
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Virtualization vs Containerization: Differences and

Use Cases

Pallavi Priya Patharlagadda

Engineering, United States of America

Abstract: Virtualization and Containerization are two most frequently used mechanisms to deploy multiple, isolated services on a single

platform. But the way both technologies function is different. Let’s understand both the concepts and then derive the use cases where

Virtualization is preferred and where Containerization is preferred.

Keywords: virtualization, containerization, deployment, isolated services, technology comparison

1. Problem Statement

As the world advances, the requirement to improve the

scalability and performance has increased. At the same time,

companies are looking for cost reduction and standardize

software deployments across multiple machines and

platforms. Virtualization and Containerization are the two

approaches that can be followed to make efficient use of the

resources. Since, Containerization is also a kind of

virtualization, often people get confused between both. This

paper speaks in detail about both the topics, their advantages

and disadvantages and use cases on when virtualization or

containerization should be preferred over another.

2. Introduction

Virtualization

Virtualization is the technique of using software to build a

layer of abstraction over hardware that allows a single

computer’s hardware to be split into several virtual

computers. Each of those virtual computers (known as

“guests”) uses part of the hardware resources of the main

computer (known as a “host”).

a) This is accomplished using hypervisor software. Virtual

machine monitors (VMMs), commonly referred to as

hypervisors, allow numerous guest operating systems to

run on top of a host operating system and share the same

physical computing resources under the control of the

host operating system. This essentially enables the

operating system and programs to be abstracted from the

hardware on the actual computer. There are two main

groups into which hypervisors fall. Two types of

hypervisors: Type 1 and Type 2.

b) Type 1 Hypervisor: Operating directly on the physical

hardware of the underlying machine, a Type 1 hypervisor

interacts with its CPU, memory, and physical storage.

Because of this, Type 1 hypervisors are sometimes called

bare - metal hypervisors. The host operating system is

replaced with a Type 1 hypervisor.

Advantages of Type - 1 hypervisor

• High performance: Since they are not restricted by the

built - in OS constraints, these offer excellent

performance.

• Extremely secure: They are shielded from OS defects and

vulnerabilities since they operate directly on the physical

hardware without the need for an underlying operating

system. This guarantees that all virtual machines (VMs)

are segregated from any malicious malware.

Disadvantages of Type - 1 Hypervisor:

• Complexity: Type 1 hypervisor management and setup are

challenging since they necessitate an understanding of

hardware settings.

• Hardware compatibility: Every hypervisor has a list of

compatible hardware on it. This results in an extra cost

when using an alternative hypervisor.

• Use case for using Type 1 Hypervisor: Web servers, data

centers, enterprise computing workload scenarios, and

other applications with a fixed user base are common uses

for type 1 hypervisors. To provide the most performant

virtual machines (VMs) for the underlying physical

hardware, cloud computing environments use bare metal

hypervisors. Additionally, cloud providers offer virtual

machines (VMs) as cloud instances that you can access via

Paper ID: SR24724151426 DOI: https://dx.doi.org/10.21275/SR24724151426 1803

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

APIs, abstracting away type 1 hypervisor management.

Examples of Type - 1 Hypervisors VMware vSphere with

ESX/ESXi, Microsoft Hyper - V, Citrix Hypervisor (Xen

Server).

• Type 2 Hypervisor: A Type 2 hypervisor doesn’t run

directly on the underlying hardware. Instead, interacts

with the underlying host machine hardware through the

host machine’s operating system. It interacts with the

operating system to obtain underlying system resources.

However, the host operating system prioritizes its own

functions and applications over the virtual workload.

Advantages of Type - 2 hypervisor:

Ease of use: These are easy to setup.

No Hardware compatibility issues: Since the OS takes care of

the underlying hardware, Developer need not worry on the

compatibility issues.

Disadvantages:

1) Low Performance: Since Type 2 hypervisor access

computing, memory, and network resources via host OS,

it introduces latency issues that can affect performance.

2) Security Risks: It introduces potential security risks if an

attacker compromises the host OS as they could then

manipulate any guest OS running in the Type 2

hypervisor.

Use case for Type2 Hypervisors:

Type 2 hypervisors are most often used in desktop and

development environments, where workloads are not as

resource - intensive or critical to operations. They’re also

preferred in cases where users want to simultaneously use two

or more operating systems but only have access to one

machine. Examples of Type 2 Hypervisors – VMware

Workstation Pro/VMware Fusion, Oracle VirtualBox, etc.

3. Containerization

Containerization is a form of virtualization that bundles an

application with its code, libraries, dependencies, and

everything else needed for it to run inside a component known

as a container. Containers are lightweight and portable,

running consistently across any computing platform.

containers share the host system’s user space, while still

maintaining its individual system processes, environment

variables, and libraries. The isolation among containers is

achieved using Linux namespaces and cgroups.

Process Containers was launched by Google in 2006 and was

designed for limiting, accounting and isolating resource usage

like CPU, memory, disk I/O, network etc. for a collection of

processes. It was renamed as Control Groups (cgroups) and

merged to Linux kernel 2.6.24.

LXC (Linux Containers) was the first and the most complete

implementation of Linux container manager. It was

implemented in 2008 using cgroups and Linux namespaces,

and it works on a single Linux kernel without requiring any

patches.

Docker emerged in 2013 and containers exploded in

popularity. The growth of Docker and container use goes

together. Docker used LXC in its initial stages and later

replaced that container manager with its own library,

libcontainer. Docker separated itself from the LXC by

offering an entire ecosystem for container management.

Docker provides tooling and a platform to manage the

lifecycle of your containers.

Numerous advantages come with containerization, such as

scalability, portability, and quick deployment. It lowers the

chance of system instability or application conflicts by

enabling developers to create predictable environments that

are segregated from other applications. They can also package

their software along with all its dependencies so that it can

run on any system that has a container engine installed, no

matter what configuration it has.

Bare Metal hypervisor Hosted hypervisor
Also known as Type 1 hypervisor. Type 2 hypervisor.

Runs on Underlying physical host machine hardware. Underlying operating system (host OS).
Best suites for Large, resource-intensive, or fixed-use workloads. Desktop and development environments.

Negotiation on dedicated resources Yes. No.
Knowledge System administrator-level knowledge. Basic user knowledge.
Examples VMware ESXi, Microsoft Hyper-V, KVM. Oracle VM VirtualBox, VMware Workstation, Microsoft Virtual PC.

Paper ID: SR24724151426 DOI: https://dx.doi.org/10.21275/SR24724151426 1804

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Moreover, the microservices architecture—which divides

applications into discrete, standalone services—is supported

by containerization. This method enables more efficient

administration of complicated applications as well as quicker

and more dependable deployment.

4. Containers in Linux: Namespaces and C

Groups

In this section, we delve into the Linux specifics of what we

use to implement containers. In essence, though, they are

extensions of existing APIs: C Groups are essentially an

extension of Resource Limits (POSIX RLIMITs) applied to

groups of processes instead of to single processes.

Namespaces are likewise sophisticated extensions of the

chroot () separation system applied to a set of different

subsystems. The object of this section is to explain the

principles of operation rather than give practical examples

(which would be a whole article in its own right. The

information in this section, being very Linux specific, may

have changed since then

1) CGroups:

 CGroups can be thought of as resource controllers (or

limiters) on types of resources. The thing about most CGroups

is that the control applies to a group of processes (hence the

interior of the container becomes the group) that it’s inherited

across forks, and the CGroups can be set up hierarchically.

The current CGroups are:

• blkio—controls block devices

• cpu and cpuacct—controls CPU resources

• cpuset—controls CPU affinity for a group of processes.

• devices—controls device visibility, effectively by gating

the mknod () and open () calls within the container

• freezer—allows arbitrary suspend and resume of groups

of processes

• hugetlb—controls access to huge pages, something very

Linux specific

• memory—currently controls user memory allocation but

soon will control both user and kernel memory allocations

• net_cls and net_prio—controls packet classification and

prioritization

• perf_event—controls access to performance events as you

can see from the brief descriptions, they’re much more

extensive than the old RLIMIT controls. With all these

controllers, you can effectively isolate one container from

another in such a way that whatever the group of processes

within the container do, they cannot have any external

influence on a different container (provided they’ve been

configured not to, of course).

2) Namespaces

Although, simplistically, we’ve described namespaces as

being huge extensions of chroot (), in practice, they’re much

more subtle and sophisticated. In Linux there are six

namespaces:

• Network—tags a network interface

• PID—does a subtree from the fork, remapping the visible

PID to 1 so that init can work.

• UTS—allows specifying new host and NIS names in the

kernel

• IPC—separates the system V IPC namespace on a per -

container basis

• Mount—allows each container to have a separate file -

system root

• User—does a prescribed remapping between UIDs in the

host and container.

The namespace separation is applied as part of the clone ()

flags and is inherited across forks. The big difference from

chroot () is that namespaces tag resources and any tagged

resources may disappear from the parent namespace

altogether (although some namespaces, like PID and user are

simply remapping of resources in the parent namespace).

Container security guarantees are provided by the user

namespace, which maps UID 0 within the container (the root

user and up, including well known UIDs like bin) to unused

UIDs in the host, meaning that if the apparent root user in the

container ever breaks out of the container, it is completely

unprivileged in the host.

5. Differences between virtualization and

containerization

a) Resource Overhead

From a resource overhead perspective, containerization

clearly outperforms virtualization. Containers are much

lighter and use less resources because they share the operating

system of the host system rather than requiring the use of a

separate operating system. However, since each virtual

machine needs its own operating system, there is an increased

overhead, particularly when multiple VMs are operating on

the same host system.

b) Startup Time

Because they don't need to start an entire operating system,

containers typically start up faster than virtual machines

(VMs). Booting up virtual machines takes a lot longer.

Because of their increased flexibility and ability to be stopped

and restarted as needed, containers support immutability—the

property that a resource maintains its original state even after

it has been deployed.

c) Portability

Virtual machines and containers both provide a high level of

portability. Because they bundle the application and all of its

dependencies into a single unit that can run on any system that

supports the container platform, containers do have a slight

advantage over other options. Even though they are portable,

virtual machines rely more on the underlying hardware.

d) Security Isolation

Virtual machines are better in terms of security isolation. A

security breach in one virtual machine (VM) usually has no

effect on the others because each VM is isolated from the host

system and other VMs (though it is possible to compromise

the hypervisor and take control of all VMs on the device).

Although isolated from one another, containers share the

operating system of the host system, so a breach in one

container may potentially affect other containers.

e) Scalability and Management

Due to their lightweight design and quick startup time,

containers are the best option for efficiently and quickly

Paper ID: SR24724151426 DOI: https://dx.doi.org/10.21275/SR24724151426 1805

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

scaling applications. Additionally, they work well with the

microservices architecture, which makes managing

complicated applications easier. Although scalable as well,

virtual machines are less appropriate for microservices and

distributed applications because they require more resources

and take longer to start up.

f) Multi Operating Systems on a Single Box

Since each virtual machine installs its own operating system,

virtualization enables the use of multiple operating systems

on a single operating system. Thus, we can install both Linux

and Windows virtual machines on a single kernel. However,

in the event of containerization, the host kernel is shared. As

a result, you cannot run two separate operating systems—

such as Windows running on a Linux kernel—on the same

physical machine.

Below is the comparison between virtualization and

Containerization.

6. Use Cases for Virtualization:

a) Legacy Applications

Legacy applications are frequently viewed as a burden in the

software industry. These are programs that are usually hard to

update or maintain because they were created with outdated

technology. Nevertheless, they are frequently indispensable

to the functioning of businesses and cannot be thrown away.

This is the sweet spot for virtualization.

These legacy apps can run on their original operating systems

thanks to virtualization, even if the underlying hardware has

been updated. This implies that companies won't need to

invest in costly or time - consuming updates in order to keep

using these apps. Additionally, the sandboxed environment

that virtualization creates shields the rest of the system from

any security flaws in these older apps.

b) High Isolation Environments

Settings Requiring a High Degree of Isolation Strong

application isolation is a critical requirement in environments

where virtualization performs exceptionally well. This is

especially helpful in high - security settings where an

application breach shouldn't have an impact on other

applications.

To separate applications belonging to different users from one

another, for example, virtualization can be utilized in a data

center that serves several organizations. The attacker would

not be able to access applications running on other virtual

machines, even if one user's application was compromised.

c) IaaS Scenarios

An example of a cloud computing model is Infrastructure as

a Service (IaaS), which offers networks, storage, and virtual

computers as services. IaaS is based on virtualization as a key

technology. By operating several virtual machines (VMs) on

the same physical hardware, it enables cloud providers to

make effective use of their hardware resources.

Furthermore, resource scalability based on demand is made

possible by virtualization. It is simple to assign additional

virtual machines to a client in case they require more

resources.

7. Use Cases for Containerization

Here are the main use cases for containerized applications:

a) Microservices Architectures

Microservices architectures are one of the primary use cases

for containerization. An application is divided into tiny,

autonomous services that interact with one another in a

microservices architecture. There are numerous advantages to

this strategy, such as increased scalability and simpler

maintenance.

Microservices are ideally suited for containers. They give

every service a uniform environment, guaranteeing that it

operates reliably on various platforms. Furthermore, services

or service instances cannot clash with one another because

containers are isolated from one another.

b) CI/CD

Software developers use continuous integration/continuous

deployment (CI/CD) to integrate their code into a shared

repository frequently—typically multiple times per day. After

that, every integration is deployed and tested automatically.

Teams can identify and address issues earlier with this

method, which produces software that is of a higher caliber.

One important component of CI/CD is containerization.

Area Virtualization Containerization

Isolation
Provides complete isolation from the host operating system and the
other VMs.

Typically provides lightweight isolation from the host and other
containers, but doesn’t provide as strong a security boundary
as a VM

Operating System
Runs a complete operating system including the kernel, thus requiring
more system resources such as CPU, memory, and storage

Runs the user-mode portion of an operating system, and can
be tailored to contain just the needed services for your app
using fewer system resources

Guest compatibility Runs just about any operating system inside the virtual machine Runs on the same operating system version as the host

Deployment Deploy individual VMs by using Hypervisor software
Deploy individual containers by using Docker or deploy
multiple containers by using an orchestrator such

Persistent storage
Use a Virtual Hard Disk (VHD) for local storage for a single VM or a Server
Message Block (SMB) file share for storage shared by multiple servers

Use local disks for local storage for a single node or SMB for
storage shared by multiple nodes or servers

Load balancing
Virtual machine load balancing is done by running VMs in other servers
in a failover cluster

An orchestrator can automatically start or stop containers on
cluster nodes to manage changes in load and availability.

Networking Uses virtual network adapters
Uses an isolated view of a virtual network adapter. Thus,
provides a little less virtualization

Paper ID: SR24724151426 DOI: https://dx.doi.org/10.21275/SR24724151426 1806

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Testing can be done in a consistent environment with

containers, which guarantees repeatability and dependability.

Additionally, containers are simple to deploy to production,

which speeds up and improves the efficiency of the

deployment process.

c) PaaS Scenarios

Under the Platform as a Service (PaaS) cloud computing

model, developers can build, test, and deploy apps on a

platform that is provided by the provider. An operating

system, middleware, and runtime environment are often

included in this platform.

PaaS requires containerization as a necessary component. By

allowing several containers to run on a single host, it enables

providers to make effective use of their resources. It also gives

developers a standardized environment, which facilitates the

development and deployment of applications.

8. Use Virtualization and Containerization

Together

I'm curious as to why someone would want to combine virtual

machines and containers. Well, binaries and libraries are

shared by containers with the host's OS kernel. Since most

Linux distributions are based on the same kernel, running

Linux containers across distributions is not a problem.

For instance, CentOS - based hosts can run Ubuntu containers

effectively. It is not possible to run Windows containers on

Linux hosts or vice versa due to the kernel sharing fact. Create

a virtual machine (VM) on the appropriate host in order to use

these containers. To run Windows containers, for instance,

you can set up a Windows virtual machine on a Linux host.

Because a virtual machine runs on its own operating system,

the operating system can support the container engine,

making this possible.

By isolating a container within a virtual machine,

vulnerability attacks are restricted in their reach. On a bare -

metal server, for instance, if 500 containers share an OS

kernel and the operating system malfunctions, all 500

containers become compromised. On the other hand, only

those containers are impacted if a virtual machine (VM)

hosting 50 or fewer containers is compromised. Other virtual

machines running distinct containers on the same server or

cluster are unaffected by this failure.

 To accomplish capacity optimization, containers and virtual

machines can be integrated. Because virtualization makes

server utilization easier, it is widely used in the enterprise IT

sector. Multiple virtual machines (VMs) can be hosted on a

single server, and each VM can host multiple container hosts.

Additionally, several conventional monolithic virtual

machines (VMs) can be hosted on a single server. IT

managers can optimize the use of the physical server by

integrating containers with conventional monolithic virtual

machines.

9. Conclusion

In this paper, we have examined how virtualization and

containerization are similar in that they offer isolation. To put

it briefly, containers are inexpensive to use because they

perform far less. In addition to offering fully virtualized

hardware layers, virtual machines are capable of much more,

but at a high cost.

Containerization, which entails enclosing an application with

its operating system in a container, can be thought of as a

lightweight substitute for full machine virtualization.

Whereas the other does not offer a useful application, each

has advantages and particular situations. A few examples of

how each can be used are discussed. The user can select

between virtualization and containerization based on which

system suits them the best in the given situation.

References

[1] https: //www.toolsqa. com/docker/understanding -

containerization - and - virtualization/

[2] https: //www.aquasec. com/blog/a - brief - history - of -

containers - from - 1970s - chroot - to - docker - 2016/

Paper ID: SR24724151426 DOI: https://dx.doi.org/10.21275/SR24724151426 1807

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.toolsqa.com/docker/understanding-containerization-and-virtualization/
https://www.toolsqa.com/docker/understanding-containerization-and-virtualization/

