to ensure your

infrastructure can be quickly recreated.

3.12 Monitoring and Logging

Implement monitoring and logging to track the performance

and health of your infrastructure. This practice helps in

proactive issue resolution and audit trails.

3.13 Advanced Terraform Practices:

a) State Locking and State Environments: Use state

locking to prevent concurrent runs from causing conflicts.

Also, consider using different state files for different

environments to reduce blast radius in case of issues.

b) Dynamic Configuration: Use Terraform's dynamic

blocks and other advanced features for more flexible and

scalable infrastructure configurations.

c) Integrate with Cloud - Native Tools: For cloud

environments, integrate Terraform with cloud - native

tools and services for better resource management.

By following these best practices, you can effectively use

Terraform to implement Infrastructure as Code, leading to

more efficient, reliable, and scalable infrastructure

management. Remember, the key to successful IaC is not just

about the tools like Terraform, but also about the practices,

processes, and collaboration within the team.

4. Modularization and Reusability

One of the key best practices in Terraform is to organize your

infrastructure code into modules. Modules allow you to

package and reuse code for similar infrastructure setups. For

example, if you frequently deploy AWS EC2 instances with

a similar configuration, you can create a module for that.

Figure 2: Module for AWS EC2 Instance

The above figure shows an example code for implementing

AWS EC2 Instance using module concept.

5. Automation and CI/CD Integration:

Automating Terraform through CI/CD pipelines ensures

consistent and error - free deployment of infrastructure.

Sample CI/CD Pipeline Steps:

Linting and Validation: Run terraform fmt and terraform

validate.

Plan: Execute terraform plan in CI/CD and present the output

for review.

Apply: After approval, run terraform apply to deploy the

changes.

A typical CI/CD pipeline with Terraform integration might

include the following stages:

Source: Code is written and committed to a version control

system (e. g., Git).

Build: The application is compiled or packaged.

Paper ID: SR24402110036 DOI: https://dx.doi.org/10.21275/SR24402110036 1973

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Test: Automated tests are run to ensure the application

behaves as expected.

Plan (Terraform): Terraform's plan operation is executed to

preview infrastructure changes.

Apply (Terraform): Terraform's apply operation is executed

to update the infrastructure.

Deploy: The application is deployed to the updated

infrastructure.

Monitor: The application and infrastructure are monitored

for performance and reliability.

Figure 3: Illustration of a CI/CD pipeline with Terraform stages

6. Conclusion

Implementing IaC using Terraform offers significant

advantages in terms of efficiency, consistency, and reliability

in infrastructure management. By adhering to best practices

from code organization to operation and maintenance,

organizations can harness the full potential of IaC. The shift

to IaC, however, is not just a technical change but also a

cultural one, requiring teams to adopt new workflows and

collaboration methods. As Terraform and similar tools

evolve, they will continue to shape the landscape of

infrastructure management, making adherence to these best

practices even more crucial.

This detailed overview provides a comprehensive guide to

understanding and implementing IaC with Terraform,

emphasizing the importance of best practices in maximizing

the benefits of this transformative approach.

References

[1] HashiCorp Official Documentation. https: //developer.

hashicorp. com/terraform/install

[2] Gustian, D., Fitrisia, Y., Novayani, W., & Purwantoro,

S. E. S. G. S. (2023). Implementasi Automation

Deployment pada Google Cloud Compute VM

menggunakan Terraform. Implementasi Automation

Deployment pada Google Cloud Compute VM

menggunakan Terraform.

[3] Bailuguttu, S., Chavan, A. S., Pal, O., Sannakavalappa,

K., & Chakrabarti, D. (2023). Comparing performance

of bastion host on cloud using Amazon web services vs

terraform. Comparing performance of bastion host on

cloud using Amazon web services vs terraform.

[4] Bahaweres, R. B., & Najib, F. M. (2021). Provisioning

of Disaster Recovery with Terraform and Kubernetes:

A Case Study on Software Defect Prediction.

Provisioning of Disaster Recovery with Terraform and

Kubernetes: A Case Study on Software Defect

Prediction.

[5] Hu, H., Bu, Y., Wong, K., Sood, G., Smiley, K., &

Rahman, A. (2021). Characterizing Static Analysis

Alerts for Terraform Manifests: An Experience Report.

Characterizing Static Analysis Alerts for Terraform

Manifests: An Experience Report.

Paper ID: SR24402110036 DOI: https://dx.doi.org/10.21275/SR24402110036 1974

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developer.hashicorp.com/terraform/install
https://developer.hashicorp.com/terraform/install

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[6] Infrastructure as Code: Managing Servers in the Cloud

by Kief Morris https: //www.oreilly.

com/library/view/infrastructure - as -

code/9781491924334/

[7] The Infrastructure as Code Handbook by Kief Morris

https: //www.oreilly. com/library/view/the -

infrastructure - as/9781492046308/

[8] Infrastructure as Code: A DevOps Approach by Kief

Morris https: //www.oreilly.

com/library/view/infrastructure - as -

code/9781491924334/

[9] Automation Best Practices for DevOps by Red Hat

https: //www.redhat. com/en/topics/devops

[10] Automation Best Practices for IT Operations by Puppet

https: //www.puppet. com/resources/report/automation

- best - practices - for - it - operations/

Paper ID: SR24402110036 DOI: https://dx.doi.org/10.21275/SR24402110036 1975

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

