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Abstract: This paper presents a case study on the architecture design and implementation details of cloud-native technologies for big data 

processing. Cloud-native technologies, such as Kubernetes and Airflow, are modern solutions intricately connected as essential components 

within IT infrastructures. They are designed specifically for processing and managing data in cloud environments. These technologies leverage 

the scalability and flexibility of cloud computing to enable efficient and reliable data storage, analysis, and retrieval., focusing on Apache 

Airflow and Kubernetes. Acting as a container orchestrator, Kubernetes efficiently manages a vast number of containers, eliminating the 

necessity to explicitly outline the configuration for executing specific tasks. Meanwhile, Airflow is the orchestration layer for managing data 

processing workflows within the Kubernetes environments. The findings of this paper underscore the potential of Kubernetes and Airflow in 

enabling seamless orchestration and management of big data workflows in cloud environments. 
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1. Introduction 
 

A confluence of economic, social, and technological trends, 

including the growing ubiquity of wireless broadband access, 

widespread adoption of smart devices and infrastructure, and 

appeal of social networking, are resulting in the generation of 

vast streams of data, also known as big data. Big data continues 

to grow exponentially over time, and the datasets are so huge 

and complex in variety, volume, and velocity that traditional 

data management systems cannot process, store, or analyze 

them effectively [1]. Concurrently, the modern landscape of 

complex applications – with end users expecting continuous 

innovation and unapparelled responsiveness – requires 

organizations' systems to be more strategic and increasingly 

flexible. The demand for cost-effective, scalable, and reliable 

approaches prompts the exploration of cloud-native services, 

such as Kubernetes and Airflow, as a viable alternative. 

Kubernetes orchestrate containerized applications to run on a 

cluster of hosts and use cloud platforms to automate and 

manage cloud-native applications [2]. Meanwhile, Airflow's 

rich user interface complements Kubernetes by making it 

possible to visualize pipelines running in production, 

troubleshoot issues, and monitor the progress of complex data 

pipelines. This paper demonstrates the implementation of 

Kubernetes and Airflow for big data processing, delving into 

the architecture and deployment strategies of these cloud-native 

technologies. 

 

2. Literature Review 
 

The proliferation of big data, as reflected in the widespread of 

digital devices and mobile subscriptions, has transformed the 

landscape of modern business, empowering organizations to 

derive valuable insights and drive innovation. More than 50 

billion interconnected devices are estimated to be deployed 

worldwide in areas such as transport systems, the environment, 

security, energy control systems, and healthcare [3]. Given that 

internet penetration exceeds 100% in developing and developed 

countries within the Organization for Economic Cooperation 

and Development (OECD) and that wireless broadband 

penetration is nearly 70% in OECD areas, the source of big data 

will continue to grow further [4]. The amount of data traffic 

generated by mobile devices and sensors has been doubling 

every year, as illustrated in Figure 1. However, harnessing the 

potential of big data comes with its own set of challenges, 

including the need for scalable, reliable, and cost-effective data 

processing solutions. The literature surrounding cloud-native 

technologies provides valuable insights into the theoretical 

foundations and practical implementations of these 

technologies.  
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Figure 1: Global IP Data Traffic 

 
1) Cloud-Native Technologies 

The term “cloud-native” identifies the practice of developing, 

deploying, and maintaining modern applications that take the 

flexible computing characteristics offered in the cloud 

environment itself [5]. Being that in mind, cloud-native systems 

are architected and developed using features and capabilities of 

cloud computing environments such as their scalability, built-in 

resiliency, ability to easily manage the workload and provide 

elasticity. The cloud-native technologies equip enterprises with 

tools for running applications in private, public and hybrid 

clouds on a massive scale. Characteristics which are 

microservices architecture, immutable infrastructure, 

automated scaling, and declarative language in application 

programming interfaces (APIs) can be named as the main 

resources of scalability and efficiency of cloud-native 

technology [6]. These characteristics allow server to provide 

the same function to all computer system, so the data processing 

and saving is performed in a similar way without the limitations 

and failure of devices. Additionally, the unaltered state of cloud-

native technologies post-deployment significantly reduces the 

complexity of such technologies.  

 
Figure 2: Features of Cloud-Native Technologies 

 

2) Kubernetes  

Kubernetes orchestrate container-based workflows and 

applications to operate on a cluster of hosts. To achieve this aim, 

Kubernetes facilitates the automated deployment, management, 

and monitoring of cloud-native applications, regardless of 

whether they're deployed on public cloud platforms or on-

premises infrastructure [7]. The typical architecture of 

Kubernetes consists of the control plane, nodes, and clusters. 
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The control plane fulfills two primary roles: (1) serving as the 

gateway to the Kubernetes API, and (2) overseeing the nodes 

comprising the cluster. To perform the functions of controlling 

communications and managing noes, the control plane uses four 

primary components: A kube-API server, which exposes 

Kubernetes API, etcd used for data storage; a kube-scheduler 

which assigns new pods to a node for execution, and a kube-

controller-manager which functions as a controller of all the 

functions of the control plane is stored [8].  

 

Within Kubernetes, applications run in Pods, the fundamental 

execution unit. These Pods house the containers and are 

executed on worker nodes. Nodes consist of three primary 

elements: Kubelet, acting as an agent ensuring container 

presence within a Kubernetes pod; kube-proxy, serving as a 

network proxy across every node in a cluster; and the container 

runtime, responsible for container execution [8]. These 

components collaborate to establish a reliable framework for 

automating the deployment, scaling, and oversight of container-

based applications. Moreover, they ensure optimal resource 

utilization through the coordination of kube-scheduler and 

kube-controller. 

 
Figure 3: Components of a Kubernetes 

 
Figure 4: Simplified view showing how services interact with pod networking in the Kubernetes cluster 
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3) Airflow  

Airflow, in this case Apache Airflow, is a workflow 

management platform that allows for monitoring, scheduling, 

and orchestration of complex data pipelines. It is used for the 

orchestration and scheduling of data pipelines [9]. Typically, 

Orchestrating data pipelines involves arranging and 

coordinating the flow of data from various sources. Within an 

Airflow, the data pipelines deliver data sets that are ready for 

consumption either by data science, machine learning models, 

or business intelligence applications that support big data 

applications. The installation of an Airflow comprises the 

following components: 

• Scheduler – Responsible for overseeing the progression of 

tasks and DAGs, it initiates task instances as soon as their 

prerequisites have been met.  

• Webserver – Presents a user interface to trigger, inspect, and 

debug the behavior of tasks and DAGs. 

• DAG file – A DAG (directed acyclic graph) is the core 

concept of Airflow. It collects tasks together and defines 

how dependencies and relationships should run [10]. 

• Metadata database – This is the database that the 

components of Airflow use to store the state of workflows 

and tasks [10].  

 

Overall, Airflow serves as the orchestration layer for managing 

data processing workflows. Using the above-mentioned 

components, Airflow facilitates the creation of complex data 

pipelines by defining DAGs and orchestrating their execution 

across distributed systems. 

 

3. Case Study: Implementing Kubernetes and 

Airflow for Big Data Processing 
 

3.1 Use Case Description  

 

This study focuses on TechShop, a fictitious e-commerce 

company that operates in a highly competitive market where 

understanding and meeting the ever-evolving consumer 

preferences is paramount for success. To maintain a competitive 

edge and remain relevant in the market, TechShop collects data 

from various sources, including purchase history, social media 

engagement, website interactions, and demographic 

information. This information is highly diverse and contains 

large collections of structured, semi-structured, and 

unstructured data that are expected to grow exponentially over 

time. Additionally, the complexity, variety, volume, and 

velocity of the datasets overwhelm the current data 

management system, hindering its ability to efficiently process, 

analyze, and store them. Therefore, TechShop aims to 

implement a modern, cloud-native solution to process and 

analyze data effectively. The primary objectives of the cloud-

native solution include: 

• The solution should be able to handle fluctuations in data 

volume and velocity without manual intervention. 

• The architecture should support iterative development with 

different analytical models and data processing algorithms. 

• The data processing workflows must be fault-tolerant and 

robust enough to ensure consistent performance.  

 

3.2 Architecture Overview  

 

The proposed architecture comprises three main components: 

data ingestion, data processing, and data analytics. For the data 

ingestion, raw data and assorted files (purchase history, social 

media engagement, website interactions, and demographic 

information) collected from various sources, such as streaming 

databases and external APIs, will be imported into a single, 

cloud-based storage medium – Google Cloud Storage (GCS). 

GCS is the most-suited storage option because it is scalable, 

durable, and cost-effective, with high availability and low 

latency access [5]. The data stored in the GCS will then be 

transformed and stored in a centralized repository. Once 

ingested, the data will undergo various transformations, which 

involve aggregations and machine learning algorithms to 

extract meaningful insights [11]. The processed data will then 

be analyzed to generate visualizations, reports, and actionable 

insights for business stakeholders. 

 

  
Figure 5: Architecture Overview 

 

3.3 Kubernetes Deployment  

 

TechShop opts to deploy Kubernetes clusters on Google Cloud 

Platform – a leading public cloud provider – to leverage its 

scalability features and managed services. Deployment of the 

Kubernetes will encompass the following components:  

• Mater Node – This node controls and manages a set of 

nodes. It comprises the following components to help 

manage worker nodes: Kube-API server, Kube-Controller-

Manager, etcd, and Kube scheduler [12]. This node will 

control the overall Kubernetes cluster, managing resource 

allocation, scaling, and scheduling.  

• Pods – Pods are the smallest deployable units in Kubernetes, 

encapsulating the containers with shared network resources 

such as data ingestion services, analytics tools, and 

processing engines [13]. 

• Services – The services will provide network access to a set 

of pods, enabling load balancing and task discovery within 

the cluster. 

• Horizontal Pod Autoscaling (HPA) – HPA automatically 

adjusts the number of replica pods in a deployment, ensuring 

responsiveness to workload fluctuations and optimal 

resource allocation. 
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Figure 6: Kubernetes Architecture Diagram 

 

3.4 Airflow Integration  

 

Apache Airflow will be deployed as a set of Kubernetes pods, 

each representing a different component, including the 

scheduler, webserver, and worker nodes. The key components 

of the Airflow include DAGs, operators, schedulers, and 

executors. Apache Airflow DAGs will be written in Python 

using the Airflow API. Similarly, tasks will be implemented as 

Python operators, which can execute data processing logic, 

interact with external sources, and handle data discrepancies. 

Configuring the Airflow architecture as a code (Python) allows 

for dynamic pipeline generation [14]. This will allow the 

respective operators to write code that instantiates data 

pipelines dynamically. In the implementation stage, TechShop 

will use a distributed Airflow Architecture, meaning that the 

DAG files will be synchronized between all the components 

that use them – workers, triggered, and scheduler. The greatest 

strength of Apache Airflow is its flexibility, offering easy 

extensibility through its plug-in framework [15]. Additionally, 

Apache Airflow provides a wide range of integrations for 

services on various cloud providers. 

 
Figure 7: Airflow integration into Kubernetes 

 

TechShop will leverage Kubernetes manifests to define the 

desired states of the Apache Airflow deployment and manage 

its lifecycle, as shown in Figure 7. The Kubernetes Operator 

will use Python to generate a request that will be processed by 
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the API server. Subsequently, Kubernetes will launch 

TechShop's pods based on the defined specs, enabling the 

collected data to be loaded under a single command. Once the 

tasks are launched, the operators will only need to track logs 

while gathering logs for the scheduler or any other distributed 

logging service within the Kubernetes cluster. The integration 

of Kubernetes and Airflow will enable TechShop to leverage the 

scalability and flexibility of Kubernetes for processing big data 

workflows. Kubernetes' auto-scaling capabilities will allow the 

cluster to dynamically adjust resource allocation based on 

workload demands, ensuring optimal performance during peak 

periods.  

 

4. Conclusion 
 

In summary, Cloud-native technologies involve building, 

deploying, and managing modern applications that leverage the 

distributed computing capabilities offered in cloud delivery 

models. This means that cloud-native services, such as 

Kubernetes and Airflow, are designed and built to exploit the 

scale, resiliency, flexibility, and elasticity of cloud computing 

environments. In this case study, we deploy Kubernetes clusters 

on the Google Cloud Platform to leverage its scalability and 

manage services. Meanwhile, Airflow is the orchestration layer 

for managing data processing workflows within the Kubernetes 

environments. Kubernetes' auto-scaling capabilities ensure 

optimal resource utilization while Airflow orchestrates the 

execution of concurrent workflows.  
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