
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Analysis of Single Page Applications

Mounika Kothapalli

Software Engineer II at Microsoft

Email: moni.kothapalli[at]gmail.com

Abstract: Single Page Applications (SPAs) have been widely adopted as they offer seamless, responsive, and interactive

user experience. This paper explores different performance optimization techniques along with details of advanced

performance metrics that are needed for the evolving SPAs. It discusses the optimization strategies like code splitting, lazy

loading, caching, and efficient state management along with server - side rendering. It also discusses real time examples of

enterprise applications that benefitted from adopting performance first strategies. It concludes by stressing the importance

of user - centric performance which strikes balance between performance optimization and application functionalities.

Keywords: Single Page Applications (SPAs), performance analysis, performance optimization, performance metrics, case studies

1. Introduction

In Single Page Applications (SPAs) when the browser

requests for client application, the web server responds with

a single HTML page typically an index. html. The content

updates dynamically as the user interacts with the application

without the need to reload the entire page [1]. This allows a

seamless and fluid user experience, similar to native

applications which is achieved through leveraging JavaScript

(JS) frameworks and libraries.

The concept emerged in the early 2000s, with the introduction

of JS frameworks such as Backbone. js and AngularJS. As

there is a demand for responsive, intuitive, and user - friendly

web applications the SPAs became popular. Moreover, with

the flexibility offered by other JS libraries such as React and

Vue. js also helped to adopt these applications in real time.

User satisfaction and engagement is critical for any

application to succeed. This emphasized the importance of

performance in SPAs. In competitive market conditions

where faster load times, smooth navigations are critical a

superior user experience helps achieving the business

objectives [2].

Research Background

This paper aims to provide a comprehensive analysis of SPAs

performance in various aspects. The objectives are to:

• Explore the performance metrics which play key role.

• Look into different performance optimization techniques

and best practices for SPAs.

• Evaluate performance monitoring and discuss available

tools for analysis.

• Different case studies and real - world examples of SPA

performance optimization.

With these objectives the paper tries to provide different

insights and recommendations for developers and enterprises

that plan to build and optimize SPAs.

2. Literature Review

The traditional web applications consist of multi - page model

in which a new user interaction results in full page reload

from the server. Hence, there is slowness in the response

times and the experience is also not fluid. However, in SPAs

each user action only dynamically loads specific content

requested which results in faster load times and consist of

different components as shown in Fig.1.

Figure 1: Architecture of a Single Page Application (SPA).

The key characteristics that keep SPAs apart are the more

responsive and interactive user experience, as the application

can update content without the need for entire page reload [3].

They also offer offline capabilities which allow users to

continue interactive with the application even with slow or no

internet connectivity. They rely heavily on JS frameworks (e.

g., Angular, React and Vue) to render content on the client

side which reduces the round trips to server. SPAs offer

advantages like quick rendering of updates without the need

for server round trips. This is similar to native mobile

application experience.

However, there are some challenges in terms of initial load

time which could be little slower compared to traditional web

applications as the entire app and its dependencies needs to

load [4]. The search engine optimization could be a challenge

as SPAs rely on JavaScript to render content. The search

engines may find it hard to index content that are dynamically

loaded which impacts the search findings of the pages.

1) Performance Metrics for SPAs

Understanding the key metrics as shown in Fig.2 of

performance would help in measuring and optimizing the

Single Page Applications. These would give deep

Paper ID: SR24529184457 DOI: https://dx.doi.org/10.21275/SR24529184457 1631

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

understanding of the application’s behavior and give insights

into areas that need improvement.

Figure 2: Performance metrics in a SPA

a) Page load time

Page load time gives the duration from user request to

complete rendering of the page. It is critical as it decides user

engagement with the application. This metric shows how

quickly user can start interacting with the application [5].

b) Time to Interactive (TTI)

This measures how long it takes for the page to be fully

interactive and be responsive to user input. In other words,

the main thread is free of long tasks and the user can interact

with the page without delays [6].

c) First Contentful Paint (FCP)

 First Contentful Paint measures the time taken by first piece

of the content to render from the DOM [6]. This helps in

understanding how quickly users can see visual feedback

from their actions on the application.

d) First Meaningful Paint (FMP)

This measures the duration for the primary content of the

page to be visible and useful to the user. It also means the

time taken for the most meaningful elements to be displayed.

e) Frames Pers Second (FPS)

This metric gives the smoothness and fluidity of a SPA’s

animations and interactions. The higher the FPS the smoother

the animations and a more responsive user interface. A

consistent FPS indicates seamless and smooth user

experience [5].

f) Memory Usage

This is another critical metric which helps identify how the

memory resources are being used by JavaScript heavy

applications. This also helps identify memory leaks,

excessive garbage collection and other performance

bottlenecks [6].

g) Network Requests and Payload

Network requests and payload size are important to consider

when optimizing SPA performance. Reducing the number

and size of network requests can significantly reduce the

application’s load time and improve performance.

2) Performance optimization techniques for SPAs

There are various techniques as shown in Fig.3 to optimize

the performance of Single Page Applications. These

techniques improve the initial load time, responsiveness and

efficiently utilize system resources.

a) Code Splitting and Lazy Loading

Code splitting involves dividing the entire code into smaller

chunks that can be loaded on demand instead of all at once.

And Lazy Loading further enhances this by delaying the

loading of non - essential resources until they are requested

for. These techniques primarily enhance the initial load time

making the application responsive [7].

b) Caching and Offline Support

Caching allows storage of assets and data locally to lower the

number of network requests. Service workers allow caching

resources and handle offline requests. These speeds up the

load times and offers offline functionality. With caching and

fallback mechanisms SPAs improve reliability and

performance [8].

Figure 3: Performance optimization techniques.

c) State Management

Libraries like Redux and MobX help manage the state of

application which would allow predictable state and avoid

event spaghetti [9]. This also allows reducing redundant re -

renders and thereby improving performance and reducing

memory overhead.

d) Server - Side Rendering (SSR) and Pre - Rendering

These techniques offer improved performance and SEO. SSR

is a technique where rendering of the initial HTML is on the

server and is sent to the client which reduces the first

meaningful paint. Pre - rendering generates static HTML for

specific routes at build time and improves the rendering time.

e) Minimize DOM manipulations and Repaints

Excessive DOM manipulations lead to slow performance and

increases rendering times. Using virtual DOM libraries like

React and avoiding direct DOM changes would improve

rendering speed [9].

f) Virtualized. Lists and Infinite Scrolling

For scenarios with large lists of data implementing virtualized

lists and infinite scrolling greatly enhance performance. User

can view only the content in the viewport so virtualized lists

aim to render items that can be seen in the viewport which

improves the rendering time. Infinite scrolling dynamically

loads additional content as the user scrolls providing a

seamless experience [10].

Paper ID: SR24529184457 DOI: https://dx.doi.org/10.21275/SR24529184457 1632

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3) Performance monitoring and analysis tools

Different performance monitoring tools offer valuable

insights into the application’s behavior, performance

bottlenecks and help make informed decisions to optimize

them. Tools such as Chrome DevTools and Firefox

Developer Tools are essential for monitoring and analyzing

SPA performance [11]. They offer network monitoring,

performance profiling and memory analysis. In addition,

developers can measure resource load times, JavaScript

execution times and DOM rendering.

Lighthouse is an open - source tool developed by Google that

allows to audit the application performance. It also

recommends steps to improve performance and offers metrics

(FCP, TTI etc), accessibility, SEO and other best practices

[12].

WebPageTest is another powerful tool for assessing the SPA

performance. It lets the developers test their applications

based off different locations in the world using different

network conditions. It provides detailed performance metrics.

Such as page load times, time to interactive. It also provides

visual comparison tools and the ability to generate

performance reports over time [13].

In production environment developers can leverage New

Relic and AppDynamics to gain real - time insights into SPA

performance. These are especially useful to do real user

monitoring and infrastructure monitoring.

3. Case Studies and Real - World Examples

a) Real - world examples

Looking into different example apps which achieved

significant performance improvement gives valuable insights

for developers to adopt these techniques. First example is

Twitter Lite which implemented code splitting, lazy loading

and is a progressive web application (PWA) version of

twitter. This reduced the initial page load time by 50% and an

increase of 65% increase in pages per session [14].

Another example is Flipkart, which is India’s largest e -

commerce platform that adopted a performance focused

approach in their SPA. It leveraged techniques like server -

side rendering, code splitting and efficient state management

with redux. Through these techniques it improves Time to

interactive (TTI) by 30% and saw a 40% reduction in bounce

rates [15].

Other examples include Gmail and Trello which

implemented service workers, lazy loading to significantly

improve user experience.

b) Lessons learned and best practices

Large enterprise applications such as Google, Facebook,

Flipkart, and Airbnb have described the best practices they

implemented for their SPAs. Lessons include the

implementing efficient caching strategies, prioritizing user

centric performance metrics, continuous monitoring, and

iterative improvements. In addition, server - side rendering,

state management, lazy loading and code splitting are vital.

4. Future Trends and Challenges

a) Emerging Technologies

Technologies are emerging at rapid pace and with the

advancements in JavaScript frameworks it has significant

impact on SPA performance. HTTP/3 has better performance

over HTTP/2 in terms of latency and data transfer. The newer

JS frameworks also enhancing performance making it easier

for developers to focus simply on development.

b) Challenges in Performance Measurement

Measure SPA performance is a complex task as it holds lot of

dynamic content. Traditional metrics alone are not enough

instead advanced metrics like Time to interactive (TTI) and

Total Blocking Time (TBT) need to be used. In addition,

considering different devices and network speeds adds

complexity. The developers need to use a combination of

tools and techniques to identify and address the performance

bottlenecks [16].

c) Balancing performance with user experience and

functionality

The main challenge is offering high peformance without

compromising the funcrtionality. Whiele performance is

critical it should not be at the cost of user experience and

functionality. Developers need to prioritize the user - centric

performance improvements that enhance usability without

compromising the features and capabilities of the application

[17].

5. Conclusion

a) Recap of key discussions

This paper discussed the performance metrics and

highlighted the importance of optimization in SPAs. Key

findings such as code splitting, lazy loading, state

management and caching are discussed. The usage of tools

such as Chrome DevTools, lighthouse was also emphasized

as critical for analysis and optimization.

Given the dynamic nature of web applications and the

evolution of JavaScript frameworks there is a need for

continuous improvements and iterative optimization through

audits by leveraging the tools and technologies

b) Recommendations to developers

For developers starting off with SPAs it is recommended to

adopt performance first mindset for the entire development

lifecycle. Key recommendations include utilize techniques

such as code splitting, lazy loading, and server - side

rendering to enhance performance. Use tools like Chrome

Paper ID: SR24529184457 DOI: https://dx.doi.org/10.21275/SR24529184457 1633

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

DevTools, Lighthous and other performance monitoring

services to optimize performance. Most importantly,

prioritize user - centric performance optimization thereby not

compromising the user experience. Finally staying updated

with emerging technologies would offer significant benefits.

References

[1] M. S. Mikowski and J. C. Powell, Single page web

applications: JavaScript end - to - end. Manning

Publications, 2013.

[2] R. Kohavi and R. Longbotham, "Online controlled

experiments and A/B testing, " Encyclopedia of

Machine Learning and Data Mining, vol.7, no.8, pp.922

- 929, 2017.

[3] J. Gregory and R. Nayak, "Single Page Applications:

The Future of Web Development, " in Proc.

International Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2018,

pp.2137 - 2141, doi: 10.1109/ICACCI.2018.8554467.

[4] U. Wickramarachchi and A. Priyanga, "A comparative

analysis of single page application frameworks, " in

Proc. IEEE International Conference on Industrial and

Information Systems (ICIIS), 2018, pp.437 - 442, doi:

10.1109/ICIINFS.2018.8721413.

[5] A. Arvind and P. S. Banu, "A Study on Single Page

Application Frameworks, " in Proc.3rd International

Conference on Computing Methodologies and

Communication (ICCMC), 2019, pp.1116 - 1119, doi:

10.1109/ICCMC.2019.8819692.

[6] A. Ahmad, M. Azam, and M. Naeem, "Performance

Evaluation of Progressive Web Apps and Single Page

Applications, " in Proc.22nd International Multitopic

Conference (INMIC), 2019, pp.1 - 6, doi:

10.1109/INMIC48123.2019.9022759.

[7] T. Chadha and R. Narang, "Performance Optimization

of Single Page Application Using Progressive Web App

and Webpack, " in Proc.4th International Conference on

Internet of Things: Smart Innovation and Usages (IoT -

SIU), 2019, pp.1 - 6, doi: 10.1109/IoT -

SIU.2019.8777650.

[8] L. Zhu, H. Jiang, and Z. Zhu, "Research on the

Application of Service Workers in Web Application, "

in Proc. IEEE 3rd Advanced Information Management,

Communicates, Electronic and Automation Control

Conference (IMCEC), 2019, pp.1451 - 1455, doi:

10.1109/IMCEC46724.2019.8983852.

[9] A. Fedosejev, React 16 Tooling. Packt Publishing,

2017.

[10] J. M. Chung, S. H. Kim, and J. H. Kim, "Performance

optimization of single - page applications through the

use of in - memory cache and client - side rendering, "

in Proc. International Conference on Information and

Communication Technology Convergence (ICTC),

2018, pp.371 - 373, doi: 10.1109/ICTC.2018.8539687.

[11] J. Dugan and M. Panar, "Mastering Browser Developer

Tools, " in Proc. Graz University of Technology, 2017,

pp.1 - 8. [Online]. Available: https:

//www.researchgate. net/profile/Markus -

Panar/publication/319101021_Mastering_Browser_De

veloper_Tools/links/59e5b1e9a6fdcc1b1d96e8c4/Mast

ering - Browser - Developer - Tools. pdf

[12] Lighthouse, Google Developers. Accessed: Jun.7,

2020. [Online]. Available: https: //developers. google.

com/web/tools/lighthouse

[13] WebPageTest Documentation. Accessed: Jun.7, 2020.

[Online]. Available: https: //docs. webpagetest. org/

[14] A. Osmani, "A Tinder Progressive Web App

Performance Case Study, " Medium, Nov.28, 2017.

[Online]. Available: https: //medium.

com/[at]addyosmani/a - tinder - progressive - web - app

- performance - case - study - 78919d98ece0

[15] A. Raghavan, "How We Built Flipkart Lite: A

Progressive Web App, " Flipkart Engineering Blog,

May 21, 2018. [Online]. Available: https: //tech.

flipkart. com/how - we - built - flipkart - lite - a -

progressive - web - app - 49170ca8e071

[16] S. Chaudhary, H. Somani, and S. Mukherjea,

"Performance Testing of Single Page Applications:

Challenges and Solutions, " in Proc. IEEE International

Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 2019, pp.110 - 115,

doi: 10.1109/ICSTW.2019.00037.

[17] J. Rzepka and K. Benedyczak, "Performance and User

Experience Analysis of Single Page Application

Frameworks, " in Proc. International Conference on

Computer Networks, 2019, pp.178 - 191, doi:

10.1007/978 - 3 - 030 - 21952 - 9_14.

Paper ID: SR24529184457 DOI: https://dx.doi.org/10.21275/SR24529184457 1634

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/profile/Markus-Panar/publication/319101021_Mastering_Browser_Developer_Tools/links/59e5b1e9a6fdcc1b1d96e8c4/Mastering-Browser-Developer-Tools.pdf
https://www.researchgate.net/profile/Markus-Panar/publication/319101021_Mastering_Browser_Developer_Tools/links/59e5b1e9a6fdcc1b1d96e8c4/Mastering-Browser-Developer-Tools.pdf
https://www.researchgate.net/profile/Markus-Panar/publication/319101021_Mastering_Browser_Developer_Tools/links/59e5b1e9a6fdcc1b1d96e8c4/Mastering-Browser-Developer-Tools.pdf
https://www.researchgate.net/profile/Markus-Panar/publication/319101021_Mastering_Browser_Developer_Tools/links/59e5b1e9a6fdcc1b1d96e8c4/Mastering-Browser-Developer-Tools.pdf
https://www.researchgate.net/profile/Markus-Panar/publication/319101021_Mastering_Browser_Developer_Tools/links/59e5b1e9a6fdcc1b1d96e8c4/Mastering-Browser-Developer-Tools.pdf
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse
https://docs.webpagetest.org/
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://tech.flipkart.com/how-we-built-flipkart-lite-a-progressive-web-app-49170ca8e071
https://tech.flipkart.com/how-we-built-flipkart-lite-a-progressive-web-app-49170ca8e071
https://tech.flipkart.com/how-we-built-flipkart-lite-a-progressive-web-app-49170ca8e071

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SR24529184457 DOI: https://dx.doi.org/10.21275/SR24529184457 1635

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

