
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2019): 7.583 

Volume 10 Issue 3, March 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Privacy-Preserving AI at the Edge: Techniques and 

Applications 
 

Venkata Naga Sai Kiran Challa 
 

 

Abstract: IOT sensors, smartphones, cars, etc., are the popularly used EC devices that facilitate local processing of data, which has 

given rise to privacy concerns. The following is a list of privacy - preserving AI techniques at the edge that tackles these problems to 

ensure data privacy as much as AI performance: Subsequently, it discusses the crucial privacy - preserving technologies for edge AI, 

specifically FL, HE, SMPC, and DP. Thus it discusses their operations, their uses and the advantages they have over the traditional 

centralised models. This paper also explains the present scenarios related to the use of these techniques in different domains like health 

care, smart home, self - driving cars, and industrial IoT domains. Specifically, insights for the development of privacy - preserving AI at 

the edge of the next years are revealed as well as 5G, advanced hardware, and regulation perspectives.  
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1. Introduction 
 

Due to the growing popularity of edge computing, 

incorporating AI model implementations into edge devices 

like smartphones, self - driving cars, and IoT devices has 

become apparent. These edge devices are often fitted with 

relevant processors as well as sensors; this makes it possible 

to carry out different tasks at that edge such as real time data 

interpretation and decision making. This shift also comes with 

the privacy issue as the information is processed locally 

normally involving personal details. It was observed that edge 

AI was faced with some of these challenges and hence, 

privacy - preserving AI at the edge aims at solving these 

problems through deployment of mechanisms that would 

allow privacy preservation yet provide the best performance 

by the AI system.  

 
Figure 1: Autonomous Vehicles Enabled by the Integration 

of IoT, Edge Intelligence, 5G, and Blockchain 

 

Techniques:  

 Federated Learning (FL): Federated Learning (FL) is a 

learning method that allows model training on several 

individual devices or servers containing samples of local data 

without their transfer Aledhari et al. (2020). This approach 

solves privacy, data ownership, and security issues as all the 

computation is performed locally on the devices. One specific 

use case is when data is spread in many sources, like mobile 

devices, IoT gadgets, and geographically distributed data 

centers.  

 

 
Figure 2: Federated Learning: A Paradigm Shift in Data 

Privacy and Model Training 

 

How Federated Learning Works 

In Federated Learning, the process starts with a server, which 

initializes a machine learning model and sends it to a group 

of edge devices Lim et al. (2020). These may include 

smartphones and IoT sensors, each employing its local data to 

train the model. The training process is used to update the 

weights of the model with given methods, such as stochastic 

gradient descent (SGD) over the available device data.  

 

Following the local training, the device computes something 

like the gradient or weight changes and sends this update, 

rather than raw data, to the central server. The multiple 

devices send their updates to the central server, and it 

combines the received data and typically uses, for instance, 

Federated Averaging (FedAvg) to update the global model. 

This aggregated update is computed in a manner that does not 

disclose/does not contain any individual data points or 

updates. This process is repeatedly performed, where the 
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global model is sent to the devices for additional local updates 

to improve the model’s accuracy.  

 

Several key techniques are employed in Federated 

Learning to ensure privacy and efficiency:  

 

Secure Aggregation:  

Privacy - preserving mechanisms are crucial to prevent 

intermediate updates from being transmitted to the central 

server. These techniques are based on applying proper 

cryptography principles that allow updates in a way that only 

the summary result of the operation is visible to the server but 

not the individual proposals (Taha & Schaumont, 2014). 

Some examples of secure aggregation are homomorphic 

encryption and secure multi - party computation that enables 

arithmetic and analysis of secured data or data patronized 

between several parties,  

 

Differential Privacy:  

Differential privacy can be applied by adding noise while 

delivering the model updates to the server so that no specific 

data can be retrieved from the update. This offers probabilistic 

preservation of the privacy of the data that goes into learning. 

The noise ensures that the result of any computation does not 

drastically differ if a single data entry is included or omitted 

in the process, guaranteeing the privacy of the data Jain et al. 

(2016).  

 

Communication Efficiency:  

An essential performance challenge in FL is communication 

between devices and the server. Scaling is achieved through 

model compression, quantization, and selective update 

transmission. These techniques entail breaking down the 

model updates into smaller pieces or passing only the large 

deltas to conserve the used bandwidth.  

 

Handling Non - IID Data:  

In practice, data across devices may not be identical and 

independent, so training a consistent global model may be a 

challenge. Some of these challenges include Using 

personalized federated learning, where each device has its 

own model in addition to the global model, and meta - 

learning to fine - tune for non - IID data distribution.  

 

Advantages of Federated Learning 

Federated Learning offers several advantages:  

 

1) Data Privacy and Security:  

Retaining data on local devices decreases the potential threat 

of a data breach and adherence to the GDPR. This means that 

the data gathered by the device does not transverse the 

network, posing a security risk.  

 

2) Reduced Latency:  

Local processing helps to update models and make decisions 

much more quickly, especially in applications such as 

autocomplete or autonomous vehicles.  

 

3) Scalability:  

FL can extend to millions of devices, and each device can 

contribute to the updates of the models without stressing the 

central computational infrastructure. This is a decentralized 

way to organize and use the computational resources of 

multiple edge devices.  

 

Table 1: Challenges, Applications, and Future Directions of 

Federated Learning 
Category Details 

Challenges and 

Considerations 
  

Heterogeneity 

Devices have different capabilities and data 

distributions, which can affect model convergence 

and fairness. Techniques are needed to handle this 

heterogeneity and ensure equitable training.  

Resource 

Constraints 

Edge devices often have limited computational 

power, memory, and battery life, which can limit 

model complexity and update frequency. Efficient 

algorithms and lightweight models are necessary 

to address these constraints.  

Security  

Threats 

Federated Learning is vulnerable to security 

threats like model poisoning attacks, where 

adversarial devices send malicious updates. 

Robust security measures and anomaly detection 

techniques are needed to safeguard the system.  

Applications of 

Federated 

Learning 

  

Mobile Device 

Personalization 

Used in predictive text input, virtual keyboards, 

and recommendation systems, FL personalizes 

services without collecting data on central servers, 

allowing for customized experiences while 

maintaining privacy.  

Healthcare 

Enables collaborative training of AI models across 

hospitals and clinics without sharing sensitive 

data, supporting privacy - preserving medical 

research and diagnostics.  

Autonomous 

Vehicles 

Vehicles share insights about road conditions and 

driving patterns without transmitting raw data, 

improving safety and navigation systems while 

keeping data on - board.  

Future 

Directions 
  

Algorithmic 

Improvements 

Focus on developing robust and efficient 

algorithms for non - IID data and device 

variability.  

Enhanced 

Security 

Protocols 

Development of advanced cryptographic 

techniques and defense mechanisms against 

adversarial attacks in federated settings.  

Integration with 

Edge AI 

Combining FL with other edge AI techniques to 

create decentralized AI systems capable of real - 

time processing and decision - making, allowing 

organizations to leverage distributed data while 

maintaining privacy.  

 

b. Homomorphic Encryption (HE): Homomorphic 

Encryption (HE) is a type of encryption that permits 

computations on encrypted data without further decryption. 

This peculiarity helps maintain the confidentiality of 

information within the framework of the calculations, which 

is highly useful, especially when working with base data.  

 

How Homomorphic Encryption Works 

Homomorphic Encryption is divided into encryption, where 

data is encrypted with a homomorphic encryption scheme 

before it is transferred to the edge device or server Yan et al. 

(2020). This encryption process changes the data into what is 

known as the ciphertext, and in this state, it is impossible to 

determine its original value. However, it can still be used for 

computations. Once so encrypted, computation is possible 
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with the AI model's or edge device's encrypted data. HE 

assists diverse operations, including addition and 

multiplication, like those performed on ciphertexts that will 

correspond with those performed on plaintexts (Basilakis & 

Javadi, 2019). This capability allows other devices to run 

mathematical algorithms on the data without referring to the 

data itself. Once the calculations are done, the values are 

returned to the user or entity possessing the decryption key. 

After the decryption of these results, the same value is 

obtained as if the operations were performed on the plaintext 

data.  

 
Figure 3: Homomorphic Encryption: How It Changes the 

Way We Protect Data 

 

Types of Homomorphic Encryption 

There are several types of Homomorphic Encryption, each 

with varying capabilities:  

 
Figure 4: Types of Homomorphic Encryption 

 

• Partially Homomorphic Encryption (PHE) appears only to 

support addition or multiplication but not both, hence 

being suitable for purposes that call for only one operation.  

• Somewhat Homomorphic Encryption (SHE): Permits a 

few addition and multiplication operations in contrast to 

PHE, with the slight variation that it is less restricted in 

operations and provides more versatility than PHE.  

• Fully Homomorphic Encryption (FHE): It allows 

performing addition and multiplication operations without 

limits on encrypted data while keeping the information 

about the data itself unknown. FHE is the most suitable 

but also the most complex HE due to the calculations 

required on ciphertexts.  

 

Advantages of Homomorphic Encryption 

There are several benefits of Homomorphic Encryption: HEE 

also guarantees that original data is never revealed during 

computation, which protects privacy. It has extremely 

favorable security measures; data are well protected against 

leakage and unauthorized access, which improves data 

security. Furthermore, HE can assist organizations in 

maintaining every regulation regarding data protection, such 

as GDPR and HIPAA, by protecting data in its entire life 

cycle (Sharma, 2019).  

 

Table 2: Challenges, Applications, and Future Directions 
Category Details 

Challenges and 

Considerations 
  

Computational 

Overhead 

FHE can be computationally intensive and 

slower compared to plaintext operations. 

Optimizing performance and reducing latency 

are key challenges.  

Key Management 

Managing encryption keys securely and 

efficiently is essential for maintaining the 

security of the homomorphic encryption 

system.  

Complexity 

Implementing HE requires specialized 

knowledge and careful consideration of the 

trade - offs between security and performance.  

Applications of 

Homomorphic 

Encryption 

  

Healthcare 

Allows hospitals to perform statistical 

analyses on encrypted patient data, facilitating 

collaborative research without compromising 

privacy.  

Financial Services 

Enables banks to execute risk assessments and 

fraud detection algorithms on encrypted 

transaction data, protecting customer 

information.  

Cloud Computing 

Provides secure data processing on cloud 

platforms, allowing organizations to use cloud 

resources without exposing sensitive data.  

Future 

Directions 
  

Performance 

Optimization 

Research focuses on developing more 

efficient algorithms and hardware 

accelerations to reduce HE’s computational 

overhead.  

Integration with 

AI 

Increasing interest in combining HE with AI 

techniques to create secure, privacy - 

preserving AI models that can process 

encrypted data in real - time.  

Scalability 

Enhancing the scalability of HE to support 

large - scale applications across various 

industries is a key focus.  

Standardization 

and 

Interoperability 

Efforts are being made to standardize HE 

protocols to ensure interoperability across 

different systems and platforms.  

 

c. Secure Multi - Party Computation (SMPC): SMPC is an 

acronym for Secure Multi - Party Computation. It is a 

cryptographic protocol through which multiple parties agree 

to compute a function of their respective private inputs 

without revealing them to others in the computation. This 

method ensures that the individual participants' data inputs are 
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not shown to other participants throughout the computation 

but contribute to generating the desired solution.  

 

The process of SMPC involves several key steps:  

 

Secret Sharing: A secret sharing scheme divides each 

participant's private data into multiple "shares" and distributes 

them among the parties involved. This means that none of the 

participants has all the data at their disposal, which protects 

the inputs' anonymity.  

 

Local Computations: Once the data is shared, each party 

computes the shared data a little differently from the other. 

These computations are intended to work on the shares 

without exposing the actual data to the analysts. These 

operations are performed in a manner that protects each of the 

inputs' privacy.  

 

Combination of Results: When both parties are done with 

the local computation, the partial results are combined to 

generate the output. This aggregation is done using 

cryptographic algorithms that guarantee that the final result is 

the summation of the individual computations without 

revealing the individual contributions of any party.  

 

SMPC utilizes several key techniques to enhance its 

functionality:  

• Homomorphic Encryption: Sometimes, it is used with 

SMPC; homomorphic encryption enables operations to be 

conducted on encrypted information, making it even more 

secure and private (Zhao et al., 2019).  

• Secure Arithmetic Circuits: These circuits allow 

comprehensive arithmetic operations on the secret shares 

without leaking the original data.  

• Garbled Circuits: This method involves spreading the 

computations of the function to allow parties to evaluate it 

while keeping their inputs a secret.  

 

SMPC offers several advantages:  

• Privacy Preservation: This preserves the participants' 

privacy because no participant acquires knowledge of 

other participants' data other than what the computation 

gives Vergara - Laurens et al. (2016).  

• Collaborative Analysis: These provide the ability to 

simultaneously analyze data and decision - making 

functions, and the actual data does not have to be shared 

among the different parties for security purposes, as done 

by SMPC.  

 

Table 3: Summary of Challenges in Secure Multi - Party 

Computation (SMPC) 
Challenge Details 

Efficiency 

SMPC protocols can be computationally 

intensive and resource - demanding, especially 

for complex functions and large datasets. 

Communication 

Overhead 

Secure communication between parties can lead 

to increased latency and higher resource 

consumption. 

Scalability 

As the number of parties grows, the complexity 

and communication costs increase, posing 

challenges for scalability. 

 

d. Differential Privacy (DP): Differential Privacy (DP) is a 

strong privacy protection model meant to protect individual 

records from disclosure even when analyzing datasets (Sun et 

al., 2019). The fundamental idea underlying DP is that a 

single database record change should not have a big impact 

on the result of any analysis, which gives strong privacy 

proofs for every person in the dataset.  

 

How Differential Privacy Works 

 
Figure 5: How to Implement Differential Privacy 

 

Differential Privacy mostly ensures its privacy promises by 

adding noise to the data or the outcome of the queries 

(Machanavajjhala et al., 2017). This noise is added based on 

the concerned privacy level and query's sensitivity using 

mathematical operations like Laplace or Gaussian 

distribution. In making sure that no individual contribution 

influences the output in any significant manner, Differential 

Privacy can protect the identity of the contributors. The 

technique relies on two essential privacy parameters: Epsilon 

(ε) and Delta (δ). Epsilon is the privacy budget or the level of 

privacy assurance, and lower values of epsilon provide a 

strong level of privacy guarantee. Delta is used in 

approximate Differential Privacy to describe the likelihood of 

failure to offer Privacy, whereas a lower delta offers better 

Privacy despite consuming more noise.  

 

Several methods can be used to ensure the use of the 

Differential Privacy Technique. The Laplace Mechanism 

modifies the output of a function with Laplace noise with the 

help of the query's sensitivity and the privacy parameter (Li 

et al., 2019). The Gaussian Mechanism adds Gaussian noise 

to the production, and it is usually more favorable in cases 

where the privacy constraints are less strict or when handling 

complex queries. Similar to the Randomized Response 

Technique, the Exponential Mechanism is used when 

choosing an outcome between several possible outputs: the 

output probability is changed according to the outputs' value 

and privacy level.  

 

Advantages of Differential Privacy 

There are also some benefits of differential Privacy, such as 

strong privacy guarantees, meaning DP mathematically 

proves that an individual's data cannot be derived from the 

outcome of an analysis (Soria - Comas et al., 2017). This 

leaves the patients with a high level of Privacy compared to 

other ways of obtaining the same results. Its flexibility makes 
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it possible to use it in data sharing, querying databases, and 

training models. Furthermore, differential Privacy enables 

compliance with strict privacy laws and regulations, including 

GDPR and HIPAA, given the provision of aggressive privacy 

solutions.  

 

Table 4: Summary of Differential Privacy: Challenges, 

Considerations, and Applications 
Category Details 

Challenges 

and 

Considerations 

Trade - off Between Privacy and Accuracy: 

Adding noise to ensure privacy can reduce 

result accuracy. Balancing privacy with utility 

is essential.  

Complexity of Implementation: Requires 

careful calibration of privacy parameters and 

noise mechanisms, often needing specialized 

expertise.  

Computational Overhead: Adding noise and 

ensuring privacy can impact performance, 

particularly in large - scale data scenarios.  

Privacy Budget Management: Essential for 

maintaining privacy guarantees across 

multiple queries or analyses.  

Applications 

of Differential 

Privacy 

Data Analysis and Sharing: Enables the 

release of aggregate statistics and analyses 

while preserving individual privacy.  

Machine Learning: Integrated into training 

processes to prevent models from memorizing 

or disclosing sensitive information.  

Government and Health Data: Used in 

releasing sensitive data for public research, 

ensuring individual privacy.  

Online Services: Applied to analyze user 

behavior and preferences while protecting 

individual privacy.  

 

Comparison with Traditional Interfaces:  

 

a) Traditional AI:  

Conventional AI interfaces involve collecting data from 

different sources and transferring it to a central system or 

cloud arrangement for analysis (Hwang & Chen, 2017). This 

setup often entails the use of big data repositories such as data 

warehouses or big data lakes. The computations and training 

of the models take place on vectors or other consolidated 

machines or clouds that can perform high - powered 

calculations.  

 

Security Concerns: Another weakness frequently associated 

with centralized systems is the emergence of focal points that 

can be targeted. Intense data processing and storage is 

centralized, which raises the risk of experiencing a breach or 

an outage, and this would compromise large volumes of data 

(Kshetri, 2017). Such systems are considered to be high - risk 

since, in the face of a violation, large amounts of data are 

potentially compromised since the communications are in a 

central repository. Also, compliance with data protection acts 

like GDPR or CCPA becomes quite difficult when the data is 

stored and processed in multiple regions.  

 

Latency: Latency is another typical problem for traditional 

AI. The procedures to send data to central servers or cloud 

environments for computing might take time, resulting in the 

impairment of real - time decisions and applications 

(Elbamby et al., 2019). Centralized data processing requires a 

great deal of data transfer capacity, which may not yield high 

efficiency in some regions with relatively weak information 

network support.  

 

Scalability: The current approach to scaling traditional 

Artificial Intelligence systems is to provide more computing 

resources, storage data, and networks to the central servers or 

cloud deployments. This expansion can be expensive and 

sophisticated regarding the extent of hardware, software, and 

constant maintenance needed. The requirement to adapt the 

infrastructure to new needs caused by more data and 

processing load is one of the main difficulties.  

 

Data Privacy: Privacy is also an issue hindering the 

implementation of centralized systems in these organizations. 

However, storing all data in a central location has the 

disadvantage of posing a great threat if measures on data 

privacy and security are not effective. Proper authorization 

and constant supervision of access rights are necessary to 

minimize the risks of data leakage and unauthorized 

activities.  

 

Flexibility and Customization: Many traditional AI systems 

initially rely on standard models that might require significant 

customization to address certain tasks or sectors. When 

applied to new problem types, these models require rather 

involved re - modeling and training steps. Acquiring models 

that will be advantageous for various uses may be time - 

consuming and may, at times, require the input of a 

professional in the field.  

 

Infrastructure Management: Centralized systems require 

the management of a large amount of hardware and software 

resources related to infrastructure (Manvi & Shyam, 2014). 

This involves keeping the systems up to date, fixing known 

vulnerabilities, and optimizing the system's performance. 

These and many other equally important infrastructure 

components mean that management can be difficult and 

cumbersome, adding to operating expenses and raising the 

total cost.  

 

Resource Utilization: In the centralized computing system, 

resources must be managed smoothly to accommodate large 

volumes of data (Wang et al., 2017). This comprises profiling 

the execution process to avoid resource constraints that slow 

computational problem - solving. Resource wastage can result 

in high operation costs and increased business inefficiency. 

  

b) Edge AI with Privacy - Preserving Techniques:  

The application of Edge AI with Privacy - Preserving 

Techniques is a great advantage due to decentralized 

computing and refined special privacy techniques.  

 

Decentralized Data Processing concerns data processing at 

the endpoints, including smartphones, IoT sensors, or edge 

servers (Gheorghe et al., 2019). This approach is not very 

dependent on central data centers; thus, it is not very 

vulnerable to large - scale company theft. Edge AI helps 

ensure the security of the data because its Processing occurs 

on local devices, and the cloud and the Internet do not become 

a threat actor's target. Individual devices can be violated 

instead of controlling large databases; therefore, the potential 

loss is manageable.  
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Figure 6: Significance and Applications of Edge AI 

 

EPTs are relevant to Edge AI as they are fundamental to 

securing AI at the network's perimeters. In Federated 

Learning (FL), several devices cooperatively build up the 

Machine Learning models, while the data is not shared with 

any other device. This means only new models are updated 

and shared while maintaining the privacy of the individuals. 

HE enables computations on encrypted data without 

decryption. Hence, the security of sensitive data can still be 

processed securely at the edge (Liu et al., 2019). Secure Multi 

- Party Computation (SMPC) allows for the computation of a 

function over several parties' input, and the input remains 

undisclosed to other parties. It is essential in cases where data 

sharing is necessary. Differential Privacy (DP) is a method 

that guarantees that adding or deleting a single individual data 

does not influence the result greatly by adding noise to the 

data or output of a query. This technique helps to prevent a 

particular data set from being distinguished from other 

individual data sets.  

 

A major benefit of Edge AI is reduced latency. 

LocaLatencyrocessing minimizes the amount of data that has 

to be transferred to the Central Servers, hence minimizing the 

time it takes to respond to various applications. It is essential 

for making real - time decisions because it allows for the 

bringing to knowledge of all the significant events happening 

in an organization within a given timeframe. Also, Efficient 

Bandwidth Usage is realized by restricting the volume of 

exchanged data with central servers to the bare minimum, 

thus saving bandwidth and improving performance, 

especially in networks with limited bandwidth or high data 

transfer costs.  

 

The distributed architecture of edge AI helps with scalability 

since Processing is distributed at the edge device level 

(Alnoman et al., 2019). This approach deals with a large 

volume of data and does not overwhelm the central servers; 

hence, it is scalable. Modular Expansion enables one to bring 

in new edge devices into the network and enhance processing 

capacity and geography without ripping and replacing 

multiple core elements.  

 

Edge AI is more suitable when it comes to Data Sovereignty. 

Data localization is done by storing and processing data 

within certain geographical jurisdictions in order to maintain 

compliance with data localization laws (Cohen et al., 2017). 

Moreover, User Control is enhanced as the users remain in 

full control of their data stored locally rather than uploading 

them to central servers. This increases the level of trust and 

respects individual users' privacy.  

 

Another advantage is cost - effectiveness; another advantage 

of Edge AI is that smaller central data centers are required, 

which creates considerable cost savings in hardware and 

physical facility requirements. Energy Efficiency is realized 

as processing data at the edge consumes less power than has 

to be used to transfer huge amounts of data to the core servers, 

hence being environmentally friendly.  

 

Edge AI also boosts security and provides increased 

resilience. All these components are integrated into edge 

devices, meaning that even when there is a lack of continuous 

connectivity to the central server, the edge device is capable 

of making decisions and working with data. This feature is 

beneficial for increasing the reliability of the applications, 

especially when the network connections are unreliable.  

 

 
Figure 7: Bridging Innovation, Privacy, and Real - Time 

Efficiency 

 

Pros:  

a) Enhanced Privacy and Security: Storing and processing 

sensitive data in local devices considerably decreases the 

probability of thefts and leaks. Such an approach also 

guarantees that most of the data is not sent over networks, 

which in return reduces exposure to cyber threats. 

Additional sophisticated methods in data protection 

include FL, HE, and DP, which improve data safety and 

security.  

b) Reduced Latency: Data processing at the edge devices 

avoids the dependency on data transfer to the central 

servers, reducing the time taken to make a decision. This 

is especially essential for uses that need zero latency, such 

as Latency - driving vehicles, manufacturing automation, 

and computer games.  

c) Improved Scalability: Edge AI is centralized across 

multiple edges without presiding over most foundational 

resources. This distributed architecture enables the 

Processing of large amounts of data, and the capacity to 

deal with it can be expanded by adding more edge devices. 

It also helps to limit the workload on the central servers 

and enables the simplifying of scaling processes.  

d) Resource Efficiency: Subtask localizing also enables the 

limitation of the computational and bandwidth load on 

central servers and networks. This distribution of 

processing the workload of a given application offers 

several advantages, including Optimizing the resources 
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that can be used when handling large amounts of data and 

potentially reducing the operational costs of central data 

centers.  

 

Cons:  

a) Limited Computational Power: When implementing deep 

learning, the resources in most edge devices are usually 

much less than those in servers. This can cause them to 

perform more complex operations or process big data, 

which may require further optimization or, on the 

contrary, delegate some of the tasks to more powerful 

central instances.  

b) Network Constraints: FL and SMPC are sensitive to inter 

- node communication when exchanging model updates or 

computation results. This can cause signal congestion or 

overcrowding in certain network domains, which can lead 

to reduced bandwidth or increased latency in the network's 

tasks, depending on the capabilities of the link.  

c) Complexity in Implementation: Privacy - preserving 

techniques should be integrated into the Edge AI solutions 

in a way that can sometimes be convoluted. Coordinating 

and administering multiple privacy methods like FL, HE, 

SMPC, and DP requires professional experience. Also, 

maintaining consistency and compatibility with multiple 

edge devices compounds the implementation process.  

d) Energy Consumption: In cases of constant operations on 

edge devices, higher energy consumption is seen. 

Although data processing is done locally, thus eliminating 

the need for data communication, the use of AI algorithms 

on many edge devices elevates energy consumption. This 

is especially a problem in battery - operated clients or 

those that are optimized for a particular amount of 

resources, which impacts their functionality and 

longevity.  

e) Maintenance and Updates: Incorporating and 

synchronizing software management into many 

distributed edge devices may be daunting. Some of the 

newest prohibitions on all the apparatuses could involve 

beneficial security updates and advancements that may, in 

any case, need framework administrative states that are 

occasionally cumbersome and can consume considerable 

resources.  

f) Data Synchronization: Keeping the data consistent and 

harmonious between edge devices can be challenging. 

Issues in the local Processing and updating may result in 

inconsistencies or delays in data presentation within the 

system.  

 

Current Deployment:  

a) Healthcare: Some examples of technologies that rely on 

federated learning are remote monitoring devices, 

Wearables, or remote diagnostic devices where the models 

are trained locally on the patient’s data. This approach also 

affords patients privacy because their health information 

is kept on the device and not relayed to central servers. 

Also, edge AI provides real - time monitoring and 

notification of important health incidences without the 

need to collect and send data to a central location.  

b) Smart Home Devices: Smart home devices include home 

assistants capable of responding to voice control and any 

form of interaction conducted through devices such as 

voice - controlled smart speakers, home automation 

systems, etc); these devices do not rely on cloud - based 

processing but rather process locally. This local 

processing also saves the user’s privacy since the local 

server reduces the amount of information transferred to the 

other servers. Moreover, the presented local processing 

makes it possible to provide immediate reactions to typical 

user commands and minimize the chance of personal data 

disclosure.  

c) Autonomous Vehicles: There is now edge AI where self 

- driving vehicles can handle data gathered from cameras, 

lidars, and radars in - car. This real - time data processing 

is essential for real - time driving decisions like avoidance 

of obstacles and staying in the lane. Autonomous vehicles 

can improve their performance because computations 

related to different situations are done closer to the site of 

action; at the same time, limiting data transfer to specific 

instances preserves data privacy. It is compatible with 

enhanced functionalities, including adaptive cruise control 

systems and collision avoidance, which aligns with 

research on enhancing car performance and self - driving 

networks.  

d) Industrial IoT: Instead of sending data collected from 

industrial processes to a cloud server for analysis by an AI 

model, initial analysis is done locally on edge devices such 

as sensors and control systems (Sun et al., 2019. This form 

of analysis secures the prospects of manufacturing 

processes, equipment performance, and supply chain 

logistics from local exposure. Remote control, real - time 

monitoring, and predictive maintenance also come into 

play by improving operation efficacy while keeping 

industrial data private.  

e) Retail and Customer Analytics: In the case of retail, 

edge AI is applied to process information related to the 

consumers’ transactions and stock movements within the 

store on the edge gadgets (Rabah, 2018). It assists in the 

analysis of the customer’s preferences to determine the 

inventory needs without relaying their information to the 

main servers, thereby enhancing privacy while at the same 

time enhancing efficiency.  

f) Financial Services: In banking and finance, edge AI 

controls and evaluates real - time fraud and credit. Deals 

and accounts behavior are processed at the edges or on 

localized servers so that the financial data does not have 

to be reported to central systems to be analyzed and 

evaluated, thus lowering the threat of attack from hackers.  

g) Telecommunications: In telecom networks, edge AI is 

applied in traffic control, real - time data analysis, and 

network quality (Fu et al., 2018). Considering the data 

processing on edge nodes, telecom operators gain 

improved network performance, decreased latency, and 

confidentiality of the users’ data.  

 

Future Directions 

 

a) Integration with 5G: Combining edge AI with 5G 

technology can further reduce latency and enhance data 

processing capabilities.  

b) Advanced Hardware: Development of specialized 

hardware for edge devices to support privacy - preserving 

techniques more efficiently.  

c) Improved Algorithms: Ongoing research to develop more 

efficient and scalable algorithms for federated learning, 

homomorphic encryption, and secure multi - party 

computation.  
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d) Regulatory Compliance: Ensuring that edge AI solutions 

comply with privacy regulations like GDPR and CCPA to 

enhance user trust and adoption.  

 

Use Case: Personalized Healthcare Model in Hospitals 

and Clinics 

Healthcare facilities ought to be able to predict outcomes 

uniquely for each patient, and this has pushed the clinical 

settings to consider and adapt to personal care models 

(Gabutti et al., 2017). Due to their nature, these models must 

be trained on a large and varied dataset of patients’ data to 

give precise predictions. Yet, the organization of data 

belonging to numerous patients in various institutions is 

impossible because of the strict privacy regulations and data 

security concerns. The federated learning process integrates 

with differential privacy methods to overcome these 

difficulties and ensure multiple healthcare providers’ 

knowledge integration into the model.  

 

Federated Learning is a form of distributed training of 

machine learning models across several other healthcare 

facilities without consolidating the patients’ data (Huang et 

al., 2019). All participating institutions apply the model on 

local data, meaning they only transfer model updates, not the 

raw patient data, to a central server or an aggregator. This 

approach helps ensure that i - PD remains localized within the 

institution’s networks, reducing the risk of external access 

and compromising issues like HIPAA or GDPR.  

 

Differentiated privacy is also applied to the federated learning 

process to provide additional protection for patient data. This 

is done by using another technique known as differential 

privacy, which guarantees that modifying a single data point 

will not have a large impact on the training of the model, 

which, in turn, strong privacy guarantees for each patient’s 

data. In practice, differential privacy is obtained by adding 

noise to the model updates exchanged between institutions. 

This noise eliminates the impact of individual data instances, 

and it is difficult to draw some personal details of the patient 

from such a model (Forkan et al., 2015).  

 
Figure 8: Intelligent Healthcare Systems Assisted by Data 

Analytics and Mobile Computing 

 

The combined use of federated learning and differential 

privacy offers several key benefits for personalized healthcare 

models:  

1) Enhanced Patient Privacy: Patients’ information is stored 

locally in the hospitals’ servers, and not all are fed with 

updated models. Differential privacy is applied to 

prevent the trustee from identifying the individual’s 

contribution to the model in addition to data privacy.  

2) Compliance with Regulations: The approach complies 

with strict data protection rules since patients’ identifiers 

are not pooled into a database, and the approach applies 

privacy - preserving measures.  

3) Improved Model Accuracy: From the example of using 

the model, we can state that it has a greater variety of 

patients’ data due to data from different institutions, 

improving the model’s efficacy and applicability. They 

advocate for using a team of experts whereby the final 

decision will likely be of much higher quality because it 

will enhance the creation of better algorithms.  

4) Real - Time Updates: As for Federated learning, it allows 

for constantly improving the existing models each time 

the participants collect new patient data from their 

institution. This makes the model dynamic and always 

provides the most relevant information and suggestions 

for the investigation.  

5) Scalable Solution: The federated learning framework can 

be expanded further to many institutions when needed, 

therefore adopting flexibility and expansion in sharing 

more data while keeping it private.  

 

Example Implementation: An example of this approach is 

one hospital group sharing data with another to predict which 

patients are most likely to be developing chronic diseases. 

Every hospital applies the model to its local data on individual 

patients and, at some given intervals, sends the encrypted 

changes to a central coordinator. Differential privacy 

guarantees that these updates do not compromise patients’ 

privacy, and the federated learning architecture coordinates 

the updates to improve the model’s performance across the 

network. The outcome of this model is a diagnosis of the 

possible treatment plans while at the same time protecting the 

patients’ right to privacy.  

 

1. Setup the Central Server: The central server 

initializes the global model and coordinates the training 

process across multiple hospitals.  
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# Central Server 

class CentralServer:  

 def __init__ (self, model, hospitals):  

 self. global_model = model 

 self. hospitals = hospitals 

  

 def distribute_model (self):  

 for hospital in self. hospitals:  

 hospital. receive_model (self. global_model)  

 

 def aggregate_updates (self, updates):  

 # Aggregate updates from hospitals 

 aggregated_update = sum (updates) / len (updates)  

 self. global_model. update_weights (aggregated_update)  

 

 def train_global_model (self, rounds):  

 for _ in range (rounds):  

 self. distribute_model ()  

 updates = [hospital. train_local_model () for hospital in self. 

hospitals] 

 self. aggregate_updates (updates)  

 

# Initialize central server 

central_server = CentralServer (global_model, hospitals)  

central_server. train_global_model (rounds=10)  

 

2. Setup the Hospitals: Each hospital trains the local model on 

its patient data and sends the model update to the central 

server with added differential privacy noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

import numpy as np 

 

# Hospital 

class Hospital:  

 def __init__ (self, data, noise_scale):  

 self. local_data = data 

 self. noise_scale = noise_scale 

 self. local_model = None 

  

 def receive_model (self, model):  

 self. local_model = model. copy ()  

  

 def train_local_model (self):  

 # Train the model on local patient data 

 self. local_model. train (self. local_data)  

 weights = self. local_model. get_weights ()  

 # Add differential privacy noise 

 noise = np. random. laplace (0, self. noise_scale, len 

(weights))  

 noisy_weights = weights + noise 

 return noisy_weights 

 

# Initialize hospitals with differential privacy 

noise_scale = 0.1 # Adjust noise scale for differential 

privacy 

hospitals = [Hospital (data, noise_scale) for data in 

hospital_data_list] 

 

2. Model Training and Evaluation: The central server 

coordinates the training process by distributing the global 

model, collecting noisy updates, and aggregating them to 

improve the global model iteratively.  

 

3. Implementation:  

# Global model definition 

class GlobalModel:  

 def __init__ (self):  

 # Initialize model parameters 

 pass 

 def update_weights (self, weights):  

 # Update model weights 

 pass 

 def copy (self):  

 # Return a copy of the model 

 pass 

 def train (self, data):  

 # Train model on local data 

 pass 

 def get_weights (self):  

 # Return model weights 

 pass 

 

# Instantiate the global model 

global_model = GlobalModel ()  

# Sample data for each hospital 

hospital_data_list = [hospital1_data, hospital2_data, 

hospital3_data 

# Initialize central server and hospitals 

central_server = CentralServer (global_model, hospitals)  

central_server. train_global_model (rounds=10)  
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4. Advanced Security Enhancements: To further enhance 

privacy and security, implement secure multi - party 

computation (SMPC) during the aggregation phase on the 

central server.  

 

# Secure Aggregation on Central Server 

class SecureCentralServer (CentralServer):  

 def secure_aggregate_updates (self, updates):  

 # Secure multi - party computation for aggregation 

 # Example: Secure aggregation with encrypted updates 

 encrypted_updates = [self. encrypt (update) for update in 

updates] 

 aggregated_update = sum (encrypted_updates) / len 

(encrypted_updates)  

 return self. decrypt (aggregated_update)  

 def encrypt (self, data):  

 # Encrypt data 

 pass 

 def decrypt (self, data):  

 # Decrypt data 

 pass 

 def train_global_model (self, rounds):  

 for _ in range (rounds):  

 self. distribute_model ()  

 updates = [hospital. train_local_model () for hospital in 

self. hospitals] 

 secure_aggregated_update = self. 

secure_aggregate_updates (updates)  

 self. global_model. update_weights 

(secure_aggregated_update)  

 

# Initialize secure central server 

secure_central_server = SecureCentralServer 

(global_model, hospitals)  

secure_central_server. train_global_model (rounds=10)  

 

2. Conclusion 
 

Privacy - preserving AI at the edge can be considered a 

breakthrough in protecting individual data while taking 

advantage of the optimization calculations performed on edge 

devices. Edge computing enables data processing at the data 

source, thereby reducing the transfer of large volumes of data 

across networks, which is liable to data theft and improving 

data security. This approach is most important to industries 

that require the highest levels of data protection and real - time 

data analysis, such as healthcare, finance, and self - driving 

cars. The methods used enable the realization of AI models 

and computations on the edge of the network and normalized 

data processing without giving the core information utilized 

for model training and inference by the AI system.  

 

Techniques like Federated Learning, Homomorphic 

Encryption, Secure Multi - Party Computation, and 

Differential Privacy have shown that it is possible to maintain 

privacy and innovate AI solutions simultaneously. Federated 

Learning allows models to be trained across multiple devices 

while protecting the participants' raw data, minimizing the 

paid risk. Homomorphic Encryption makes it possible to 

perform computations on data without necessarily revealing 

the same, compromising data privacy, especially when the 

computation task is outsourced. In secure multi - party 

computation, data can be analyzed across organizations, with 

the result that no organization can see the data of another, 

while differential privacy guarantees that data analysis does 

not leak certain information about an individual. These 

methods can offer stable solutions to data protection 

problems, allowing artificial intelligence systems to work 

effectively with the targeted population's support.  

 

The examples illustrating the use of such privacy - preserving 

techniques in different fields prove the potential and 

versatility of the methods. In the context of the healthcare 

industry, Federated Learning enables hospitals to work 

together on AI models and enhance diagnostics and treatment 

recommendations while protecting patients' information. In 

finance, HE thus allows transactions and fraud detection to be 

processed without compromising the customer's data. Such 

techniques are also adopted in related fields like smart cities, 

where SMCs assist in governing the use of standard utilities 

while preserving people's privacy. Different technology firms 

use differential privacy to protect users' data, meaning there 

are trends in data handling privacy. These techniques have yet 

to grow fully, but they stand to be significant players in the 

future of AI in any field.  

 

Development will continue and become more feasible and 

accepted in future research for privacy - preserving AI at the 

edge due to future hardware, algorithms, and regulatory 

growth. Techniques like Homomorphic Encryption can be 

implemented effectively when hardware platforms like 

specially built chips to perform secure computations enter the 

market. The development of algorithms is expected to make 

privacy - preserving approaches more effective and less 

invasive for the integration of the corresponding AI systems 

in the future. Also, the supporting regulation will set 

distinguishable rules and best practices for using privacy - 

preserving artificial intelligence, thereby increasing trust and 

further using the technology among firms. As all these trends 

interplay, there will be emergent practical possibilities of 

privacy - preserving intelligent operation happening at the 

edge of the networks and devices, converting the AI benefits 

to the enhanced socio - technical systems and applications that 

respect citizens' fundamental right to privacy together with 

open and safe AI systems.  

 

References 
 

[1] Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. 

(2020). Federated learning: A survey on enabling 

technologies, protocols, and applications. IEEE Access, 

8, 140699 - 140725.  

[2] Alnoman, A., Sharma, S. K., Ejaz, W., & Anpalagan, A. 

(2019). Emerging edge computing technologies for 

distributed IoT systems. IEEE Network, 33 (6), 140 - 

147.  

[3] Basilakis, J., & Javadi, B. (2019). Efficient parallel 

binary operations on homomorphic encrypted real 

numbers. IEEE Transactions on Emerging Topics in 

Computing, 9 (1), 507 - 519.  

[4] Cohen, B., Hall, B., & Wood, C. (2017). Data 

Localization Laws and Their Impact on Privacy, Data 

Security and the Global Economy. Antitrust, 32, 107.  

[5] Elbamby, M. S., Perfecto, C., Liu, C. F., Park, J., 

Samarakoon, S., Chen, X., & Bennis, M. (2019). 

Paper ID: SR24806050324 DOI: https://dx.doi.org/10.21275/SR24806050324 2022 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2019): 7.583 

Volume 10 Issue 3, March 2021 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Wireless edge computing with latency and reliability 

guarantees. Proceedings of the IEEE, 107 (8), 1717 - 

1737.  

[6] Forkan, A. R. M., Khalil, I., Ibaida, A., & Tari, Z. 

(2015). BDCaM: Big data for context - aware 

monitoring—A personalized knowledge discovery 

framework for assisted healthcare. IEEE transactions 

on cloud computing, 5 (4), 628 - 641.  

[7] Fu, Y., Wang, S., Wang, C. X., Hong, X., & 

McLaughlin, S. (2018). Artificial intelligence to 

manage network traffic of 5G wireless networks. IEEE 

network, 32 (6), 58 - 64.  

[8] Gabutti, I., Mascia, D., & Cicchetti, A. (2017). 

Exploring “patient - centered” hospitals: a systematic 

review to understand change. BMC health services 

research, 17, 1 - 16.  

[9] Gheorghe, A. G., Crecana, C. C., Negru, C., Pop, F., & 

Dobre, C. (2019, June). Decentralized storage system 

for edge computing. In 2019 18th International 

Symposium on Parallel and Distributed Computing 

(ISPDC) (pp.41 - 49). IEEE.  

[10] Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, 

H., & Liu, D. (2019). Patient clustering improves 

efficiency of federated machine learning to predict 

mortality and hospital stay time using distributed 

electronic medical records. Journal of biomedical 

informatics, 99, 103291.  

[11] Hwang, K., & Chen, M. (2017). Big - data analytics for 

cloud, IoT and cognitive computing. John Wiley & 

Sons.  

[12] Jain, P., Gyanchandani, M., & Khare, N. (2016). Big 

data privacy: a technological perspective and review. 

Journal of Big Data, 3, 1 - 25.  

[13] Kshetri, N. (2017). Blockchain's roles in strengthening 

cybersecurity and protecting privacy. 

Telecommunications policy, 41 (10), 1027 - 1038.  

[14] Li, X., Li, H., Zhu, H., & Huang, M. (2019). The 

optimal upper bound of the number of queries for 

laplace mechanism under differential privacy. 

Information Sciences, 503, 219 - 237.  

[15] Liu, D., Yan, Z., Ding, W., & Atiquzzaman, M. (2019). 

A survey on secure data analytics in edge computing. 

IEEE Internet of Things Journal, 6 (3), 4946 - 4967.  

[16] Machanavajjhala, A., He, X., & Hay, M. (2017, May). 

Differential privacy in the wild: A tutorial on current 

practices & open challenges. In Proceedings of the 2017 

ACM International Conference on Management of Data 

(pp.1727 - 1730).  

[17] Manvi, S. S., & Shyam, G. K. (2014). Resource 

management for Infrastructure as a Service (IaaS) in 

cloud computing: A survey. Journal of network and 

computer applications, 41, 424 - 440.  

[18] Rabah, K. (2018). Convergence of AI, IoT, big data and 

blockchain: a review. The lake institute Journal, 1 (1), 

1 - 18.  

[19] Sharma, S. (2019). Data privacy and GDPR handbook. 

John Wiley & Sons.  

[20] Soria - Comas, J., Domingo - Ferrer, J., Sánchez, D., & 

Megías, D. (2017). Individual differential privacy: A 

utility - preserving formulation of differential privacy 

guarantees. IEEE Transactions on Information 

Forensics and Security, 12 (6), 1418 - 1429.  

[21] Sun, W., Liu, J., & Yue, Y. (2019). AI - enhanced 

offloading in edge computing: When machine learning 

meets industrial IoT. IEEE Network, 33 (5), 68 - 74.  

[22] Sun, Z., Wang, Y., Shu, M., Liu, R., & Zhao, H. (2019). 

Differential privacy for data and model publishing of 

medical data. Ieee Access, 7, 152103 - 152114.  

[23] Taha, M., & Schaumont, P. (2014). Key updating for 

leakage resiliency with application to AES modes of 

operation. IEEE transactions on information forensics 

and security, 10 (3), 519 - 528.  

[24] Vergara - Laurens, I. J., Jaimes, L. G., & Labrador, M. 

A. (2016). Privacy - preserving mechanisms for 

crowdsensing: Survey and research challenges. IEEE 

Internet of Things Journal, 4 (4), 855 - 869.  

[25] Wang, C., He, Y., Yu, F. R., Chen, Q., & Tang, L. 

(2017). Integration of networking, caching, and 

computing in wireless systems: A survey, some research 

issues, and challenges. IEEE Communications Surveys 

& Tutorials, 20 (1), 7 - 38.  

[26] Yan, X., Wu, Q., & Sun, Y. (2020). A homomorphic 

encryption and privacy protection method based on 

blockchain and edge computing. Wireless 

Communications and Mobile Computing, 2020 (1), 

8832341.  

Paper ID: SR24806050324 DOI: https://dx.doi.org/10.21275/SR24806050324 2023 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



