
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Container Orchestration: Experiences with

Container Orchestration Platforms Like Docker

Swarm, Kubernetes, and Nomad, Focusing on

Scalability and Security Improvements

Gowtham Mulpuri

Silicon Labs, TX, USA

Email: gowtham.mulpuri[at]silabs.com

Abstract: This paper presents a comprehensive exploration of container orchestration platforms, with a focus on Docker Swarm,

Kubernetes, and Nomad. Drawing from over a decade of experience as a senior DevOps engineer, it delves into the practical aspects of

deploying and managing containerized applications at scale, emphasizing the role of orchestration in enhancing operational efficiency

and security. The paper aims to provide insights into the experiences gained from working with these platforms, focusing on scalability

and security improvements.

Keywords: Container Orchestration, Docker Swarm, Kubernetes, Nomad, Scalability, Security, DevOps, Deployment, Management

1. Introduction

In the rapidly evolving landscape of software development

and deployment, containerization has emerged as a game -

changer. Containers offer a lightweight, portable, and scalable

solution for packaging and deploying applications. However,

managing containers at scale poses significant challenges,

including orchestration, networking, and security. Container

orchestration platforms like Docker Swarm, Kubernetes, and

Nomad have emerged to address these challenges, providing

solutions for automating deployment, scaling, and

management of containerized applications. This paper aims to

share insights and experiences gained from working with

these platforms, focusing on scalability and security

improvements.

Container Orchestration Platforms: Docker Swarm,

Kubernetes, and Nomad

Docker Swarm

Docker Swarm is Docker's native clustering and orchestration

solution. It is designed to be simple to use and integrate

seamlessly with the Docker ecosystem.

• Scalability: Docker Swarm allows for easy scaling of

services and applications. It supports rolling updates and

rollbacks, ensuring minimal downtime during

deployments.

• Security: Docker Swarm integrates with Docker's

security features, including secrets management and

network policies, to enhance security.

Figure 1: Docker Swarm Architecture

Paper ID: SR24402110309 DOI: https://dx.doi.org/10.21275/SR24402110309 1976

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1 showing the components of Docker Swarm,

including nodes, services, and tasks.

Kubernetes

Kubernetes is an open - source container orchestration

platform designed to automate deploying, scaling, and

operating application containers.

• Scalability: Kubernetes provides advanced scaling

capabilities, including horizontal pod autoscaling and self

- healing capabilities, ensuring high availability and

resilience.

• Security: Kubernetes offers robust security features,

including role - based access control (RBAC), network

policies, and secrets management, to protect applications

and data.

Figure 2: Kubernetes Architecture Diagram

Figure 2 illustrating the architecture of Kubernetes, including

the master and worker nodes, pods, and services.

Nomad

Nomad is a flexible and lightweight orchestrator that can

manage containers, virtual machines, and standalone

applications.

• Scalability: Nomad is designed for simplicity and ease of

use, making it easy to scale applications across data centers

and cloud environments.

• Security: Nomad integrates with existing security tools and

supports network policies to enhance security.

Figure 3: Nomad Architecture Diagram

Paper ID: SR24402110309 DOI: https://dx.doi.org/10.21275/SR24402110309 1977

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 3, March 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3 depicting the architecture of Nomad, highlighting

the scheduler, client, and server components.

Advantages of Container Orchestration

• Simplified Deployment: Orchestration tools automate the

deployment of containers, making it easier to manage

application releases and updates. This simplifies the

development lifecycle and speeds up the delivery of

features and fixes.

• Scalability: One of the primary advantages is the ability

to scale applications dynamically based on demand.

Orchestration platforms can automatically adjust the

number of active containers, ensuring applications can

handle peak loads efficiently without overprovisioning

resources.

• High Availability: Container orchestration ensures that

applications are always available, even in the event of a

container or host failure. By automatically replacing failed

containers and distributing containers across a cluster of

hosts, these platforms minimize downtime and maintain

service reliability.

• Load Balancing: Orchestration tools automatically

distribute incoming traffic across containers to balance the

load. This ensures optimal utilization of resources and

maintains application performance under varying load

conditions.

• Service Discovery: With container orchestration, services

can discover each other and communicate seamlessly,

even as they are deployed, moved, or scaled. This

automatic service discovery is crucial for microservices

architectures where components need to interact

dynamically.

• Resource Efficiency: Containers share the host system’s

kernel, making them lightweight and reducing overhead.

Orchestration optimizes resource use across the cluster,

ensuring applications use resources efficiently.

• Security: Orchestration platforms enhance security by

providing network segmentation, automated updates, and

secrets management capabilities. This helps in

maintaining a strong security posture for containerized

applications.

Real - Time Use Cases and Advantages

• Microservices Architecture: Orchestration platforms

like Kubernetes are ideal for deploying microservices,

allowing for easy scaling and management of individual

components.

• High Availability Systems: Kubernetes' self - healing

capabilities ensure that applications remain available even

in the event of failures, making it suitable for critical

systems.

• Multi - Cloud Deployments: Nomad's flexibility allows

for deploying applications across multiple cloud

providers, offering greater flexibility and cost savings.

• Automated Deployment and Scaling: Orchestration

platforms automate the deployment and scaling of

applications, reducing manual intervention and errors.

• Improved Resource Utilization: By efficiently

managing resources, orchestration platforms ensure that

applications run optimally, reducing costs and improving

performance.

• Enhanced Security: With built - in security features,

orchestration platforms help protect applications and data

from threats.

2. Conclusion

Container orchestration platforms are pivotal in managing the

lifecycle of containers in large - scale, distributed systems.

Kubernetes stands out for its advanced scalability and security

features, making it the preferred choice for complex

deployments. Docker Swarm offers simplicity and ease of use

for smaller - scale applications, while Nomad provides

flexibility in orchestrating not only containers but also non -

containerized applications. As the digital landscape continues

to evolve, the strategic adoption of container orchestration

platforms will be crucial in harnessing the full potential of

cloud - native technologies.

References

[1] Docker Swarm Documentation https: //docs. docker.

com/engine/swarm/

[2] Kubernetes Documentation https: //kubernetes.

io/docs/home/

[3] Nomad Documentation https: //developer. hashicorp.

com/nomad/docs

[4] Kubernetes: Up and Running by Kelsey Hightower,

Brendan Burns, and Joe Beda

[5] https: //www.oreilly. com/library/view/kubernetes - up

- and/9781492046523/

[6] Rahman, A., Shamim, S. I., Bose, D. B., & Pandita, R.

(2021). Security Misconfigurations in Open Source

Kubernetes Manifests: An Empirical Study. https:

//www.semanticscholar. org/paper/Security -

Misconfigurations - in - Open - Source - An - Study -

Rahman -

Shamim/61020665f9134e56009b6e10606fc21348f59d

53

[7] Ding, Z., Wang, S., & Jiang, C. (2021). Kubernetes -

Oriented Microservice Placement With Dynamic

Resource Allocation. https: //www.semanticscholar.

org/paper/Kubernetes - Oriented - Microservice -

Placement - With - Ding -

Wang/09bc670eebe5d41038e2025e51f901f69719466a

[8] https: //kubernetes. io/docs/concepts/cluster -

administration/

Paper ID: SR24402110309 DOI: https://dx.doi.org/10.21275/SR24402110309 1978

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

