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Abstract: EVs and eVTOLs have become fast-growing markets, while their boundaries are set by the ever-increasing demand for more 

sustainable transportation means. Manufacturing such classes of advanced vehicles faces significant challenges in using complex 

production processes, strict quality and safety requirements, and needing fast scale-up while keeping costs in check [1]. AI signifies a 

transformative potential for these challenges in their attempts at optimization of various stages of the manufacturing process. This 

paper, therefore, discusses the application of AI techniques, including predictive maintenance, automated quality control, intelligent 

process control, and smart supply chain management, for further streamlining production processes in electric vehicles and eVTOLs. I 

look at how AI-powered solutions reduce waste and improve product quality while enhancing overall efficiency. In this respect, I also 

reflect on actual AI applications across both industries, commenting on related pitfalls and opportunities arising. The concluding 

section will emphasize a few future trends and research areas related to the application of artificial intelligence in EV and eVTOL 

manufacturing: increasing automation, robotics, development of digital twin technologies, further revolutionary technologies likely to 

shape industries. 
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1. Introduction 
 

The world landscape of transportation is dramatically 

changing; the pressing urge for sustainable and efficient 

mobility solutions drives it. Electric vehicles have emerged 

as a cleaner alternative to traditional combustion engine 

vehicles and are gaining immense popularity. Major 

automakers have announced plans for all-electric futures, 

while governments around the world simultaneously unveil 

and implement policies and regulations that incentivize the 

adoption of EVs [2]. Meanwhile, eVTOL aircraft are also 

entering the scene and promise to change urban air mobility 

by offering the possibility of faster commutes, reduction in 

congestion, and access to previously unreachable locations. 

These two developments in electric propulsion technologies 

mark a significant step toward the de-carbonization of the 

transport sector and, consequently, toward the reduction of 

the effects of climate change. 

 

However, the manufacturing of EVs and eVTOLs 

presents a peculiar set of challenges. Whereas 

conventional vehicles are made using complex and 

specialized manufacturing processes, these electric 

platforms involve similarly sophisticated manufacturing 

processes. 1 For example, EVs require advanced battery 

manufacturing, including cell production, module assembly, 

and pack integration. High-performance electric motor 

manufacturing, power electronics, and specialized chassis 

components further increase the level of complexity. 2 

eVTOLs face the added complexity, beyond that shared 

with EVs, in integrating advanced aerodynamic designs, 

lightweight materials, often composites, and rigorous safety 

systems to make flights reliable and safe [3]. All these 

factors drive up production costs and require highly 

specialized manufacturing knowledge. 

 

Besides, both EV and eVTOL demand are growing very 

fast, which requires manufacturers to scale up their 

production capacity in a rapid and efficient way. Meeting 

this demand with high product quality and cost control is a 

big challenge. Traditional manufacturing methods may not 

be adequate to meet these demands, indicating the need for 

innovative approaches to streamline production processes 

and improve efficiency [4]. With the addition of stringent 

quality and reliability requirements, especially for eVTOLs 

where safety is of the essence, the matter becomes even 

more complicated. Any defects in manufacturing can have 

serious consequences; thus, strong quality control is in 

order. Artificial Intelligence is a powerful set of tools 

and techniques that hold immense potential for 

addressing these manufacturing challenges. By 

leveraging the capacity of AI to analyze vast volumes of 

data, identify patterns, and optimize complex systems, 

manufacturers can make substantial improvements in 

several aspects of the production process [5]. The paper will 

demonstrate that AI provides a transformative potential for 

optimizing the manufacturing of EVs and eVTOLs, which 

results in streamlined production lines, reduced material 

waste, improved product quality, and finally, lower 

production costs. The paper will discuss in detail certain 

applications of AI in key manufacturing processes related 

to both EVs and eVTOLs. The focus is directed toward 

predictive maintenance to reduce downtime while 

optimizing equipment utilization, automated quality 

control with the use of computer vision for real-time 

defect detection, intelligent process control for optimal 

manufacture parameters, and finally, AI-enabled robotics 
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for automating complex assembly tasks. 

The talk will cover the broad range of AI applications; 

however, most emphasis will be given to those that have a 

bearing on efficiency, waste reduction, and the quality and 

reliability of EVs and eVTOLs. This paper explores those 

specific use cases to prove the great potential of AI in 

changing the manufacturing landscape for two key 

sustainable transportation technologies. 

 

 

 

 

2. Manufacturing Challenges in the EV and 

eVTOL Industries 
 

The manufacturing of electric vehicles and eVTOLs 

introduces a very specific set of challenges that further set 

them far apart from traditional internal combustion engine-

based vehicle manufacturing. These stem from the 

intricacies of electric propulsion systems, advanced 

materials, the stringency of safety requirements, and the 

need for rapid scaling in emergent markets [6]. 

 

 
 

Figure 1: Manufacturing steps of Li-ion batteries [24] 

 

1) Complexity of Manufacturing: 

a) Battery Manufacturing: Arguably, battery 

manufacturing is the most difficult aspect of EV and, to 

a large degree, eVTOL production. Materially, it is a 

multistep process that first starts at the single-cell 

production level, necessitating stringently controlled 

chemical processes with minimal deviation from 

material purity. Cell manufacturing involves mixing, 

coating, calendaring, and assembling various materials-

lithium, nickel, cobalt, manganese-operating under strict 

environmental conditions [7]. Most of the processes 

involved are very sensitive to small changes in 

temperature, humidity, and material composition, hence 

require high-quality measures throughout the process 

chain from material processing to final product 

assembly. After cell fabrication, these cells then go into 

module and battery pack assembly, which includes 

complex thermal management systems, electrical 

interconnections, and safety mechanisms. First, there is 

the enormous logistical and manufacturing challenge 

presented by such enormous battery production, which 

is growing in demand not only for EVs but also for 

eVTOLs. 

b) Electric Motor Manufacturing: Another major 

manufacturing challenge with respect to these two 

classes of vehicles includes the production of high-

performance electric motors. The motors used in most 

electric vehicles and eVTOLs require the use of 

specialty materials, such as rare earth magnets, and very 

specific winding and assembly to achieve very high 

efficiencies and power output [8]. Manufacturing 

tolerances are very tight, and defects will have major 

impacts on motor performance. In addition, integration 

with the power electronics and the transmission system 

makes the process more complex. 

c) Aerostructure/Chassis Assembly: Particularly for 

eVTOLs, the aerostructure and chassis assembly is 

different from conventional ones. Light weighting for 

efficient flight requires the aircraft to be manufactured 

from advanced materials such as carbon fiber 

composites, titanium, and aluminum alloys. The 

manufacturing techniques of these materials involve 

resin transfer molding, fiber layup, and adhesive 

bonding, which are complex and time-consuming 

compared to conventional metal fabrication techniques. 

The manufacturing of structural parts from these 

lightweight materials with the required structural 

integrity and dimensional accuracy is thus a factor in 

safety and performance. Even in EVs, the light 

weighting to achieve better range and efficiency 

increases the usage of such materials, adding to the 

manufacturing complexity. 

d) Electronics Integration: Both EVs and eVTOLs rely 

heavily on sophisticated electronic systems, including 

battery management systems (BMS), motor controllers, 

flight control systems (for eVTOLs), and advanced 

driver-assistance systems (ADAS) [3]. Integrating these 

complex electronic systems requires careful design and 

manufacturing processes. Ensuring the reliability and 

robustness of these electronics in harsh operating 

environments (vibrations, temperature extremes, 

electromagnetic interference) is a considerable 
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challenge. Besides, with increased software content, the 

same systems need appropriate development and 

validation of software. 

 

2) Stringent Quality and Reliability Requirements: 

The safety and reliability of both EVs and especially 

eVTOLs are crucial. EVs must meet very strict automotive 

safety requirements, but even more, strict aviation safety 

standards are required for eVTOLs [9]. Manufacturing 

defects might lead to a wide variety of consequences 

ranging from malfunction up to catastrophic failures. Thus, 

high-quality control throughout the complete chain of the 

manufacturing process from the inspection of the raw 

material up to testing the final product should be 

established. It, therefore, requires the installation of a sound 

quality management system and use of sophisticated 

inspection techniques. 

 

3) Need for Rapid Scaling and Cost Reduction: 

Demand for both EVs and eVTOLs is likely to grow 

exponentially in the next few years. The challenge is huge 

for the manufacturers to scale up their production capacity 

in such a short period with simultaneous reduction in 

production cost in order to make these vehicles affordable 

for the consumers [10]. This also involves heavy 

investment in new manufacturing facilities, automation 

technologies, and supply chain optimization. One of the 

most important issues that the sector needs to consider 

seriously is the question of balancing the urge for rapid 

scaling with high quality and cost control. 

 

4) Focus on Sustainable Manufacturing and Waste 

Minimization: 

With growing importance, manufacturing processes are 

turning green for both the EV and eVTOL sectors. That is, 

minimum waste of materials, less consumption of energy, 

and environmentally friendly manufacturing processes will 

be involved. The other important aspects related to 

sustainability concern battery recycling and reuse in the EV 

and eVTOL ecosystem. The manufacturer is under pressure 

to adapt the concept of the circular economy and minimize 

the ecological footprint during the whole product life cycle. 

 

3. AI-Driven Process Optimization 

Techniques 
 

AI is transforming operations in manufacturing with 

automation and data-driven decision-making. There are 

numerous AI techniques being utilized to streamline 

numerous aspects of EV and eVTOL manufacturing, 

enhancing efficiency, quality, and sustainability. 

 

1) Predictive Maintenance: 

Predictive maintenance utilizes sensor information and 

algorithms in machines to make a prediction regarding 

future failure in anticipation, and preventive maintenance 

intervention can then follow. Downtime, and maintenance 

expense go down and Overall Equipment Effectiveness 

(OEE) go up. 

a) Analysis of Sensor Information and Prediction with 

Machine Learning: Most machines in modern 

manufacturing have a range of sensors for temperature, 

vibration, pressure, current, and many relevant factors. 

All such information, in most cases in a form of a time-

series, holds a lot of information about machines’ state 

and performance. Historical information about sensors 

can be utilized for training a model for a machine, and 

then, with that model, for finding trends and 

abnormalities that forewarn failure [11]. 

 

Example: Let’s assume a device for producing a battery 

cell. Vibration information for a motor can be analyzed 

with a model for a machine (e.g., a model for a 

Recurrent Neural Network, Long Short-Term Memory 

model, etc.) for finding early symptoms for a failure in a 

bearing in a motor, in terms of a deviation in its 

vibrational behavior in anticipation. Information about 

healthy and failed motors in the past can be utilized for 

model training. Once trained, in real-time, one can 

utilize the model for predicting future failures, and 

maintenance can then schedule maintenance 

intervention in anticipation. 

 

Equation: In reality, actual ones are complex, but a 

simple one can be represented in terms of an equation: 

Failure Probability = f(Sensor Data, Model Parameters) 

[12] 

 

Where f is model of machine learning (e.g., model of 

neural network), Sensor Data is vector of sensor 

readings, and Model Parameters are model’s trained 

biases and weights. Output is failure probability in an 

interval of time. 

 

b) Schedules Optimized for Maintenance and Reduced 

Downtimes: With predictive failures, maintenance can 

be scheduled in advance, and unplanned downtime can 

be reduced to a minimum. Instead of using preventive 

maintenance (scheduled in a predetermined schedule) or 

maintenance (post-failure, when a failure happens and 

maintenance is conducted in a reaction manner), 

predictive maintenance happens only when actually 

warranted. It maximizes maintenance assets and loss of 

production through unplanned stoppages to a minimum 

[13]. 

 

Example: In predictive model in case of battery cell 

production predicting a failure in a week in a bearing in 

a motor, maintenance can then schedule maintenance 

in a planned break in production, with least impact in 

operations. 

 

c) Overall Equipment Effectiveness (OEE) Enhanced: 

The productivity in totality of a unit of manufacturing 

can be calculated through a key performance, namely, 

Overall Equipment Effectiveness (OEE): 

 

OEE = Availability x Performance x Quality 

 

Availability: Percentage of time for which a unit runs 

for production. Performance: Actual output to its 

theoretical output (ratio). 

 

Quality: Percentage of output with no defects (no 

defects at all) [14]. 
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Predictive maintenance maximizes availability directly 

through a lesser unplanned downtime. It maximizes 

performance and quality indirectly through maintenance 

of assets in its best state of working. By enhancing 

these three, predictive maintenance 

 

 
Figure 2: Predictive quality approach: for a selected manufacturing process (1), relevant process and quality data is 

collected (2) and used as a basis for training a ML model (3). The trained model is used to perform quality estimations 

for decision support (4) [25] 

 

maximizes a significant improvement in OEE. Example: If 

a machine experiences high unplanned downtime in terms 

of unplanned failures, its availability will suffer, and its 

OEE will therefore be less, but with predictive maintenance 

and a reduction in such failures, its availability will 

increase, and its OEE will follow. Other factors to include 

in consideration include: The success of predictive 

maintenance will depend on having high-quality sensor 

information and creating sound algorithms for machines 

through machine learning. Integration with present 

manufacturing execution programs (MES) and enterprise 

resource planning (ERP) software will be important for 

effective information flow and scheduling maintenance 

automation. Security and privacy for use with regards to 

information for sensor information will have to be 

considered. Implementation of predictive maintenance can 

have a considerable role for EV and eVTOL manufacturers, 

with increased efficiency in its production, less cost, and 

overall improvement in its dependability in its production 

processes. 

 

2) Automated Quality Inspection: 

The purpose of computer vision and deep learning is to 

replace traditional ones with computerized ones with 

capabilities for quick, correct, and repeatable defects’ 

detection. High-value, life-critical production such as EV 

and eVTOL production is most critical for such an added 

feature. 

a) Concept: The premise is to use AI in “seeing” and 

“sensing” goods’ photos, and in identifying any 

deviation in desired level of quality standards. Real-

time monitoring of goods’ production and immediate 

feedback for faults’ remedy is facilitated [15]. 

b) Mechanism: Picture Capture: High-magnification 

camera (or a technology alternative such as X-ray 

CT, ultrasound, etc.) scan goods’ photos at a variety of 

stages in production. Imaging configuration is such that 

defects stand out.  

 

Picture Preprocessing: Pictures taken are sometimes 

processed beforehand for improvement in terms of quality 

and ease of defects, such as in terms of reduced noising, 

increased contrast, background subtraction, and picture 

normalization. Feature Extraction & Model Learning: AI’s 

backbone is featuring extraction and model training. 

Convolutional Neural Networks (CNNs), in particular, are 

trained with a big corpus of ”tagged” pictures (tagging 

meaning that each training picture is checked and 

labelled with a label for defects present and location, 

respectively, and processed through a deep neural network 

for feature extraction and mapping to defects, 

respectively, with training for model improvement in 

terms of minimizing its defects’ detection error. The 

training tunes model’s inner settings in an attempt to make 

its defects’ detection a little less incorrect. The trained 

model can then be used in real-time for new goods’ 

pictures’ scan and producing: A classification label: 

This informs one whether a defect exists and, when 

present, what sort of a defect it is (e.g., “scratch,” “dent,” 

“delamination”) [16]. A confidence level: That is a value 

expressing a probability with which a confidence level for 

a classification can be measured. Location of a Defect: In 

many cases, a location for a defect in an image can be 

determined with a CNN (with bounding boxes, for 

example, or with segmentation masks) [17]. Monitoring 

& Feedback in Real-time: Output of a CNN is leveraged 

in real-time to monitor in real-time a production process’s 

quality [18]. That information can be displayed on 

dashboards, can be used for generating 
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Figure 3: AI Vision for Quality Inspection —Image Source: kynny / iStock / Getty Images Plus 

 

alerts, and even can be fed into a manufacturing execution 

system (MES) in an attempt to shut down a production line 

in case critical defects have been detected. 

 

a) Benefits: Improved Product Quality: Automated systems 

can ensure consistent, objective inspection and eliminate 

the variation and subjectivity of human inspectors. 

They also detect subtle defects that may go 

unnoticed by a human eye. Reduced Scrap Rates: 

Since the defect will be detected in the early stage, 

further processing of faulty products is prevented and 

saves materials wasted. Reduced Rework: Precise 

location of defects permits focused repairs to minimize 

the rework of complete products. Real-time Quality 

Monitoring: Immediate feedback allows for quick 

changes in the manufacturing process, preventing the 

production of large batches of defective products. 

Increased Throughput: Automated inspection is much 

faster than manual inspection, allowing for higher 

production volumes. 

b) Example: eVTOL Composite Wing Spar Inspection 

Challenge: Wing spars are some of the critical structural 

components in eVTOLs. Made of composite materials, 

they possess very high strength to weight ratios; 

however, it is equally susceptible to the notorious 

defects in this class of material, which come in three 

popular forms: delamination-separated layers, air 

pockets, or voids-and also fiber misorientation. These 

many weaknesses might strongly weaken the spar and 

seriously endanger aircraft safety. 

 

Solution: Execute an automated quality check on the spar 

through: X-ray Computed Tomography (CT): CT scans 

provide detailed 3D images of the internal structure of the 

spar, revealing internal defects like delamination and voids. 

Ultrasonic Testing (UT): UT uses sound waves to detect 

internal defects, particularly delamination. Optical Imaging: 

High-resolution cameras capture surface images to detect 

surface imperfections. 

 

The AI: is a 3D Convolutional Neural Network trained 

based on a large labeled dataset of CT scans. These include 

good spars as well as spars with various defects. The 3D 

CNN will, therefore, be able to identify such defects 

automatically in new CT scans. The UT and optical data 

could also use separate CNNs. 

 

The Process: Every wing spar shall need to be scanned by 

CT, UT, and optical scanning. Preprocessing is done, and 

the data is fed into the trained AI models. The outputs of 

the AI models are the classification label, such as “no 

defect,” “delamination,” “void,” along with a confidence 

score and the 3D location of the defect. Further, this is 

visualized on a dashboard and used for generating quality 

reports. If any critical defect is detected, then alerts are 

sent, and even the stopping of the production line. 

 

The Benefits: Improved Safety: Defects at critical stages 

are noticed well in advance, thus ensuring that faulty 

spars are not installed on the eVTOL aircraft, ultimately 

improving safety onboard. Less expensive due to 

decreased amounts of waste and reworking of parts will 

save materials and labor costs. Increased Production 

Efficiency: Automating inspection processes means faster 

inspections can be done than manual inspection 

processes, which leads to higher throughput. 

 

3) Intelligent Process Control: 

With intelligent process control, machine learning and 

reinforcement learning together make real-time 

optimizations in manufacturing processes. Instead of having 

process parameters fixed, it dynamically adapts them 

according to data and feedback; this allows efficiency, 

product quality, and adaptability to be improved. 

a) Concept: The core idea is to create a “smart” control 

system that can learn the complex relationships between 

process parameters and the desired outcomes (product 

quality, production rate, energy consumption). This 

smart system can then make real-time adjustments to the 

process to achieve optimal performance. 
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b) Mechanism: Data Acquisition: Sensors measure relevant 

information from the process, like temperature, pressure, 

flow rate, vibration, and material properties, among 

others. This serves to provide current, real-time details 

on the process state. For instance, other data might 

originate from quality control, like measures of product 

dimensions, material properties, or defect rates. 

 

Machine Learning Model: A machine learning model, 

such as a regression model or a neural network, is 

trained on historical process data and quality control 

data. This model learns the complex relationships 

between the process parameters (inputs) and the 

process outcomes (outputs) [19]. For example, it might 

learn how mixing speed and temperature affect the 

viscosity of a material. 

 

Reinforcement Learning Agent: The reinforcement 

learning agent learns the optimal control policy. The 

agent interacts with the manufacturing process-

simulated or real-by changing the process parameters. It 

receives rewards or penalties based on the outcomes of 

its actions. For instance, if the agent changes the 

temperature and the quality of the product improves, it 

gets a positive reward. If the product quality declines, 

there is a negative reward. The RL agent learns through 

trial and error the control policy that maximizes these 

rewards, that is, optimizes the process. 

 

Real-Time Control: Once an RL agent has learned a 

good control policy, it can be deployed. In this, the 

real-time sensor data feed acts as input to the agent; the 

agent follows the learned policy and determines the 

process parameters optimally, thereby controlling the 

process. 

 

Adaptive Manufacturing: Because of the continuous 

learning and adaptation by the RL agent from the 

received feedback, an intelligent process control system 

can adapt to real changes, such as variations in raw 

materials, ambient temperature, or equipment 

performance, and maintain its optimal performance. 

 

c) Benefits: Improved Efficiency: Optimized process 

parameters may lead to higher throughput, reduced 

energy consumption, and minimization of waste. 

Improved Product Quality: Consistent and precise 

process control minimizes the variation in product 

quality, hence more homogeneous and reliable products. 

Adaptive Manufacturing: The AI system would be able 

to adapt to changed conditions and sustain its optimum 

performance even if the manufacturing environment 

changes. Reduced Development Time: Instead of 

manually tuning process parameters, engineers can use 

RL to automate the process, saving time and effort. 

 

d) Example: EV Battery Electrode Mixing The challenge is 

that electrode material mixing is a very critical process 

in EV batteries, and the properties of the electrode 

material depend highly on the mixing parameters, such 

as particle size distribution, viscosity, mixing speed, 

temperature, ingredient ratios, and mixing time. Optimal 

selection of these parameters poses a very challenging 

problem and usually requires extensive experimentation. 

 

Solution: Control during the process is intelligent 

process control through the combination of machine 

learning and reinforcement learning. 

 

The AI: A machine learning model, like a neural network, 

would be trained on historical data of the mixing process. 

This would include sensor readings and quality 

measurements of the resulting electrode material. It learns 

the correlation between the mixing parameters and the 

material properties. The goal is to learn the optimal 

mixing policy using a reinforcement learning agent 

interacting with a simulation of the mixing process-or 

eventually, the real process-and changing mixing 

parameters. It will be rewarded after every iteration with 

respect to the quality of the electrode material 

manufactured-for example, rewards for desired particle 

size distribution and viscosity. 

 

The Process: Sensors measure data in real-time from the 

mixing process. The machine learning model predicts the 

properties of the electrode material based on sensor data. 

This information is then utilized by the reinforcement 

learning agent to control the mixing parameters, which are 

speed, temperature, and ingredient ratios. The process is 

iterated, and at each step, the RL agent learns and refines 

its control policy. 

 

The Benefits: Improved Battery Performance: Optimized 

electrode material properties translate into better battery 

capacity, charging rate, and cycle life. Material Waste 

Reduced: Precise control of the mixing process reduces 

variability in material properties, thereby minimizing 

batches that need to be discarded. Faster Process 

Development: Instead of manual tuning of mixing 

parameters by engineers, RL can be employed to automate 

this task, thus reducing the development time for new 

electrode formulations substantially. 
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Figure 4: U.S. AI in Supply Chain Market Size — Image Source: Grand View Research 

 

Supply Chain Management: 

Smart Supply Chain Management leverages AI to transform 

traditional supply chain operations. By using data-driven 

insights, it aims to create a more efficient, resilient, and 

responsive supply chain. 

a) Concept: The key proposition here is to apply AI to 

better decision-making across the supply chain, from 

demand forecasting and inventory management to 

logistics and supplier relationship management. This 

leads to optimized resource allocation, reduced costs, 

and improved customer satisfaction [20]. 

b) Mechanism: Forecasting Demand: The AI models-

omitted, time series, regression, and machine learning 

algorithms-use historical sales data, market trends, and 

economic indicators for competitor activity to forecast 

the demand of the future products. As such, high 

accuracy in forecast demand is really important for 

carrying out effective inventory management. 

Inventory Optimization: The demand forecast serves to 

provide AI algorithms with the computation of the 

most optimal level of inventory for a product or 

component. It has to balance out the cost of holding 

inventory against the risks of stockouts involving lost 

sales and production delays. AI can thus consider lead 

times, supplier reliability, and storage capacity when 

optimizing the level of inventories. Supply Chain 

Visibility: AI-driven systems track material and 

product movement from raw material houses down to 

manufacturing facilities, distribution centers, and 

finally customers. This, in turn, enables companies to 

detect any possible bottlenecks, delays, or disruptions 

earlier than usual. IoT sensors, RFID tags, and 

blockchain can be used for enhanced supply chain 

visibility. Supply Chain Resilience: AI finds and 

mitigates supply chain risk. By studying historic data 

and environmental factors that include natural 

catastrophes, geopolitical events, and the efficiency of 

suppliers, AI predicts disturbances that might possibly 

occur, stating alternative sourcing, transportation 

routes, or inventory buffers. Supplier Relationship 

Management: AI can analyze data on the performance 

of suppliers regarding delivery times, quality, and 

pricing to identify reliable suppliers and optimize 

sourcing decisions. AI can also be used to automate 

communication and collaboration with suppliers. 

Logistics Optimization: AI can optimize transportation 

routes, delivery schedules, and warehouse operations to 

minimize transportation costs and improve delivery 

times. 

c) Benefits: Improved Demand Forecasting: Better 

forecast means better inventory management, low 

stockouts and improved customer service. Optimized 

Inventory: Low inventory holding costs and 

improvement in stockouts contribute to profitability. 

Enhanced Supply Chain Visibility: The real -time 

tracking of materials and products allows for active 

identification and mitigation of potential disruption, the 

supply chain improves accountability. Increased 

Supply Chain Resilience: Active risk management 

reduces the impact of disruption; the supply chain 

improves stability. Reduced Costs: optimal inventory, 

logistics and sourcing decisions lead to considerable 

cost savings. Improved Customer Satisfaction: Rapid 

delivery time, low stockout, and a high availability of 

product improves customers’ satisfaction. 

d) Example: EV Battery Component Supply Chain the 

Challenge: An EV manufacturer needs to ensure a 

stable supply of battery components (e.g., lithium, 

nickel, cobalt, electrode, divisive) to meet the growing 

demand of its electric vehicles. These components are 

obtained from many suppliers around the world, and 

supply chains can be complex and unsafe for 

disruption. The Solution: EV manufacturer implements 

a smart supply chain management system operated by 

AI. The AI: A demand forecast model analyzes 

competitive activity to predict historic EV sales, future 

sales, market trends, government rules and even every 

battery component demanding. An inventory 

optimization algorithm determines the optimal 

inventory levels for each component, considering 
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factors such as lead time, storage capacity and cost of 

holding inventory from suppliers. A supply chain 

visibility system tracks the movement of components 

from suppliers to EV manufacturing plant. IOT sensor 

and RFID tag are used to monitor the location and 

position of shipment. A risk management module 

analyzes historical data and external factors (eg, 

political instability in a mining field, natural 

disasters) to identify disruptions of potential supply 

chain and recommend mitigation strategies (eg, bring 

diversity to suppliers, Construction of security stock). 

 

The Process: The AI system constantly monitors market 

trends and updates its demand forecast. Depending on the 

forecast of demand, the system automatically adjusts 

orders to suppliers. The supply chain visibility system 

tracks the shipment of components and alert the 

manufacturer to any potential delay. Risk management 

modules identify potential disruption and recommend 

alternative sourcing strategies or transport routes. 

 

The Benefits: Reduced Battery Production Delays: 

Ensuring stable supply of components prevents delay in 

production due to lack of materials. Optimized Battery 

Costs: Optimized inventory levels reduce inventory holding 

costs, and smart sourcing decisions can lead to low 

component prices. Improved Supply Chain Resilience: The 

active risk management reduces the impact of the supply 

chain disruption, ensuring that the EV manufacturer can 

also continue production in front of unexpected events. 

 

4) AI-Enabled Robotics and Automation: 

AI-enabled robotics and automation represents a significant 

progress in robotics and automation manufacturing, 

combining the accuracy and repetition of robotics with AI’s 

intelligence and adaptability. This allows for automation of 

complex functions that were previously difficult or 

impossible to automate. 

a) Concept: That is, develop the robots capable of more 

than the execution of a number of preprogrammed 

commands-they “see”, ”understand”, and ”learn”-from 

the environment to subsequently perform a wider scope 

of tasks with greater flexibility and autonomy. 

b) Mechanism: Robotics Platform: The basis of this can be 

a robotic arm or another system with precise and 

complex movement/motion and manipulation. 

c) Sensors: There are many sensors equipped on the robots, 

important for computer vision-camera, and further may 

be complemented with additional sensors like force 

sensors, proximity sensors, or tactile sensors. Sensors 

help to get the environment information to the robot. 

d) Computer Vision: The computer vision algorithms 

process the images captured by the cameras, thus 

allowing the robot to “see” and ”understand” its 

environment. Computer vision can identify objects, 

recognize patterns, and track movements. 

e) AI Algorithms: AI algorithms, including machine 

learning and reinforcement learning, give the robot the 

intelligence to perform complex tasks. These may be 

used in: 

• Task Planning: Planning the sequence of actions 

required to complete a task. 

• Motion Control: Controlling the robot’s movements to 

achieve the desired outcome. Object Recognition: 

Identifying and locating objects in the environment. 

• Adaptive Control: Adjusting the robot’s actions based 

on feedback from sensors and changes in the 

environment. Integration: The robotic platform, 

sensors, computer vision system, and AI algorithms 

are integrated to create a complete 

 

AI-enabled robotic system. 

1) Benefits: Increased Production Speed: Robots are faster, 

work for a longer period, and are consistent in the nature 

of their work, thereby increasing production 

throughputs. Improved Product Quality: With greater 

precision and repeatability, robots do jobs, which 

reduce errors and improve consistency in product 

quality. Reduced Labor Costs: Automation reduces 

manual labor; therefore, reducing labor costs. 

• Increased Safety: The performance of hazardous 

tasks such as welding, painting, and toxic material 

handling by robots reduces risks to human workers. 

• Increased Flexibility: AI-enabled robots can adapt 

more easily than traditional pre-programmed 

robots to changes in the production environment or 

product design. 

• 24/7 Operation: Robots can work continuously 

without breaks or fatigue, maximizing production 

uptime. 

 

2) Example: eVTOL Composite Panel Assembly 

The Challenge: eVTOLs are put together with composite 

panels, meaning drilling, then fastening in precise places 

angulated correctly-things that need to be just so for the 

structural integrity. Traditional manual drilling and 

fastening have been really labor-intensive and susceptible 

to huge human error, besides being demanding physically. 
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Figure 5: Robots making things credit: Getty / Ekkasit Keatsirikul / EyeEm 

 

4. The Solution: Automation of drilling and 

fastening by AI-powered robots. 
 

The AI: Computer Vision: Cameras mounted on the robot 

arm take images of the composite panel. The computer 

vision algorithm, with pre-defined patterns or CAD models, 

identifies exact locations for holes. They may even be used 

in the identification of orientation and positioning of a 

panel. 

 

Motion Planning: AI algorithms plan an optimal path 

through which the arm has to travel to reach the place of 

every drill, avoid obstacles, and reduce travel time. 

 

Drilling Control: The AI system controls the drilling 

process, ensuring that the holes are drilled to the correct 

depth and angle. 

 

Fastening: The robot arm picks up the correct fasteners and 

installs them into the drilled holes, applying the appropriate 

torque. Force sensors can be used to ensure proper 

fastening without damaging the composite material. 

 

Adaptive Control: If the computer vision system detects 

slight variations in the position of the panel, for instance, 

the AI system can immediately make necessary 

adjustments to the movements of the robot for exact 

drilling and fastening. 

 

The Process: A composite panel is placed in the assembly 

station. The robot arm, equipped with cameras, scans the 

panel. The computer vision system identifies the drilling 

locations. The AI system plans the robot’s movements and 

controls the drilling process. The robot arm then picks up 

the fasteners and installs them. The process repeats for 

all the holes. 

The Benefits: Increased Assembly Speed: Robots can drill 

and fasten much faster than humans, speeding up the 

assembly process. 

 

Improved Quality: Robots perform the drilling and 

fastening operations with greater precision and consistency, 

reducing errors and improving the quality of the assembled 

panels. 

 

Reduced Labor Costs: Automation reduces the need for 

manual labor, lowering assembly costs. 

 

Improved Safety: Robots can perform the repetitive and 

physically demanding tasks, reducing the risk of injuries to 

human workers. 

 

5. Case Study: AI-Driven Predictive 

Maintenance in EV & eVTOL 

Manufacturing 
 

5.1 Impact of Unplanned Downtime in Manufacturing 

 

1) Downtime Costs in the Automotive Industry 

The cost of unplanned downtime in automotive 

manufacturing has increased 113% since 2019 [21].  

 

A large automotive plant loses $2.3 million per hour due 

to idle production lines. [21] 

 

In 2019, automotive downtime costs were half of current 

levels, demonstrating the growing impact of supply chain 

complexity and energy prices. [21] Downtime in one part of 

the assembly plant causes knock-on effects, leading to 

production delays, supply chain disruptions, and financial 

penalties for missed delivery contracts. 
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2) Global Industry-Wide Downtime Costs 

The world’s 500 largest companies collectively lose $1.4 

trillion annually due to unplanned downtime. [21] This 

accounts for 11% of total revenues across major industrial 

sectors. [21] In large manufacturing plants, the average 

downtime per facility was 27 hours/month in 2023, reduced 

from 39 hours/month in 2019. [21] Despite improvements, 

this still results in an annual production loss of 326 hours 

per plant, equivalent to 13 full days of non-productivity 

per year. [21] 

 

3) Small and Medium-Sized Enterprises (SMEs) SME 

manufacturers can experience downtime costs as high 

as $150,000 per hour, which can be financially 

unsustainable. [21] 

 

Downtime also affects their On-Time, In-Full (OTIF) 

delivery metrics, leading to supplier contract losses. [21] 

 

5.2 Predictive Maintenance (PdM) as an AI-Based 

Solution 

 

Adoption of AI-Driven Predictive Maintenance (PdM) 

has doubled since 2019, with nearly 50% of 

manufacturers now maintaining dedicated PdM teams. [21] 

1) Predictive Maintenance Benefits [21] 

50% reduction in unplanned machine downtime. 40% 

reduction in maintenance costs. 

55% improvement in maintenance team productivity. 85% 

increase in downtime forecasting accuracy. 

 

2) Industry-Wide Savings from AI-PdM (Estimated for 

Fortune Global 500 Companies) 

2.1 million hours of downtime saved annually. 

$388 billion in savings from a 5% increase in productivity. 

$233 billion in cost reductions due to 40% lower 

maintenance expenses. 

 

5.3 Application in EV & eVTOL Manufacturing 

 

EV and eVTOL production relies on high-precision 

manufacturing processes, where even minor disruptions can 

lead to severe operational inefficiencies. AI-driven 

Predictive Maintenance (PdM) offers data-driven process 

optimization in the following key areas: 

1) Assembly Line & Robotic Process Optimization 

• AI-based PdM detects anomalies in robotic arms, 

conveyor belts, and CNC machines used for chassis 

and battery pack production. 

• Sensors analyze vibration, temperature, and current 

consumption patterns to predict failures before they 

occur. 

• Reduces emergency maintenance downtime, which 

currently accounts for 10% of total production 

stoppages in vehicle manufacturing. [21] 

 

2) Battery Cell Manufacturing Efficiency 

• Battery production is highly sensitive to environmental 

and mechanical variations. 

• AI-driven thermal monitoring can detect early-stage 

thermal runaway risks, preventing catastrophic failures. 

• AI models trained on historical maintenance data can 

predict degradation patterns, optimizing cell assembly 

and electrolyte filling processes. 

 

3) Supply Chain & Logistics Impact 

• AI-powered condition monitoring helps suppliers track 

component wear-and-tear, ensuring on-time deliveries. 

Reduces inventory costs by minimizing the need for 

excessive spare parts stockpiles. 

• PdM adoption across the supply chain can cut delayed 

part deliveries by up to 30%. [21] 

 

4) Key Findings and Future Considerations 

• The integration of AI-driven Predictive Maintenance 

(PdM) in EV and eVTOL manufacturing is a critical 

enabler for Industry 

 

4.0 adoption. This study demonstrates that: 

 

Downtime is increasingly expensive: In automotive 

manufacturing, it costs $2.3M/hour, significantly affecting 

profitability. [21]. AI-PdM has proven savings: It can 

reduce downtime by 50%, cutting maintenance costs by 

40% while improving workforce efficiency by 55%. [21] 

 

 
Figure 6: Automotive: Cost of one hour unplanned plant downtime [21] 
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EV & eVTOL manufacturing stands to benefit 

immensely from AI-PdM, particularly in assembly line 

reliability, battery cell optimization, and supply chain 

resilience. 

 

AI and Industry 4.0 solutions will continue to evolve, 

enabling further automation, predictive analytics, and 

operational resilience for next-generation vehicle 

production. 

 

6. Challenges and Considerations for AI 

Integration 
 

Integrating AI into manufacturing processes, while offering 

substantial benefits, also presents several challenges that 

need careful consideration and planning. 

 

a) Data Acquisition, Management, and Quality: 

Challenge: It consists of a huge amount of high-quality 

data to train the model, which in this domain could be 

collected via sensors, machines, quality control systems, 

and even human input. Therefore, collecting and storing 

this vast amount of data is a big challenge. Also, the 

dataset should be noise-free, uniform, and unbiased to 

represent real-world situations that the AI model will go 

through. When data fed to the machine learning model 

contains noise, incompleteness, and bias, then the 

generated models will yield poor performance and 

inaccurate results. 

 

Considerations: Data is a crucial component in the 

effective deployment of AI in manufacturing [22]. 

• Data Strategy: Develop a comprehensive data strategy 

that defines what data needs to be collected, how it 

will be stored and managed, and who is responsible for 

data quality. 

• Data Infrastructure: Invest in the necessary data 

infrastructure, including databases, data lakes, and cloud 

storage, to handle the volume and variety of 

manufacturing data. 

• Data Governance: Implement data governance policies 

to ensure data quality, consistency, and security. 

• Data Labeling: The data should be labeled correctly in 

supervised learning, which can be quite time-consuming 

and costly, especially for such a complex task as defect 

detection. Active learning or semi-supervised learning 

techniques can be considered by the author to decrease 

the effort in labeling. 

• Data Augmentation: Techniques for artificial increase in 

size and variation of training datasets, enhancing model 

robustness. 

 

b) Integration with Existing Manufacturing Systems 

and Infrastructure: 

Challenge: Manufacturing plants are made up of many 

legacy systems, such as PLCs, SCADA systems, and MES 

that may not fit naturally with AI systems. The integration 

to the AI models could be dauntingly complex and may 

require enormous effort. Data formats may be incompatible, 

different communication protocols, and/or security 

concerns. 

 

 

Considerations: 

• API Development: Develop APIs (Application 

Programming Interfaces) to enable communication 

between AI systems and existing manufacturing 

systems. 

• Middleware Solutions: Consider using middleware 

solutions to bridge the gap between different systems 

and data formats. 

• Edge Computing: Deploy AI models on edge devices 

(closer to the data source) to reduce latency and 

improve real-time performance. This can also reduce 

the amount of data that needs to be transmitted to the 

cloud. 

• System Upgrades: In some cases, it may be necessary to 

upgrade or replace legacy systems to ensure 

compatibility with AI technologies. 

 

c) Workforce Training and Addressing the Skills Gap: 

Challenge: Specialized skills, ranging from data science to 

machine learning to AI engineering, are required to 

implement and maintain AI systems. Most manufacturing 

companies have some sort of gap in skills in these areas, 

requiring the retraining of existing employees or the hiring 

of new talent. 

 

Considerations: 

• Training Programs: Develop training programs to 

upskill existing employees in data science, machine 

learning, and AI-related skills. 

• Partnerships with Universities: Collaborate with 

universities to develop specialized training programs 

and attract new talent. Hiring Strategy: Develop a hiring 

strategy to attract and retain data scientists, machine 

learning engineers, and AI specialists. 

• Knowledge Transfer: Implement knowledge transfer 

mechanisms to ensure that knowledge about AI systems 

is shared effectively within the organization. 

 

d) Ethical Considerations, Bias in AI Algorithms, and 

Fairness: 

Challenge: These AI algorithms might prove to be 

prejudiced, if the training data on which they are based 

themselves happen to be prejudiced. For instance, a quality 

control AI would falsely classify products produced by 

specific workers as defective when the model was trained 

with prejudiced data on those particular workers. Then 

again, job replacement by automation has an ethical 

connotation, too. 

 

Considerations: 

• Data Auditing: Carefully audit training data to identify 

and mitigate potential biases. 

• Model Explain ability: Use explainable AI (XAI) 

techniques to understand how AI models are making 

decisions. This can help identify and address potential 

biases. 

• Fairness Metrics: Develop and monitor fairness metrics 

to ensure that AI systems are not producing biased or 

discriminatory outcomes. 

• Ethical Guidelines: Establish ethical guidelines for the 

development and use of AI in manufacturing. 

• Transparency: Be transparent about how AI systems are 

being used and what their limitations are. 
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e) Cybersecurity and Data Privacy Concerns: 

Challenge: Most AI systems also require oodles of 

sensitive data: sensor data, product design, customer 

information. Data privacy and protection against cyber-

attacks will be very important. AI systems can also be 

the target of attacks. 

 

Considerations: 

• Data Security: Implement robust data security measures 

to protect data from unauthorized access, use, or 

disclosure. Cybersecurity Protocols: Develop and 

enforce cybersecurity protocols to protect AI systems 

from cyberattacks. 

• Access Control: Implement strict access control 

measures to limit who can access sensitive data and AI 

systems. Data Encryption: Encrypt sensitive data both 

in transit and at rest. 

• Privacy Regulations: Comply with relevant data privacy 

regulations (e.g., GDPR). 

 

Clearly, addressing these various challenges and 

considerations in advance can help ensure a successful and 

responsible integration of AI in manufacturing. Full 

potential realization of AI in this domain requires a 

properly thought-out strategy addressing data, integration, 

skills, ethics, and security. 

 

7. Conclusion 
 

This paper has been able to illustrate the transformative 

impact of AI-driven process optimization for mass 

manufacturing in EVs and eVTOLs. Using AI at 

manufacturing sites greatly improves the production rate, 

reduces downtime by enabling predictive maintenance, and 

ensures the quality via automated systems of inspection. 

Indeed, the combination of intelligent process control with 

smart supply chain management and AI-enabled robotics 

leads to huge strides forward in scalability, cost-

effectiveness, and sustainability. 

 

AI will be pivotal in fulfilling the worldwide growing 

demand for electric transport in the future. Automation of 

systems and data-driven decision-making will facilitate 

rapid scaling, while AI-driven design optimization will 

ensure ongoing innovation in materials and manufacturing 

techniques. Besides, AI-driven sustainability initiatives-

waste reduction, resource optimization- will go a long way 

in reducing the environmental impact of production. 

Companies moving to AI-driven manufacturing will 

definitely be at an advantage competitively, and that would 

drive the industry forward. 

 

Despite these milestones, there is yet more potential to be 

researched within AI-manufacturing processes. Key 

considerations on the research agenda include Federated 

Learning in secure collaborative model training, 

Explanatory for better transparency in AI, and Adaptive AI 

able to respond in dynamic production settings. Industry 

collaboration, academia, and policy friction will be 

determinant in the advancing of AI-Driven Manufacturing; 

this, in turn, will further accelerate the sustainable transition 

to smart transportation. Tapping into the full potential of 

AI, EVs, and eVTOLs could lead to a better, more 

scalable, and more environmentally responsible future. 

Convergence is ongoing in the fields of Artificial 

Intelligence and engineering, like Precision Engineering 

and Manufacturing, seeking to overcome their limitations in 

direct usage and revolutionary traditional manufacturing 

[23]. 

 

References 
 

[1] M. Price, A. Murphy, J. Butterfield, R. McCool, and 

R. Fleck, “Integrating Materials, Manufacturing, 

Design and Validation for Sustainability in Future 

Transport Systems,” Jan. 01, 2011, American Institute 

of Physics. doi: 10.1063/1.3589760. 

[2] “Autonomous Mobility and Energy Service 

Management in Future Smart Cities: An Overview.” 

Oct. 21, 2018. doi: 10.48550/arXiv.1810. 

[3] A. Bacchini and E. Cestino, “Electric VTOL 

Configurations Comparison,” Feb. 28, 2019, 

Multidisciplinary Digital Publishing Institute. doi: 

10.3390/aerospace6030026. 

[4] R. Becker, A. Grzesiak, and A. Henning, “Rethink 

assembly design,” Dec. 01, 2005, Emerald Publishing 

Limited. doi: 10.1108/01445150510626370. 

[5] “Artificial Intelligence in the Production Process.” 

doi: 10.1016/b978-0-12-815258-4.00002-0. 

[6] L. Peijie, Y. Lu, and Z. Xu, “Tesla’s Dilemma and 

Future Development Trends,” Jan. 01, 2022, Atlantis 

Press. doi: 10.2991/aebmr.k.220307.357. 

[7] Y. Liu, R. Zhang, J. Wang, and Y. Wang, “Current 

and future lithium-ion battery manufacturing,” 

iScience, vol. 24, no. 4. Cell Press, p. 102332, Mar. 

20, 2021. doi: 10.1016/j.isci.2021.102332. 

[8] “Electric cars, assessment of green nature vis a vis 

conventional fuel driven car.” doi: 

10.48550/arXiv.2104. 

[9] “Challenges and key requirements of batteries for 

electric vertical takeoff and landing aircraft.” doi: 

10.1016/j.joule.2021.05.001. 

[10] K. Schunck, “Air Taxi Report.” Feb. 2021. 

https://tnmt.com/wp-content/uploads/2021/02/Report 

Are-Air- Taxis-Ready-For-Prime-Time Air LIH 

2021.pdf 

[11] M. K. Adeyeri, “Machine Signature Integrity and 

Data Trends Monitoring, a Diagnostic Approach to 

Fault Detection,” in Management and industrial 

engineering, Springer International Publishing, 2017, 

p. 29. doi: 10.1007/978-3-319-65497-3 2. 

[12] S. Lu, Y. Tu, and H. Lu, “Predictive condition-based 

maintenance for continuously deteriorating systems,” 

Jan. 25, 2007, Wiley. doi: 10.1002/qre.823. 

[13] T. P. Carvalho, F. Soares, R. O. Vita, R. da P. 

Francisco, J. Basto, and S. G. S. Alcala´, “A 

systematic literature review of machine learning 

methods applied to predictive maintenance,” Sep. 05, 

2019, Elsevier BV. doi: 10.1016/j.cie.2019.106024. 

[14] “AI for Improving the Overall Equipment Efficiency 

in Manufacturing Industry.” doi: 

10.5772/intechopen.89967. 

[15] T.-H. Kim, H.-R. Kim, and Y.-J. Cho, “Product 

Inspection Methodology via Deep Learning: An 

Overview,” Jul. 25, 2021, Multidisciplinary Digital 

Publishing Institute. doi: 10.3390/s21155039. 

Paper ID: SR220110100905 DOI: https://dx.doi.org/10.21275/SR220110100905 1731 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2021): 7.86 

Volume 11 Issue 1, January 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

[16] T.-H. Kim, H.-R. Kim, and Y.-J. Cho, “Product 

Inspection Methodology via Deep Learning.” Jul. 

2021.https://mdpi-res.com/d 

attachment/sensors/sensors-21-05039/article 

deploy/sensors-21-05039-

v2.pdf?version=1627368704 

[17] C. Corbie`re, N. Thome, A. Bar-Hen, M. Cord, and 

P. Pe´rez, “Addressing Failure Prediction by 

Learning Model Confidence,” Jan. 01, 2019, Cornell 

University. doi: 10.48550/arxiv.1910.04851. 

[18] Z. Deng, X. Yan, S. Zhang, and C. P. Bailey, 

“Extremal Region Analysis based Deep Learning 

Framework for Detecting Defects,” Jan. 01, 2020, 

Cornell University. doi: 10.48550/arxiv.2003.08525. 

[19] C. Renggli, L. Rimanic, N. M. Gu¨rel, B. Karlasˇ, W. 

Wu, and C. Zhang, “A Data Quality-Driven View of 

MLOps,” Jan. 01, 2021, Cornell University. doi: 

10.48550/arXiv.2102. 

[20] J. Bughin et al., “Artificial intelligence: the next 

digital frontier?,” Jun. 01, 2017. Available: 

https://apo.org.au/node/210501 

[21] “Artificial intelligence and socioeconomic perspective 

in Indonesia.” doi: 10.31328/jsed.v6i2.5187. 

[22] “Recent Advances of Artificial Intelligence in 

Manufacturing Industrial Sectors: A Review.” doi: 

10.1007/s12541-021-00600-3. 

[23] J. Smekens, G. Rahul, V. Nils, O. Noshin, H. 

Omar, H. Annick, V. Joeri, “ Inf lu en ce  of 

Electrode Density on the Performance of Li-Ion 

Batteries: Experimental and Simulation Results” Feb. 

12, 2016, doi: 10.3390/en9020104 

[24] Tercan, H., Meisen, T. Machine learning and deep 

learning based predictive quality in manufacturing: a 

systematic review. J Intell Manuf 33, 1879–1905 

(2022). https://doi.org/10.1007/s10845-022-01963-8 

Paper ID: SR220110100905 DOI: https://dx.doi.org/10.21275/SR220110100905 1732 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



