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Abstract: The paper provides an in-depth analysis of various methods for solving second-order ordinary differential equations (ODEs) 

with constant coefficients, categorizing solutions based on the roots of the characteristic equation. Different real roots, complicated 

conjugate roots, and repetitive roots are the three primary types of roots that are covered by this. In the case of distinct real roots, the 

solution is a linear combination of exponential functions. On the other hand, complex conjugate roots result in solutions that include 

exponential and trigonometric functions. In order to assist students and researchers who are interested in understanding and solving 

second-order ordinary differential equations with constant coefficients with a roadmap that is both clear and succinct, the purpose of 

this work is to create such a guide. In the case of repeated roots, the solution uses a mix of exponential functions and a linear term to 

solve the problem. The formulation of the characteristic equation, the process of solving for roots, and the application of beginning 

conditions to find particular constants are all topics that are covered in this work. These approaches are shown using practical 

examples, which emphasize their usefulness in domains such as engineering, physics, and applied mathematics: these examples are 

offered to demonstrate these methods. In order to ensure that a full grasp of the topic is achieved, the study places an emphasis on the 

significance of these approaches in modeling a variety of physical processes and provides an organized approach to solving second-

order ordinary differential equations. 
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1. Introduction 
 

A second order differential equation is a type of differential 

equation that involves a function and its second derivative, 

but excluding any higher-order derivatives of the function. 

The types of derivatives can vary based on the magnitude of 

the derivative's power and the functions being used. The 

auxiliary equation can be utilized to solve these differential 

equations. Now, we will examine several distinct types of 

second order differential equations: 

 

Linear second-order differential equation 

A linear second order differential equation can be expressed 

in the form y'' + p(x)y' + q(x)y = f(x), where the power of 

the second derivative y'' is one, thereby making the equation 

linear. Examples of differential equations include y'' + 6x = 

5 and y'' + xy' + y = 0.  

 

Second order differential equation with constant 

coefficients  

A second order differential equation y'' + p(x)y' + q(x)y = 

f(x) is considered a second order homogeneous differential 

equation when f(x) is equal to zero, resulting in the equation 

y'' + p(x)y' + q(x)y = 0. Examples of such equations include 

y'' + y' - 6y = 0, y'' - 9y' + 20y = 0, and so on. 

 

Non-homogeneous second order differential equation  

A non-homogeneous second order differential equation is 

defined as a differential equation of the form y'' + p(x)y' + 

q(x)y = f(x), where f(x) is a non-zero function. Examples of 

differential equations include y'' + y' - 6y = x and y'' - 9y' + 

20y = sin x. 

 

Second order differential equation with constant 

coefficients  

A second order differential equation with constant 

coefficients is defined by the equation y'' + p(x)y' + q(x)y = 

f(x), where p(x) and q(x) are constant functions. Examples 

of differential equations include y'' + y' - 6y = x and y'' - 9y' 

+ 20y = sin x. 

 

Second order differential equation with coefficients that 

vary with the independent variable.  

A second order differential equation with variable 

coefficients, denoted as y'' + p(x)y' + q(x)y = f(x), is 

characterized by the non-constant functions p(x) and q(x), 

which are dependent on the variable x. Examples of 

differential equations include y'' + xy' - y sinx = x and y'' - 

9x2y' + 2exy = 0.  

 

The resolution of nonlinear equations f(x) = 0 is a key issue 

in numerical analysis, and numerous techniques have been 

devised to address it. The available methods vary from the 

dependable albeit often sluggish bisection approach to 

swifter and more advanced techniques such as the Newton-

Raphson method, which may exhibit less predictability. In 

order to determine all the solutions of a real function f(x) 

within a specific interval, it is typically required to confine 

these solutions within bracketing intervals (which are 

suitable for the bisection method) or to obtain initial 

approximations for the roots that are accurate enough. These 

approximations can then be further improved using methods 

such as Newton-Raphson or other higher-order 

techniques(Yakimiw, 1996). The latter method is frequently 

employed to calculate the zeros of particular functions, such 

as orthogonal polynomials and Bessel functions(Temme, 

1979). 

 

Nevertheless, it can be quite difficult to obtain precise 

starting estimates for all the zeros, particularly when the 

function f(x) relies on numerous parameters. It is 

challenging to guarantee convergence for all parameter 

values and zeros. This matter is emphasized within the 

framework of Legendre polynomials that possess only one 

parameter(Petras, 1999).  
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Novel approaches have been devised that necessitate 

reduced levels of precise data regarding the exact 

whereabouts of zeros. For example, specific specialized 

techniques can be employed for specific sorts of functions 

without requiring the use of brackets or pre-established 

approximations.  

 

A significant category of functions consists of solutions to 

linear homogeneous second-order difference equations. 

There are specific techniques available for certain solutions. 

Significantly, in the case of orthogonal polynomials  pk(x) 

where  k  represents the degree, the zeros can be calculated 

as eigenvalues of real tridiagonal symmetric matrices. The 

elements of these matrices can be obtained from the 

coefficients of the three-term recurrence relation:  pn+1(x) = 

(An x + Bn)pn(x) + Cn pn-1(x).  

 

For some nonpolynomial functions, the zeros can 

alternatively be estimated as eigenvalues of real tridiagonal 

symmetric matrices. This method is suitable for finding 

solutions to three-term recurrence relations, such as regular 

Bessel functions and Coulomb wave functions.  

 

Another important category consists of functions that fulfill 

first-order linear homogeneous difference-differential 

equations (DDEs). The fixed point methods (FPMs) 

obtained by approximating the integration of Riccati 

equations linked to these DDEs are globally convergent and 

exhibit second-order accuracy. These methods can 

accurately calculate all real zeros inside a certain interval. 

They are applicable in scenarios where matrix eigenvalue 

methods are successful, and can be utilized in a wider range 

of situations. By integrating these Delay Differential 

Equation (DDE) approaches with Finite Point approaches 

(FPMs) for identifying extreme values (using related 

Ordinary Differential Equations, ODEs), it is possible to 

create second-order techniques for calculating the roots of 

DDE solutions and their initial derivatives. To obtain a 

comprehensive examination of DDE methods and matrix 

eigenvalue methods, of the provided reference.  

 

The third collection of functions, which is likely the most 

important, consists of solutions to linear second-order 

homogeneous ordinary differential equations (ODEs). This 

collection encompasses all functions that are dealt with 

using matrix Eigen value and DDE (delay differential 

equation) methods, among others.  

 

Here, we provide a fourth-order technique that achieves 

global convergence when certain monotonicity conditions 

are met. This exceptional characteristic is of great 

importance for a method of fourth order. The methodology 

relies on the estimation of a Riccati equation linked to the 

ordinary differential equation (ODE). It follows a similar 

principle to Newton's method, where the logarithmic 

derivative of the function in question is computed. The 

coefficients of the ordinary differential equation (ODE) are 

also employed. This iterative approach enables the 

development of an algorithm that can accurately calculate all 

the zeros within any given real interval. Preliminary 

approximations for each root are superfluous given the 

method's universal convergence, with the sole prerequisite 

being awareness of the monotonicity of the ODE 

coefficients.  

 

The second-order ordinary differential equation in normal 

form is given by:  y''(x) + A(x)y(x) = 0, Prior knowledge of 

the sign of A'(x) and its potential variations is necessary. 

This method offers a highly effective approach for 

calculating the actual roots of several significant functions. 

It usually attains a precision of 100 digits in just 4-5 

iterations per root, surpassing other efficient global 

approaches that rely on DDEs. If good initial 

approximations for the zeros are available, they can be 

utilized to further improve the approach. Nevertheless, the 

newfound method's rapidity and straightforwardness render 

it a universal approach for solving any ordinary differential 

equation, regardless of the particular initial values.  

 

The paper is organized in the following manner:  

1) Section 2: A fourth-order fixed-point algorithm is 

devised, demonstrating monotonic convergence features 

where A(x) is monotonic. The method's global 

convergence is established under specific constraints on 

the rate of variation of A(x).  

2) Section 3: The fixed-point method is adapted to ensure a 

globally convergent iteration. A precise algorithm is 

formulated to calculate all the zeros inside a certain 

interval, ensuring complete confidence. Additionally, a 

technique for computing the zeros of the derivative is 

also examined.  

3) Section 4: This section focuses on analyzing the 

nonlocal behavior of the algorithm. Specifically, it 

provides a detailed examination of the scenario where 

the equation y''(x) + x^{-m}y(x) = 0 is considered, with  

m being a real number.  

4) Section 5 showcases the algorithm's performance by 

providing examples of various mathematical functions 

such as classical orthogonal polynomials (Hermite, 

Laguerre, and Jacobi), Coulomb wave functions, Bessel 

functions with real or imaginary orders and variables, 

and conical functions.  

 

This meticulous methodology guarantees the reliable and 

effective calculation of actual zeros for a wide range of 

significant functions.  

 

2. Objectives 
 

The aim of this article is to provide a clear and concise guide 

for students and researchers interested in understanding and 

solving second-order ordinary differential equations with 

constant coefficients. 

 

3. Literature Review 
 

(Santra, Bazighifan, Ahmad, & Yao, 2020) Second-order 

differential equations arise in various physical phenomena, 

including fluid dynamics, electromagnetism, acoustic 

vibrations, and quantum physics. This work establishes the 

necessary and sufficient conditions for the solutions to 

second-order half-linear delay differential equations of the 

form represented by the mathematical equation, assuming 

that the integral of the reciprocal of the function ς(η) with 

respect to η, from negative infinity to positive infinity, is 
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equal to infinity. We examine two scenarios: one where a < 

cj and another where a > cj. Here, a and cj represent the 

result of dividing two positive odd integers. The usefulness 

and application of the outcome are demonstrated through 

two cases.  

 

(Santra, Bazighifan, Ahmad, & Chu, 2020) Second-order 

differential equations are prevalent in diverse fields such as 

physics, mathematics, and engineering. This study 

establishes the necessary and sufficient conditions for 

oscillations of solutions to second-order half-linear delay 

differential equations of the type ςyu′ya′+pyucϑy=0, for 

y≥y0, under the assumption that the integral of ∞ςη-1/a 

diverges. Two situations are examined: one where ac. Here, 

a and c represent the ratios of two positive odd integers. The 

usefulness and application of the outcome are demonstrated 

through the provision of two examples. 

 

(Santra et al., 2021) Neutral differential equations are 

commonly encountered in continuous applications in 

domains like as electrodynamics, neural networks, quantum 

mechanics, electromagnetism, temporal symmetry, and fluid 

dynamics. These equations are essential for accurately 

describing a wide range of problems and phenomena. Due of 

its importance, the study of the qualitative behavior of 

solutions to these equations is highly interesting. This paper 

establishes novel criteria for the oscillatory nature of 

solutions to second-order delay differential equations with 

sub-linear neutral components. These findings bolster and 

expand upon the current outcomes in the literature. In order 

to validate our primary findings, we offer a concrete 

illustration and introduce an unresolved issue that warrants 

additional exploration. This emphasizes the practical 

significance and the possibilities for future scholarly inquiry 

in this field. 

 

(Džurina & Jadlovská, 2020) This study introduces novel 

requirements for the oscillation of all solutions to a second-

order half-linear delay differential equation in noncanonical 

form. These criteria replace the previously assumed 

condition that the delay function is nondecreasing. We 

confirm that the oscillation constant is optimal, indicating 

that the theorem's validity cannot be maintained if the strict 

inequality is substituted with a nonstrict one. This 

conclusion is innovative and surpasses all previously 

reported results in the literature, even in the linear situation. 

Our approach has a significant benefit in that the proof is 

straightforward and relies only on the progressively 

enhanced monotonicities of a positive solution. This makes 

our conclusions reliable and easy to understand. 

 

(Verma et al., 2020) Nonlinear singular differential 

equations are used to simulate various real-life problems. 

This paper focuses on analyzing a specific category of 

nonlinear singular differential equations. We thoroughly 

examine several characteristics of these equations and 

conduct an extensive review of existing research on the 

topic. Solving nonlinear singular differential equations is a 

challenging task, because in most circumstances, an exact 

solution does not exist. Given the absence of an exact 

solution, it is logical to investigate the presence of both an 

analytical solution and a numerical solution. This survey 

examines the two aspects of nonlinear singular boundary 

value problems (SBVPs) and explores various analytical and 

numerical techniques that have been developed to address a 

specific class of nonlinear singular differential equations. 

These equations are of the form (p(x)y'(x))' = q(x) f (x, y, 

py') for x ∈ (0, b), subject to appropriate initial and boundary 

conditions. The monotone iterative technique has attracted 

significant attention in the past two decades and has been 

integrated with many other current techniques. Additionally, 

a compilation of Subject-Verb-Object-Prepositional Phrase 

structures is included, which will greatly assist researchers 

engaged in this field. 

 

4. Methodology 
 

The article explores the characteristic equation and its roots, 

which play a vital role in determining the nature of the 

solutions to second-order differential equations. The 

methodology is categorized into three primary scenarios, 

determined by the characteristics of the roots of the 

characteristic equation: 

 

1) Distinct and Real Roots: 

• When the characteristic equation produces two unique 

and real roots, the solution to the differential equation 

can be expressed as a linear combination of two 

exponential functions.  

• The equation can be written in the generic form  

 
Where, C1 and C2 are constants and r1 and r2 are the 

exponential growth rates.{r2t}The equation  

 
represents a solution with separate roots r1 and r2. The 

constants C1 and C2 are determined by the beginning 

circumstances.  

• An example is given to demonstrate the process of 

finding the roots and formulating the general solution.  

 

2) Complex Conjugate Roots: 

• When the characteristic equation produces complex 

conjugate roots, the solution involves exponential and 

trigonometric functions.  

• The equation can be expressed as  

 
Where, α and β are constants. The function y(t) is equal to 

the exponential of alpha times t, multiplied by the sum of C1 

times the cosine of beta times t and C2 times the sine of beta 

times t.The function y(t) can be expressed as 

eαt(C1cos(βt)+C2sin(βt)), where α±iβ are the complex roots.  

• An illustrative example is presented to showcase the 

process of obtaining the overall solution from intricate 

roots and implementing basic conditions.  

 

3) Repeated Roots:  

• When the characteristic equation produces a root that 

occurs more than once, the solution involves an 

exponential function and a linear term. 

• The equation is given by  

 

Where, r is the repeating root. 
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• An example is given to illustrate the process of 

identifying the recurring root and proposing the overall 

solution. 

The general solution for each situation is derived by 

following a set of precise stages. These steps include 

formulating the characteristic equation, solving for the roots, 

and applying beginning conditions to obtain the individual 

constants in the solution. Illustrative examples are provided 

to demonstrate the practical implementation of these 

strategies, so ensuring a thorough comprehension of the 

process for finding a solution. 

 

5. Result 
 

Homogeneous Linear ODE Coefficients with Constant 

This section focuses on the specific scenario of a second-

order homogeneous linear differential equation when all the 

coefficients are real constants. Specifically, our focus will be 

on the equation.  

 

This section specifically addresses the second-order 

homogeneous linear differential equation (LDE), in which 

all coefficients are constant and have real values. 

Specifically, we will exclusively examine equations that 

adhere to the following format: 

 
 

Hence, we will seek solutions to equation (1) in the format 

of y=emx, where we will select the constant m such that y= 

emx fulfills the equation. If we assume that mx is a valid 

solution for a specific value of m, we can express it as a y 

  (1) 

 

 
 

Or, (m+4) (m+2)=0 

 

Given that emx≠0, we can derive a polynomial equation in 

the variable m;  

  (2) 

 

The equation presented above is commonly known as the 

auxiliary equation or the characteristic equation of the 

provided differential equation (1). When calculating the 

auxiliary equation, three possible circumstances may occur.  

a) All the roots are unique and exist in the real number 

system.  

b) All of the roots are real, however there are some that 

repeat.  

c) All of the roots are complex numbers with no real part.  

 

Distinct Real Roots 

if m1, m2 are different roots then 

,  

Are independent solutions of (1). Therefore, the general 

solution of (1) is. 

 
where c1, c2 are arbitrary constants. 

Ex. 

 
The auxiliary equation is  

 
Hence,  

(m-4) (2m-4) = 0 

M=4,2 

 

The roots of the equation are both real and distinct. The 

solutions to the equation are e4x and e2x. The general solution 

can be expressed as:  

 where C1 and C2 are arbitrary 

constants. 

 

Non-Homogeneous Linear ODE with Constant 

Coefficients 

Where the coefficients  are constants but the non 

homogeneous term F in general a non constant function of 

x.The general solution of the above equation may be written, 

where yc is the general solution of the 

corresponding homogeneous equation (1) with F replaced by 

zero and yp is called the complementary function, and it is a 

solution that contains no arbitrary constant. On the other 

hand, any solution of equation (1) that does not contain 

arbitrary constants is known as a particular integral. 

 

4.1 Case-1: if F(x) = x, polynomial in x then 

 
This can be applying binomial expansion and 

multiplying term by term. Sometimes the expansions are 

made by using partial fraction. 

Ex. 

 
The auxiliary equation is  

m2 +3m+2=0 

or(m+2)(m+1)=0 

m=-2,-1 

The roots are distinct and real. Thus  and are the 

solutions that satisfy the equation, and the solution that is 

not associated with any particular initial condition, can be 

expressed as the complementary solution. 

 
Where C1 and C2 are arbitrary constants. 

 

The particular solution is,  

 
Where A, B are constant undetermined coefficient to be 

determined. Taking the derivative of the equation yields: 

 

 
Substituting these in equation we obtain, 
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Equating the coefficient of x and constant term we obtain, 

 

 
After solving 

 and  

 

Substituting obtain 

 

An initial value problem 

The initial problem involves determining the integration 

constants of the general solution of a differential equation. 

This is done by substituting the variables and their 

derivatives in the solution with the given initial values, and 

then solving the resulting equation to find the required 

constant. 

 

Ex. 

 
 

The auxiliary equation is  

 
 

Or (m-3) (m-4)=0 

 

M=3,4 

 

The roots are real and distinct. Thus  e4x and  e3x the 

solutions we have obtained are valid, and it is possible to 

express the complementary solution in the following 

manner: 

 
 

Where C1 and C2 are arbitrary constant from this we find  

 
 

We implement the initial conditions. Implementing 

condition  (0)=1 to equation (3.4) and  to 

equation (3.5) we find 

 
 

Solve this we find,  

 

Replacing c1 and c2 in equation 

 
 

6. Discussion 
 

The analysis of techniques for solving second-order ordinary 

differential equations with constant coefficients emphasizes 

the strength and adaptability of various strategies based on 

the characteristics of the roots. Equations that result in 

separate and actual solutions are represented as 

combinations of exponential functions, which can be 

described in clear and analytical forms. When the roots are 

complex conjugates, the solutions involve both exponential 

and trigonometric functions, which indicate oscillatory 

activity. When there are multiple identical answers, the 

solutions involve a combination of exponential functions 

and polynomial terms to ensure that all possible 

circumstances are accounted for completely. The approaches 

given guarantee precise root determination by utilizing 

characteristic equations to convert intricate differential 

equations into accessible algebraic forms. The effectiveness 

of these strategies is demonstrated through practical 

examples and detailed derivations, highlighting their 

relevance in diverse domains such as physics, engineering, 

and applied mathematics. This complete method not only 

promotes comprehension but also improves the capacity to 

address real-world situations represented by second-order 

ordinary differential equations. 

 

7. Conclusion 
 

Research on techniques for solving second-order ordinary 

differential equations (ODEs) with constant coefficients 

offers a complete manual for academics and students. It 

groups the answers according to the kind of the roots of the 

characteristic equation: repeating roots, complicated 

conjugate roots, and separate, real roots. Solues for different 

real roots are stated as a linear combination of exponential 

functions. The solutions where the roots are complex 

conjugates combine trigonometric and exponential 

functions. Repeated roots produce answers combining linear 

terms and exponential functions. Deriving characteristic 

equations, solving for roots, and using beginning conditions 

to find particular constants comprise the method under 

discussion in this work. This method guarantees a clear 

knowledge of the method needed to solve second-order 

ODEs by means of structure. The relevance of second-order 

differential equations in modeling different physical events 

and their applications in fields including fluid dynamics, 

electromagnetism, and quantum physics is underlined by 

illustrative examples throughout the study of these 

approaches. 
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