
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementing Cloud-Native Technologies for Big

Data Processing: A Case Study with Kubernetes and

Airflow

Chandrakanth Lekkala

Email: chan.Lekkala[at]gmail.com

Abstract: This paper presents a case study on the architecture design and implementation details of cloud-native technologies for big data

processing. Cloud-native technologies, such as Kubernetes and Airflow, are modern solutions intricately connected as essential components

within IT infrastructures. They are designed specifically for processing and managing data in cloud environments. These technologies leverage

the scalability and flexibility of cloud computing to enable efficient and reliable data storage, analysis, and retrieval., focusing on Apache

Airflow and Kubernetes. Acting as a container orchestrator, Kubernetes efficiently manages a vast number of containers, eliminating the

necessity to explicitly outline the configuration for executing specific tasks. Meanwhile, Airflow is the orchestration layer for managing data

processing workflows within the Kubernetes environments. The findings of this paper underscore the potential of Kubernetes and Airflow in

enabling seamless orchestration and management of big data workflows in cloud environments.

Keywords: Cloud-native, Apache Airflow, Kubernetes, Big Data Processing, Orchestration Stability, Efficiency

1. Introduction

A confluence of economic, social, and technological trends,

including the growing ubiquity of wireless broadband access,

widespread adoption of smart devices and infrastructure, and

appeal of social networking, are resulting in the generation of

vast streams of data, also known as big data. Big data continues

to grow exponentially over time, and the datasets are so huge

and complex in variety, volume, and velocity that traditional

data management systems cannot process, store, or analyze

them effectively [1]. Concurrently, the modern landscape of

complex applications – with end users expecting continuous

innovation and unapparelled responsiveness – requires

organizations' systems to be more strategic and increasingly

flexible. The demand for cost-effective, scalable, and reliable

approaches prompts the exploration of cloud-native services,

such as Kubernetes and Airflow, as a viable alternative.

Kubernetes orchestrate containerized applications to run on a

cluster of hosts and use cloud platforms to automate and

manage cloud-native applications [2]. Meanwhile, Airflow's

rich user interface complements Kubernetes by making it

possible to visualize pipelines running in production,

troubleshoot issues, and monitor the progress of complex data

pipelines. This paper demonstrates the implementation of

Kubernetes and Airflow for big data processing, delving into

the architecture and deployment strategies of these cloud-native

technologies.

2. Literature Review

The proliferation of big data, as reflected in the widespread of

digital devices and mobile subscriptions, has transformed the

landscape of modern business, empowering organizations to

derive valuable insights and drive innovation. More than 50

billion interconnected devices are estimated to be deployed

worldwide in areas such as transport systems, the environment,

security, energy control systems, and healthcare [3]. Given that

internet penetration exceeds 100% in developing and developed

countries within the Organization for Economic Cooperation

and Development (OECD) and that wireless broadband

penetration is nearly 70% in OECD areas, the source of big data

will continue to grow further [4]. The amount of data traffic

generated by mobile devices and sensors has been doubling

every year, as illustrated in Figure 1. However, harnessing the

potential of big data comes with its own set of challenges,

including the need for scalable, reliable, and cost-effective data

processing solutions. The literature surrounding cloud-native

technologies provides valuable insights into the theoretical

foundations and practical implementations of these

technologies.

Paper ID: SR24430152128 DOI: https://dx.doi.org/10.21275/SR24430152128 1335

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Global IP Data Traffic

1) Cloud-Native Technologies

The term “cloud-native” identifies the practice of developing,

deploying, and maintaining modern applications that take the

flexible computing characteristics offered in the cloud

environment itself [5]. Being that in mind, cloud-native systems

are architected and developed using features and capabilities of

cloud computing environments such as their scalability, built-in

resiliency, ability to easily manage the workload and provide

elasticity. The cloud-native technologies equip enterprises with

tools for running applications in private, public and hybrid

clouds on a massive scale. Characteristics which are

microservices architecture, immutable infrastructure,

automated scaling, and declarative language in application

programming interfaces (APIs) can be named as the main

resources of scalability and efficiency of cloud-native

technology [6]. These characteristics allow server to provide

the same function to all computer system, so the data processing

and saving is performed in a similar way without the limitations

and failure of devices. Additionally, the unaltered state of cloud-

native technologies post-deployment significantly reduces the

complexity of such technologies.

Figure 2: Features of Cloud-Native Technologies

2) Kubernetes

Kubernetes orchestrate container-based workflows and

applications to operate on a cluster of hosts. To achieve this aim,

Kubernetes facilitates the automated deployment, management,

and monitoring of cloud-native applications, regardless of

whether they're deployed on public cloud platforms or on-

premises infrastructure [7]. The typical architecture of

Kubernetes consists of the control plane, nodes, and clusters.

Paper ID: SR24430152128 DOI: https://dx.doi.org/10.21275/SR24430152128 1336

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The control plane fulfills two primary roles: (1) serving as the

gateway to the Kubernetes API, and (2) overseeing the nodes

comprising the cluster. To perform the functions of controlling

communications and managing noes, the control plane uses four

primary components: A kube-API server, which exposes

Kubernetes API, etcd used for data storage; a kube-scheduler

which assigns new pods to a node for execution, and a kube-

controller-manager which functions as a controller of all the

functions of the control plane is stored [8].

Within Kubernetes, applications run in Pods, the fundamental

execution unit. These Pods house the containers and are

executed on worker nodes. Nodes consist of three primary

elements: Kubelet, acting as an agent ensuring container

presence within a Kubernetes pod; kube-proxy, serving as a

network proxy across every node in a cluster; and the container

runtime, responsible for container execution [8]. These

components collaborate to establish a reliable framework for

automating the deployment, scaling, and oversight of container-

based applications. Moreover, they ensure optimal resource

utilization through the coordination of kube-scheduler and

kube-controller.

Figure 3: Components of a Kubernetes

Figure 4: Simplified view showing how services interact with pod networking in the Kubernetes cluster

Paper ID: SR24430152128 DOI: https://dx.doi.org/10.21275/SR24430152128 1337

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3) Airflow

Airflow, in this case Apache Airflow, is a workflow

management platform that allows for monitoring, scheduling,

and orchestration of complex data pipelines. It is used for the

orchestration and scheduling of data pipelines [9]. Typically,

Orchestrating data pipelines involves arranging and

coordinating the flow of data from various sources. Within an

Airflow, the data pipelines deliver data sets that are ready for

consumption either by data science, machine learning models,

or business intelligence applications that support big data

applications. The installation of an Airflow comprises the

following components:

• Scheduler – Responsible for overseeing the progression of

tasks and DAGs, it initiates task instances as soon as their

prerequisites have been met.

• Webserver – Presents a user interface to trigger, inspect, and

debug the behavior of tasks and DAGs.

• DAG file – A DAG (directed acyclic graph) is the core

concept of Airflow. It collects tasks together and defines

how dependencies and relationships should run [10].

• Metadata database – This is the database that the

components of Airflow use to store the state of workflows

and tasks [10].

Overall, Airflow serves as the orchestration layer for managing

data processing workflows. Using the above-mentioned

components, Airflow facilitates the creation of complex data

pipelines by defining DAGs and orchestrating their execution

across distributed systems.

3. Case Study: Implementing Kubernetes and

Airflow for Big Data Processing

3.1 Use Case Description

This study focuses on TechShop, a fictitious e-commerce

company that operates in a highly competitive market where

understanding and meeting the ever-evolving consumer

preferences is paramount for success. To maintain a competitive

edge and remain relevant in the market, TechShop collects data

from various sources, including purchase history, social media

engagement, website interactions, and demographic

information. This information is highly diverse and contains

large collections of structured, semi-structured, and

unstructured data that are expected to grow exponentially over

time. Additionally, the complexity, variety, volume, and

velocity of the datasets overwhelm the current data

management system, hindering its ability to efficiently process,

analyze, and store them. Therefore, TechShop aims to

implement a modern, cloud-native solution to process and

analyze data effectively. The primary objectives of the cloud-

native solution include:

• The solution should be able to handle fluctuations in data

volume and velocity without manual intervention.

• The architecture should support iterative development with

different analytical models and data processing algorithms.

• The data processing workflows must be fault-tolerant and

robust enough to ensure consistent performance.

3.2 Architecture Overview

The proposed architecture comprises three main components:

data ingestion, data processing, and data analytics. For the data

ingestion, raw data and assorted files (purchase history, social

media engagement, website interactions, and demographic

information) collected from various sources, such as streaming

databases and external APIs, will be imported into a single,

cloud-based storage medium – Google Cloud Storage (GCS).

GCS is the most-suited storage option because it is scalable,

durable, and cost-effective, with high availability and low

latency access [5]. The data stored in the GCS will then be

transformed and stored in a centralized repository. Once

ingested, the data will undergo various transformations, which

involve aggregations and machine learning algorithms to

extract meaningful insights [11]. The processed data will then

be analyzed to generate visualizations, reports, and actionable

insights for business stakeholders.

Figure 5: Architecture Overview

3.3 Kubernetes Deployment

TechShop opts to deploy Kubernetes clusters on Google Cloud

Platform – a leading public cloud provider – to leverage its

scalability features and managed services. Deployment of the

Kubernetes will encompass the following components:

• Mater Node – This node controls and manages a set of

nodes. It comprises the following components to help

manage worker nodes: Kube-API server, Kube-Controller-

Manager, etcd, and Kube scheduler [12]. This node will

control the overall Kubernetes cluster, managing resource

allocation, scaling, and scheduling.

• Pods – Pods are the smallest deployable units in Kubernetes,

encapsulating the containers with shared network resources

such as data ingestion services, analytics tools, and

processing engines [13].

• Services – The services will provide network access to a set

of pods, enabling load balancing and task discovery within

the cluster.

• Horizontal Pod Autoscaling (HPA) – HPA automatically

adjusts the number of replica pods in a deployment, ensuring

responsiveness to workload fluctuations and optimal

resource allocation.

Paper ID: SR24430152128 DOI: https://dx.doi.org/10.21275/SR24430152128 1338

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Kubernetes Architecture Diagram

3.4 Airflow Integration

Apache Airflow will be deployed as a set of Kubernetes pods,

each representing a different component, including the

scheduler, webserver, and worker nodes. The key components

of the Airflow include DAGs, operators, schedulers, and

executors. Apache Airflow DAGs will be written in Python

using the Airflow API. Similarly, tasks will be implemented as

Python operators, which can execute data processing logic,

interact with external sources, and handle data discrepancies.

Configuring the Airflow architecture as a code (Python) allows

for dynamic pipeline generation [14]. This will allow the

respective operators to write code that instantiates data

pipelines dynamically. In the implementation stage, TechShop

will use a distributed Airflow Architecture, meaning that the

DAG files will be synchronized between all the components

that use them – workers, triggered, and scheduler. The greatest

strength of Apache Airflow is its flexibility, offering easy

extensibility through its plug-in framework [15]. Additionally,

Apache Airflow provides a wide range of integrations for

services on various cloud providers.

Figure 7: Airflow integration into Kubernetes

TechShop will leverage Kubernetes manifests to define the

desired states of the Apache Airflow deployment and manage

its lifecycle, as shown in Figure 7. The Kubernetes Operator

will use Python to generate a request that will be processed by

Paper ID: SR24430152128 DOI: https://dx.doi.org/10.21275/SR24430152128 1339

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 10 Issue 5, May 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the API server. Subsequently, Kubernetes will launch

TechShop's pods based on the defined specs, enabling the

collected data to be loaded under a single command. Once the

tasks are launched, the operators will only need to track logs

while gathering logs for the scheduler or any other distributed

logging service within the Kubernetes cluster. The integration

of Kubernetes and Airflow will enable TechShop to leverage the

scalability and flexibility of Kubernetes for processing big data

workflows. Kubernetes' auto-scaling capabilities will allow the

cluster to dynamically adjust resource allocation based on

workload demands, ensuring optimal performance during peak

periods.

4. Conclusion

In summary, Cloud-native technologies involve building,

deploying, and managing modern applications that leverage the

distributed computing capabilities offered in cloud delivery

models. This means that cloud-native services, such as

Kubernetes and Airflow, are designed and built to exploit the

scale, resiliency, flexibility, and elasticity of cloud computing

environments. In this case study, we deploy Kubernetes clusters

on the Google Cloud Platform to leverage its scalability and

manage services. Meanwhile, Airflow is the orchestration layer

for managing data processing workflows within the Kubernetes

environments. Kubernetes' auto-scaling capabilities ensure

optimal resource utilization while Airflow orchestrates the

execution of concurrent workflows.

References

[1] Anagnostopoulos, I., Zeadally, S., & Esposito, E. (2016,

February). Handling big data: research challenges and

future directions. The Journal of Supercomputing, 72,

1494-1516.

https://link.springer.com/article/10.1007/s11227-016-

1677-z

[2] Barika, M., Garg, S., Zomaya, A. Y., Wang, L., Moorsel,

A. V., & Ranjan, R. (2019, September). Orchestrating big

data analysis workflows in the cloud: research challenges,

survey, and future directions. ACM Computing Surveys

(CSUR), 52(5), 1-41. https://doi.org/10.1145/3332301

[3] Hammi, B., Khatoun, R., Zeadally, S., Fayad, A., &

Khoukhi, L. (2018, January). IoT technologies<? show

[AQ ID= Q1]?> for smart cities. IET networks, 7(1), 1-13.

https://doi.org/10.1049/iet-net.2017.0163

[4] Kuss, D. J., & Lopez-Fernandez, O. (2016, March).

Internet addiction and problematic Internet use: A

systematic review of clinical research. World journal of

psychiatry, 6(1), 143.

https://doi.org/10.5498%2Fwjp.v6.i1.143

[5] Laszewski, T., Arora, K., Farr, E., & Zonooz, P. (2018,

August). Cloud Native Architectures: Design high-

availability and cost-effective applications for the cloud.

Packt Publishing Ltd.

[6] Jakóbczyk, M. T., & Jakóbczyk, M. T. (2020, February).

Cloud-Native Architecture. Practical Oracle Cloud

Infrastructure: Infrastructure as a Service, Autonomous

Database, Managed Kubernetes, and Serverless, 487-

551.

[7] Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., &

Bohnert, T. M. (2017, July). Self-managing cloud-native

applications: Design, implementation, and

experience. Future Generation Computer Systems, 72,

165-179. https://doi.org/10.1016/j.future.2016.09.002

[8] Sayfan, G. (2017, May). Mastering Kubernetes. Packt

Publishing Ltd.

[9] Koutoulakis, E. (2020, September). Implementation of a

federated workflow execution engine for life sciences

through virtualization services.

https://apothesis.lib.hmu.gr/bitstream/handle/20.500.126

88/9638/KoutoulakisEmmanouil2020.pdf?sequence=1&i

sAllowed=y

[10] Panhalkar, S. (2019, January). Libflow: A Platform to

Schedule and Manage Workflows Using DAGs.

[11] Palazzo, C., Mariello, A., Fiore, S., D'Anca, A., Elia, D.,

Williams, D. N., & Aloisio, G. (2015, July). A workflow-

enabled big data analytics software stack for eScience.

In 2015 International Conference on High Performance

Computing & Simulation (HPCS) (pp. 545-552). IEEE.

https://doi.org/10.1109/HPCSim.2015.7237088

[12] Larsson, L., Tärneberg, W., Klein, C., Elmroth, E., & Kihl,

M. (2020, August). Impact of etcd deployment on

Kubernetes, Istio, and application performance. Software:

Practice and Experience, 50(10), 1986-2007.

https://doi/org/10.1002/spe.2885

[13] Calcote, L., & Butcher, Z. (2019, October). Istio: Up and

running: Using a service mesh to connect, secure, control,

and observe. O'Reilly Media.

[14] Shubha, B., & Prasad, A. (2019, June). Airflow directed

acyclic graph. J Signal Process, 5(2).

https://core.ac.uk/download/pdf/230490858.pdf

[15] Hummer, W., Muthusamy, V., Rausch, T., Dube, P., El

Maghraoui, K., Murthi, A., & Oum, P. (2019, June).

Modelops: Cloud-based lifecycle management for

reliable and trusted AI. In 2019 IEEE International

Conference on Cloud Engineering (IC2E) (pp. 113-120).

IEEE. https://doi.org/10.1109/IC2E.2019.00025

Paper ID: SR24430152128 DOI: https://dx.doi.org/10.21275/SR24430152128 1340

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://link.springer.com/article/10.1007/s11227-016-1677-z
https://link.springer.com/article/10.1007/s11227-016-1677-z
https://doi.org/10.1145/3332301
https://doi.org/10.1049/iet-net.2017.0163
https://doi.org/10.5498%2Fwjp.v6.i1.143
https://doi.org/10.1016/j.future.2016.09.002
https://apothesis.lib.hmu.gr/bitstream/handle/20.500.12688/9638/KoutoulakisEmmanouil2020.pdf?sequence=1&isAllowed=y
https://apothesis.lib.hmu.gr/bitstream/handle/20.500.12688/9638/KoutoulakisEmmanouil2020.pdf?sequence=1&isAllowed=y
https://apothesis.lib.hmu.gr/bitstream/handle/20.500.12688/9638/KoutoulakisEmmanouil2020.pdf?sequence=1&isAllowed=y
https://doi.org/10.1109/HPCSim.2015.7237088
https://doi/org/10.1002/spe.2885
https://core.ac.uk/download/pdf/230490858.pdf
https://doi.org/10.1109/IC2E.2019.00025

