International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2020): 7.803

Total k-rainbow Domatic Number

Pavitra P. Kumbargoudra¹, Shailaja S. Shirkol²

¹Department of Mathematics, The Oxford College of Engineering, Bengaluru, India E-mail: pavitra2504[at]gmail.com ²Department of Mathematics, Shri Dharmasthala Manjunatheshwara College of Engineering and Technology, Dharwad, India E-mail: shailajashirkol[at]gmail.com

Abstract: The Total k-rainbow domination number is defined by considering k types of guards or set of k colors. A location which does not have any type of guard (colour) assigned, should have all type of guards (colours) in its immediate surrounding location to protect it. For a positive integer k, a function $f:V(G) \rightarrow P(\{1, 2, ..., k\})$ is said to be a total k-rainbow dominating function if $\forall v \in V(G), \bigcup_{u \in N[v]} f(u) = \{1, 2, ..., k\}$ where f(u) is nonempty subset of $\{1, 2, ..., k\}$ and N[v] is a closed neighborhood of v. A set $\{f_1, f_2, ..., f_d\}$ of total k-rainbow dominating functions) on G. The maximum number of functions in a total k-rainbow dominating family (TkRD family) on G is called the total k-rainbow domatic number of G, is denoted by $d_{trk}(G)$. In this paper we initiate the study of total k-rainbow domatic number in graphs and we obtain $d_{trk}(K_n) = \min\{n, k\}, d_{trk}(C_n) \leq 3$. We also proved some bounds for $d_{trk}(G)$.

Keyword: k-rainbow domination number, Total k-rainbow domination number, k-rainbow domatic number, Total k-rainbow domatic number

1 Introduction

Let *G* be a simple graph with vertex set V = V(G) and the edge set E = E(G). The number of vertices in the graph *G* is known as order of *G* and is denoted by n = n(G). $\forall v \in V(G)$, the open neighborhood N(V) is the set $\{u \in V(G); uv \in E(G)\}$ and the closed neighborhood of *v* is the set $N[v] = N(v) \cup v$. The degree of a vertex v(G), d(v) is the number of edges incident on the vertex *v*. The minimum and maximum degree of a graph *G* is denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$ respectively. Tree *T* is a connected acyclic graph. We write K_n for complete graph of order *n*, C_n for a cycle of length *n*, P_n for path of length *n* and W_n for wheel graph of order *n*. We follow [1] and [2] for notation and graph theory terminology.

M. A. Henning [2] introduced the concept of k-rainbow domination number by considering mathematical model of assigning guards to each location from k different type of guards. According to him a location which is not having any type of guards need to have all type of guards in its neighboring location.

Definition 1.1. Let *G* be a graph and *f* be a function that assigns to each vertex a set of guards chosen from the set $\{1,2,\ldots,k\}$ i.e. $f : V(G) \rightarrow P(\{1,2,\ldots,k\})$. If for each vertex $v \in V(G)$ such that $f(V) = \emptyset$ we have

$$\bigcup_{u \in N(v)} f(u) = \{1, 2, \dots, k\},\$$

then f is called the k-rainbow dominating function(kRDF) [4]. The weight w(f) of k-rainbow domination number is defined by, $w(f) = \sum_{v \in V} |f(v)|$. The minimum weight a kRDF is called k-rainbow domination number and is denoted by $\gamma_{rk}(G)$.

The study of total k-rainbow domination number is introduced by P. P. Kumbargoudra and J. V. Kureethara. According to total k-rainbow dominating function each and every location is secured by all type of guards. A location which is not having any type of guards should have that type of guard in its immediate neighbouring location.

Definition 1.2. For a positive integer k, a total k-rainbow dominating function (TkRDF) of a graph G is defined in [?] as a function $f : V(G) \rightarrow P(\{1,2,...,k\})$ that assigns to each vertex a nonempty subset of a set $S = \{1,2,...,k\}$ i.e.,

$$\forall v \in V(G), \bigcup_{u \in N[v]} f(u) = S.$$

The weight w(f) of total k-rainbow domination number is defined by,

$$w(f) = \sum_{v \in V} |f(v)|.$$

The minimum weight of a TkRDF is known as total *k*-rainbow domination number and is denoted by $\gamma_{trk}(G)$.

In a study S. M. Sheikholeslami and L. Volkmann [9] defined k-rainbow domatic number $d_{rk}(G)$. They found 2-rainbow domatic number for P_n , C_n and obtained bounds for 2-rainbow domatic number.

In this paper we introduce total *k*-rainbow damatic number and initiate the study of the total *k*-rainbow domatic number of some classes of graphs. We obtain basic bounds for the total *k*-rainbow domatic number of a graph.

Definition 1.3. A set $\{f_1, f_2, ..., f_d\}$ of total *k*-rainbow dominating functions of a graph *G* with the property that $\sum_{i=1}^d |f_i(v)| \le k$ for each $v \in V(G)$, is called a total *k*-rainbow dominating family (functions) on *G*. The

Volume 11 Issue 1, January 2022 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

maximum number of functions in a total k-rainbow dominating family (TkRD family) on G is called the total k-rainbow domatic number of G, is denoted by $d_{trk}(G)$.

The total *k*-rainbow domatic number is well defined and $d_{trk}(G) \ge 1$, for all graph *G*, (4.1) since the set consisting of any total *k*-rainbow dominating function (TkRDF) forms a TkRD family on *G*.

2 Properties of Total k-rainbow Domatic Number

Proposition 2.1. If K_n is a complete graph of order $n \ge 3$, then $d_{trk}(K_n) = min\{n, k\}$.

Proposition 2.2. If P_n is a path of length *n* then $d_{trk}(P_n) = 2$.

Proposition 2.3. If W_n is a Wheel graph of order *n* then, $d_{trk}(W_n) = 3$.

Proposition 2.4. If *T* is a tree then, $d_{trk}(T) = 2$.

Theorem 2.5. If *G* is graph, then $d_{trk}(G) = 1$ if and only if *G* is empty.

Proof. If *G* is empty, then the mapping $f : V(G) \rightarrow P(\{1,2,...,k\})$ defined by $f(v) = \{1,2,...,k\}$ for each $v \in V$ is a unique *k*-rainbow dominating function on *G* and so $d_{trk}(G) = 1$.

Conversely, let $E(G) \neq \emptyset$ and let $uv \in E(G)$. Then the mappings $f : V(G) \rightarrow P(\{1, 2, ..., k\})$ defined by

 $f(u) = \{1, 2, ..., k - 1\}$ and f(v) = k and $f(x) = \{1, 2, ..., k\}$ for each $x \in V - \{u, v\}$

And f(u) = k and $f(v) = \{1, 2, ..., k - 1\}$ and $f(x) = \{1, 2, ..., k\}$ for each $x \in V - \{u, v\}$ are k-rainbow dominating functions on G and $\{f, g\}$ is a k-rainbow dominating family on G. It follows that $d_{trk}(G) \ge 2$, and hence the proof.

Theorem 2.6. For any graph $G, 2 \leq d_{trk} \leq k$.

Proof. Let v be a vertex of a graph G. Define the total k-rainbow dominating function $f : V(G) \rightarrow P(\{1,2,...,k\})$ by f(v) = A, where A is any nonempty subset of $\{1,2,...,k\}$.

Let f_1 be a total k-rainbow dominating function of G with for $\forall v \in V(G)$ such that $f_1(v) \neq \{1, 2, ..., k\}$. Now define another function $f_2(G)$ such that $\forall v \in V(G)$ such that $f_2(v) = f_1^c(v)$. Clearly f_2 is also total k-rainbow

dominating function. Hence 2 $\leq d_{trk}$

If a set $\{f_1, f_2, \ldots, f_d\}$ be a total *k*-rainbow dominating family on *G*. Since $\sum_{i=1}^d |f_i(v)| \le k$ for each vertex $v \in V(G)$ and $|f_i(v)| \le 1$. Hence $d_{trk} \le k$.

Theorem 2.7. Let *G* be a graph with minimum degree $\delta = 1$ then,

$$d_{trk}(G) = 2.$$

Proof. Given *G* be a graph with $\delta = 1$. Let $v \in V(G)$ and d(v) = 1 and $N(v) = \{u\}$. Let $f_1 : V(G) \rightarrow \{1,2,\ldots,k\}$ be a total *k*-rainbow dominating function with $f_1(v) = A$ where *A* is any nonempty subset of $\{1,2,\ldots,k\}$ and $f_1(u) = S - A$.

Similarly define $f_2 : V(G) \rightarrow \{1, 2, ..., k\}$ a total k-rainbow dominating function with $f_2(v) = S - A$ and $f_2(u) = S$. Clearly $|f_1(v)| + |f_2(v)| = k$. Hence $d_{trk}(G) = 2$.

Remark: Converse of the above theorem need not be true for example cycle C_n , where *n* is not multiple of 3. We also conclude proposition 2.2 and proposition 2.4.

Theorem 2.8. If *G* is graph of order *n*, then $\gamma_{trk}(G) \cdot d_{trk}(G) \leq kn$. If $\gamma_{trk}(G) \cdot d_{trk}(G) = kn$, then for each TkRD family $\{f_1, f_2, \dots, f_d\}$ on *G* with $d = d_{trk}(G)$, each function f_i is a $\gamma_{trk}(G)$ -function, and $\sum_{i=1}^{d} |f_i(v)| = k$ for all $v \in V$.

Proof. Let $\{f_1, f_2, ..., f_d\}$ be a TkRD family on *G* such that $d = d_{trk}(G)$.

Then,

$$d.\gamma_{trk}(G) = \sum_{i=1}^{d} \gamma_{trk}(G)$$
$$\leq \sum_{i=1}^{d} \sum_{v \in V} |f_i(v)|$$
$$= \sum_{v \in V} \sum_{i=1}^{d} |f_i(v)|$$

Since each edge can share a set of elements from $\{1, 2, ..., k\}$ to its two adjacent vertices so,

$$d.\gamma_{trk}(G) \leq \sum_{\nu \in V} \frac{k}{2} = \frac{k}{2}n \leq kn.$$

If $\gamma_{trk}(G) \cdot d_{trk}(G) = kn$, then two inequalities occurring in the proof become equalities. Hence for te kRD family { f_1, f_2, \dots, f_d } on *G* and for each *i*,

 $\sum_{v \in V} |f_i(v)| = \gamma_{trk}(G)$. Thus, each function f_i is a $\gamma_{trk}(G)$ -function, and $\sum_{i=1}^d |f_i(v)| = \frac{k}{2}$ for all $v \in V$.

Theorem 2.9.

For
$$n \ge 3$$
, $d_{trk}(C_n) = \begin{cases} 3 \text{ if } n \equiv 0 \pmod{3} \\ 2 \text{ Otherwise} \end{cases}$

Proof. Let us consider S_1 , S_2 and S_3 any three nonempty arbitrary subsets of the set $S = \{1, 2, ..., k\}$ with,

$$S_1 \cup S_2 \cup S_3 = S$$
 and $S_1 \cap S_2 \cap S_3 = \emptyset$.

Volume 11 Issue 1, January 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

The total *k*-rainbow dominating function[?] is defined as,

$$\begin{split} f(C_n) \\ &= \begin{cases} S_1, S_2, S_3, \dots, S_1, S_2, S_3 \ if \ n \equiv 0 (mod \ 3) \\ S_1, S_2, S_3, \dots, S_1, S_2, S_3, S_1 \cup S_2 \cup S_3 \ if \ n \equiv 1 (mod \ 3) \\ S_1, S_2, S_3, \dots, S_1, S_2, S_3, S_1, S_2 \cup S_3 \ if \ n \equiv 2 (mod \ 3) \end{cases} \end{split}$$

Case 1: $n \equiv 0 \pmod{3}$

Let v_i be any arbitrary vertex of a graph C_n then v_{i-1} and v_{i+1} will be its adjacent vertices. To define the total k-rainbow dominating function f_1 , let us assign the subset S_1 to the vertex v_i and assign either of the subsets S_2 or S_3 to the adjacent vertices v_{i-1} or v_{i+1} .

By assigning different subsets of complete set *S* to the each of the vertices v_{i-1} , v_i , v_{i+1} in either clockwise or anti-clockwise direction we get the subset S_1 being replaced on the vertex v_i by either of the remaining subsets S_2 or S_3 , the other two vertices will have the remaining subsets. This will lead us to three total *k*-rainbow dominating functions f_1 , f_2 and f_3 for each subset S_1 , S_2 and S_3 respectively.

Since *n* is a multiple of 3, we can conclude that each vertex $\{v_1, v_2, ..., v_n\}$ will have a complete set *S* by taking the union of functional value of f_1, f_2 and f_3 . No additional total *k*-rainbow dominating function can be added to the total *k*-rainbow dominating family with the property $\sum_{i=1}^{d} |f_i(v)| \le k$ apart from f_1, f_2 and f_3 for a given set *S*.

Case 2: $n \not\cong 0 \pmod{3}$

From the equation (2) clearly we can define exactly two total *k*-rainbow dominating function f_1, f_2 in both the cases. Hence there exist exactly two functions with the property $\sum_{i=1}^{d} |f_i(v)| \le k$.

Theorem 2.10. For any generalised Peterson graph P(n, 3),

$$d_{trk}(P(n,3)) \leq 4.$$

Proof. Let P(n, 3) be a Peterson graph with vertex set

 $\{v_1, v_2, v_3, \dots, v_n, u_1, u_2, u_3, \dots, u_n\}$. Clearly every vertex in generalised Peterson graph is of degree three so the closed neighbourhood of an arbitrary vertex v_i in V(P(n, 3)) is $\{v_{i-1}, v_i, v_{i+1}, u_i\}$. Let S_1, S_2, S_3, S_4 are the subset of the set $S = \{1, 2, 3, \dots, k\}$

The total *k*-rainbow dominating function is defined as [?], by rotating this assignment in clockwise direction we get,

$$d_{trk}(P(n,3)) \leq 4.$$

3 Concluding Remarks

We conclude this paper with the following open problems.

Open Problem 3.1. Calculate $d_{trk}(P_n \Box P_m)$, $d_{trk}(C_n \Box Cm)$, and $dtrk(Pn\Box Cm)$

Open Problem 3.2. Calculate $d_{trk}(P(n,k))$ where P(n,k) is generalized Peterson graph.

Open Problem 3.3. If *G* be any graph with given δ and Δ then $\delta \leq d_{trk}(G) \leq \Delta$.

Open Problem 3.4. For which classes of graphs is $d_{rk}(G) = d_{trk}(G)$ for every graph *G* of a class?

The extended abstract of the article is presented in CTW 2018: 16th Cologne-Twente Workshop (CTW18) on graphs and Combinatorial Optimization, Paris.

References

- M. A. Henning and S. T. Hedetniemi, "Defending the Roman Empire—A new strategy," in *Discrete Applied Mathematics*, vol. 266, pp. 239-251, 2003.
- [2] M. A. Henning, "Defending the Roman Empire from multiple attacks," in *Discrete Applied Mathematics*, vol. 271, pp. 101-115, 2003.
- [3] P. Kumbargoudra and J. V. Kureethara, "Total krainbow Domination in Graphs," in *IJCIET*, 8, pp. 867-875, 2017.
- [4] B. Bresar, M. A. Henning and D. F. Rall, "Rainbow domination in graphs," *Taiwanse Journal of Mathematics*, vol. 12, pp. 213-225, 2008.
- [5] L. Volkmann and B. Zelinka, "Signed domaic number of graphs", Discrete Mathematics 150 (2005), 261-267.
- [6] D. Meierling, L. Volkmann and S. Zitzen "The signed domatic number of some regular graphs", Discrete Mathematics 157 (2009), 1905-1912.
- [7] M. Atapour, S. M. Sheikholeslami, A. N. Ghameshloub and L. Volkmannc, "Signed star domatic number of a graph", Discrete Mathematics 158 (2010), 213-218.
- [8] S. M. Sheikholeslami and L. Volkmann, "The Roman domatic number of a graph", Applid Mathematics letters 23 (2010), 1295-1300.
- [9] S. M. Sheikholeslami and L. Volkmann, "The krainbow Domatic Number of a Graph", Discussiones Mathematicae Graph Theory 32 (2012), 129-140.

DOI: 10.21275/SR22118125226

936