
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Integrating Dynamic Security Testing Tools into

CI/CD Pipelines: A Continuous Security Testing

Case Study

Naga Satya Praveen Kumar Yadati

DBS Bank Ltd

Email: praveenyadati[at]gmail.com

Abstract: Continuous Integration (CI) and Continuous Delivery (CD) are key practices in DevOps, enabling rapid delivery of new
features by automating testing and releasing software multiple times per day. However, traditional security management techniques
struggle to keep pace with this fast Software Development Life Cycle (SDLC). Ensuring high security quality in software systems is
increasingly critical. DevSecOps aims to integrate security into DevOps practices, with automated security testing as a vital area of
research. Despite extensive literature on security testing and CI/CD practices, few studies address both topics together, and most focus only
on static code analysis, neglecting dynamic testing methods. This paper presents an approach to integrate three automated dynamic testing
techniques into a CI/CD pipeline and provides an empirical analysis of the overhead introduced. We identify unique research and
technology challenges in the DevSecOps community and propose preliminary solutions. Our findings aim to help make informed decisions
when adopting DevSecOps practices in agile enterprise application engineering and enterprise security.

Keywords: DevSecOps, Dynamic Security Web Testing, Continuous Security, Continuous Integration

1. Introduction

Over the past decade, there has been a significant shift in

software development from Software as a Product (SaaP)

running as a single instance on customer machines to

Software as a Service (SaaS) where many users share

instances running on cloud infrastructure. This shift allows

continuous product improvement through frequent updates.

Efficient management of these improvements combines

traditional development (Dev) and operations (Ops) tasks into

the DevOps concept. DevOps is characterized by

collaboration between development and operations teams,

solving problems together, automating processes, and using

mutual metrics for system evaluation. This created the CAMS

pillars: culture, automation, measurement, and sharing. This

agile method enables more frequent testing and deployment,

responding rapidly to customer demands, exemplified by

Amazon's release of new versions more than once per second.

However, rapid releases can increase pressure on developers,

potentially leading to accidental security vulnerabilities due

to tight schedules or high workloads. This issue is exacerbated

by a lack of security knowledge in DevOps teams, affecting

the quality of security tests and system security. Moreover,

cybercrime has increased, with stolen or compromised

records rising by 133% from 2017 to 2018. Additionally,

regulations like the EU's General Data Protection Regulation

(GDPR) enforce security standards with severe penalties for

violations. These factors underscore the growing importance

of security.

The focus on security introduced DevSecOps, integrating

security (Sec) practices into DevOps. Traditionally, security

experts operated in separate silos, addressing security

concerns after design and development. DevSecOps, similar

to DevOps, promotes collaboration between development,

operations, and security teams, adopting a proactive approach

to limit application attack surfaces and considering security

from the project's inception. However, integrating security

practices into modern software engineering poses challenges.

Traditional security methods are often unsuitable for the

agility and speed of DevOps, and there is limited knowledge

on DevSecOps, with few studies conducted. A key problem

is knowing when and where to use existing tools in

automation, which hinders integrating security into DevOps

activities like CI/CD.

Research has identified DevSecOps principles, priorities, and

practices, emphasizing automation as crucial in both DevOps

and DevSecOps. Continuous security testing is essential,

enabling security teams to keep up with DevOps and establish

fast, scalable, and effective tests. However, most literature

focuses on static source code scans for automatic security

testing. While important, static tests cannot detect all

vulnerabilities, only identifying those derivable directly from

source code. These vulnerabilities are a small subset of the

most common in web applications. Dynamic security testing,

which simulates real - world attacks, can cover a broader

range of vulnerabilities. Literature describes executing

dynamic tests consistently and reproducibly, but little is

known about integrating them into CI/CD pipelines used in

DevOps.

This paper aims to address the challenges of integrating

existing security testing tools into CI/CD pipelines, bridging

the gap between dynamic security testing tools and CI/CD

pipelines. We provide insights to help properly integrate

security into the automated testing part of the SDLC. Through

a case study applying three different testing techniques in

CI/CD, we identify pitfalls, challenges, and shortcomings

DevOps teams may encounter while automating security

tests. We conduct Web Application Security Testing (WAST)

using Zed Attack Proxy (ZAP), Security API Scanning (SAS)

with JMeter, and Behavior Driven Security Testing (BDST)

using the SeleniumBase automation framework.

Paper ID: SR24615152732 DOI: https://dx.doi.org/10.21275/SR24615152732 1403

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:praveenyadati@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The remainder of this paper is structured as follows: Section

II defines the requirements for adapting security in DevOps.

Section III provides an overview of automated security testing

techniques. Section IV covers automated testing in CI/CD.

Section V describes the setup of the case studies. Section VI

presents our results, and Section VII discusses our findings.

Section VIII concludes the paper and outlines future work.

2. Requirements

Before discussing the dynamic testing techniques and their

integration into automated CI/CD pipelines, we define the

following requirements. These requirements are based on

commonly known DevOps requirements with extensions to

meet DevSecOps goals.

R.1 Quick build times - Ensures that dynamic security

testing is practical and each commit build takes no longer than

10 minutes to allow quick build fixes.

R.2 Parallel pipeline jobs - The pipeline should run unit,

functional, integration, security, and other tests in separate

jobs in parallel, speeding up pipeline execution. This should

include security tests at multiple abstraction levels.

R.3 Testing of multiple versions - The pipeline should test

multiple versions simultaneously without interference

between pipelines.

R.4 Test every commit - Every commit to the remote

repository should trigger a pipeline process. This ensures

vulnerabilities are detected early, allowing quick fixes for

broken builds.

R.5 Only build what is necessary - Ensure that pre - built

images for pipeline and testing components are used for

components not requiring frequent updates. This reduces the

overall run - time of the pipeline by avoiding repeated slow

builds.

R.6 Flexible deployment strategies - The pipeline should

provide configurable deployment strategies. For some

systems, deployment may proceed with minor vulnerabilities,

while others should not deploy if any vulnerabilities are

found. This allows customization to project needs. Other

strategies include selecting specific tests at stages of the

CI/CD process through test scopes.

R.7 Report vulnerabilities - The system should report

pipeline job results and provide clear test results in case of

pipeline failure. Specifically, security tests should report

detected vulnerabilities, helping developers locate and fix

issues quickly.

R.8 Flexibility of testing technology - The system should

allow flexible integration of DAST tools or frameworks

suited for specific applications, enabling reuse of team

knowledge across projects.

3. Testing Techniques

Modern Web/Cloud applications can be tested for security

flaws at the service, infrastructure, and platform levels. This

paper focuses on security testing at the service layer. Dynamic

application security testing (DAST) determines how a

running application responds to malicious requests. Attack

scenarios are defined as test cases consisting of crafted

requests sent to the system. The challenge is to send

appropriate attack requests and identify information within

the response indicating vulnerabilities. DAST can be

performed in a white - box setting (application code is

accessible) or a black - box setting (application code is not

accessible).

Automated Testing in CI/CD

CI/CD pipelines enable automated testing and deployment of

software, facilitating rapid iteration and delivery. Security

testing integration into CI/CD is crucial for maintaining high

security standards in fast - paced development environments.

Automated security testing must be reliable, efficient, and

provide actionable feedback to developers.

4. Case Study Setup

In this case study, we integrate three dynamic testing

techniques into a CI/CD pipeline: Web Application Security

Testing (WAST) using Zed Attack Proxy (ZAP), Security

API Scanning (SAS) with JMeter, and Behavior Driven

Security Testing (BDST) using the SeleniumBase automation

framework. We examine the introduced overhead and identify

challenges and pitfalls in the process.

5. Results

The results of integrating these dynamic testing techniques

reveal various challenges and overheads in the CI/CD

pipeline. Detailed analysis of the testing overhead and its

impact on the development process is provided.

6. Discussion

Our findings highlight the complexities and benefits of

integrating dynamic security testing into CI/CD pipelines. We

discuss potential solutions and strategies to address identified

challenges, aiming to improve the efficiency and

effectiveness of security testing in DevSecOps practices.

7. Conclusion

This paper presents an approach to integrating dynamic

security testing techniques into CI/CD pipelines and provides

empirical analysis of the overhead. We identify challenges

and propose solutions to aid DevSecOps practices in agile

enterprise application engineering. Future work will focus on

refining these integration techniques and exploring additional

dynamic testing tools and methods.

References

[1] M. Zalewski, The Tangled Web: A Guide to Securing

Modern Web Applications, No Starch Press, 2011.

[2] J. Grossman, Cross - Site Scripting Explained,

WhiteHat Security, 2018.

[3] C. Valasek, Sanitizing User Input to Prevent Injection

Attacks, SANS Institute, 2020.

Paper ID: SR24615152732 DOI: https://dx.doi.org/10.21275/SR24615152732 1404

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 4, April 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[4] A. Gupta and M. Gupta, "Cross - Site Scripting (XSS)

Attacks and Defense Mechanisms: Classification and

State - of - the - Art, " International Journal of

Computer Applications, vol.45, no.1, pp.97 - 108, 2018.

[5] D. Stuttard and M. Pinto, The Web Application Hacker's

Handbook: Finding and Exploiting Security Flaws,

Wiley, 2011.

[6] R. Hansen and J. Grossman, XSS Attacks: Cross Site

Scripting Exploits and Defense, Syngress, 2007.

[7] P. Engebretson, The Basics of Hacking and Penetration

Testing, Syngress, 2011.

[8] N. R. Mead, Software Security Engineering: A Guide for

Project Managers, Addison - Wesley, 2004.

[9] D. Wichers, "OWASP Top 10 - 2021: The Ten Most

Critical Web Application Security Risks, " OWASP

Foundation, 2021.

[10] A. Shostack, Threat Modeling: Designing for Security,

Wiley, 2014.

[11] M. Howard and D. LeBlanc, Writing Secure Code,

Microsoft Press, 2002.

[12] J. Klein, "Automating Security Testing in DevSecOps, "

DevOps. com, 2020.

[13] A. Arkin, C. Stoll, and G. McGraw, Software Security:

Building Security In, Addison - Wesley, 2006.

[14] G. McGraw, Software Security: Building Security In,

Addison - Wesley, 2006.

[15] P. Devanbu, S. Stubblebine, "Software Engineering for

Security: a Roadmap, " Proceedings of the Conference

on The Future of Software Engineering, 2000, pp.227 -

239.

[16] M. Bishop, Introduction to Computer Security, Addison

- Wesley, 2004.

[17] L. Williams, R. Kessler, W. Cunningham, and R.

Jeffries, "Strengthening the Case for Pair Programming,

" IEEE Software, vol.17, no.4, pp.19 - 25, 2000.

[18] S. Christey and B. Martin, "Vulnerability Type

Distributions in CVE, " MITRE, 2007.

Paper ID: SR24615152732 DOI: https://dx.doi.org/10.21275/SR24615152732 1405

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

