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Abstract: The FPT itself attractive combination of investigation, topology moreover geometry. Over the last few decades the theory of
FP has appeared as especially dominant as well as significant instrument inside the learn of NonLP. In particular, FPT have been
applied in a variety of diverse fields as biology, chemistry, economics, engineering, game theory and physics. The situation is also likely
to evaluates some existing complications beginning science and technology, where one is concerned with a system of differential,

integral and FE
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1. Introduction

In genuine world, the many-sided quality by and large
emerges from uncertainly as equivocalness. The PT has been
age old and powerful instrument to deal with uncertainly, yet
it very well may be connected just to the circumstances
whose attributes depend on irregular procedures, i.e.,
process in which the event of occasions is entirely controlled
by shot. Uncertainly may emerge because of Pl about the
issue, or because of data which isn't CD, or because of
natural imprecision in the dialect with which the issue is
characterized or because of receipt of data from in excess of
one source. FST is an EMT to deal with the uncertainly
emerging because of uncertainty. In 1965, Lotfi A-Zadeh
[101] propounded the FST in his section.

Our aim of this chapter is to find some more results for
compatible map of type (8) in FMS.

For the sake of completeness, we recall some definition and
known results in FMS, which are used in this chapter.

Definition 1.1.1: Let X be any set. A FS in X is a function
with area X and values in [zero, one].

Definition 1.1.2: A binary operation =: [zero,one] X
[zero, one] — [zero,one] is continuo zero,one us |t —
norm || with star is fulfilling the subsequent situation:
1.1.2(a) » is comme & asse,

1.1.2 (b) * is continuous,

1.1.2 (c)a x 1 = aforalla € [zero, one]

112 (d)a*b < c¢*dwhenevera < candb < d,

for alla, b, c,d € [zero, one]

Examples of t —norm are ax b = min{a,b}anda x b =
ab.

Definition 1.1.3: A 3-tuple (X, M,x) is a FMS whenever X is
an ASx is continuous || t — norm lland M is FAon X X X X
[zero, +infinite) fulfilling, every point x,y,z € X and
s,t > zero,the FC:

1.1.3 (a) M(x, y, t)nonnegtive

1.1.3(b) M(x,y,0) = 0

1.13(@) M(x,y,t) =1iffx=y

1.1.3 (d) M(x,y,t) is comme

1.1.3(e) M(x,y,t) * M(y,z,s) < M(x,z,t+s)

1.1.3(f) M(x,y,): (0,00") — [0,1]iscontinuous.

We note that, M(x,y,t) can be realized as the measure of
closeness with connecting x&yw.r.tt. It be identified to
M(x,y,) is NDvx,y € X. Let M(x,y,x) be a FMS for
t> 0,the OB

Ball(space ,metric ,variable ) equal {y
€ X: M((space ,metric ,variable ))
>1- r}.

Now, the collection {B((space ,metric ,variable )):x €
X, 0< <1, £0 is a NBDs for a topology zon .Yinduced by
the FMS. 1.e topology is Housdroff and FC.

Example 1.1.4suppose (universal, distance ) be a MS.
Define axb =LUBofaandb and

M (space ,metric ,variable) = m\ﬁc, y € X and all

t > 0. subsequently (X, M,x) is a FMS. It is call the FMSI
through d.

Definition 1.1.5A sequence {x,} in a FMS(X, M,x)be
known as converges to x if f for each € > 0 and each
t > 0,ny € NstM(x,,x,t) > 1 — eforalln = n,.
Definition 1.1.6 A {x,,} be in a FMS(X, M,x)be known to be
a CSC to x iff each ¢>0 and each t>0,ng€
NstM(x,,, x,,t) > 1 — eforallm,n = n,.

A FMS(X, M,x) is known’s to be complete if each CS in it
conto a point in it.

Definition 1.1.7SM A and S of a FMS(X,M,x) are is
knowns to be compatible if and only if M(ASx,,SAx,,t) -
1forallt > 0,i.e{x,}isain Xs.tSx, ,Ax, — pofvarious
p € Xasn — oo,

Definition 1.1.8SM A and S of a FMS(X, M,x)are said to be
compatible of type (B) & M(AAx,,SSx,,t) —» leacht >
0,i.e{x,}isain Xs.t Sx, ,Ax, — pandp € Xasn — o.

Definition 1.1.92-map A and B from a FMS(X, M,x) into
itself are known to be WC if they commute at their CP i.e.,
Ax = Bx implies ABx = BAxeach x € X.

Remark 1.1.10 The concept of CM of type (B) is more
general then the concept of CM in FMS.
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Definition 1.1.11suppose A and S be2-SM of a FMs(X, M,*
) then A and S is said to be a WC if M(ASx,,SAx,,t) <
M(Sx,,Ax,,t) forall xin X .

It can be seen that CMs(ASx = SAx V x € X) are CM but
opposite is not right.

Lemma 1.1.12 In a FMS(X, M,x) limit of a sequence is
exclusive.

Lemma 1.1.13 Let (X,M,x) be a FMS. Then for all
X,y € XM(x,y,.) isa NDF.

Lemma 1.1.14suppose t (X,M,x) be a FMS. If 3k €
(0,1)s.tFAx,y € X,M(x,y, kt) = M(x,y,t) Vt >
0,thenx = y.

Lemma 1.1.15A {x,} in a FMS(X,M,x)(X,M*). If 3 a
number k € (0,1) such that

M (g2, Xng1, kt) = M(pyq, %, ,t)VEt> 0andn € N
after that {x,,} isa CSin X.

Lemma 1.1.16 The only t —norm = satisfying rxr =r
for all r € [0,1] is the min t — norm that is
a* b = min{a, b} forall a,b € [0,1].

1.2 Common Fixed Point Theorem for Compatible Maps
of Type (B) and Type («)

In this section we prove a CFPT for CM of type (B) and
type (a) in FMS. In fact we prove the following theorem.

Theorem 1.2.1suppose (X,M,x) be a FMS and let
A,B,S,T,PandQ be mappings from X into itself s.t the
following conditions are satisfied:
1.2.1(a) P(X) c ST(X)andQ(X) c AB(X),
1.2.1(b)AB = BA,ST = TS,PB = BP,QT =TQ,
1.2.1(c) either P or AB is continuous,
1.2.1(d) (P, AB) is compatible of type (8) and (Q,ST) is
weak compatible,
1.2.1(e) 3k € (0,1) such that for every x,y € Xandt > 0
M?(Px,Qy, kt) > M?(ABx,STy,t) * M?*(Px, ABx, t)
* M?(Qy, STy, t) * M*(Px,STy,t) * M?>(ABx, ABx, t)

Toshow A, B, S, T, P and Q have a UCFP in X.

Proof: Let x, € X, then from 1.2.1(a) we have x;,x, € X s.t
Pxy = STx;andQx, = ABx,

Inductively, we CS{x, }and {y,}in Xstforn € N
Pxyn—p = STXpn-1 = Yan-1andQxz,—1 = ABXyy = y2y
Step 1 Put x = x,,andy = x5,41 in 1.2.1(e) then we have

M?(Pxyy, QXgn 41, kt) = M2(ABxp,, STXpp 11, 8)
M?(Px,,, ABxy,, t)
* MZ(Qx2n+115Tx2n+1' t) * MZ(PXZn'STx2n+1' t)
* M?(ABx,,, ABx,,,t)
M?(Yan41, Yan+2, kt)
= M? (Yo, Y2n+1:t) * M* (V2541 Yans t)

* M? (Va2 Yons1o ) * M*(Vans1s Vans, £)
* Mz(yZn!yZn!t)
Mz(y2n+1:y2n+2:kt)
= MZ(yZn: YVon+1, t) * Mz(y2n+2: YVon+1, t)

From lemma 2.1.13 and 2.1.14 we have

. Mz(y2n+1:y2n+2,kt) = Mz(y2n1y2n+1:t)
That is

M Y41, Yan+2 kt) = M (Yo, Yo +1,t)

likewise WH

MY2n+2, Yan+3, kt) = M(YV2n 41, Yan+2, t)
TWH

M(yn+1’ Yn+2, kt) = M(yn: Yn+1» t)
t
M(yn+1' yn+2't) =M (yn' yn+1!;)

M(yniyn+1i t) 2 M (}’o.}’pk%) i 1 asn - oo,
and hence M (y,,, Yn11,t) = 1asn = o forallt > 0.

For each € > 0 andt > 0, we can choose n, € N such that
MYy, Yn41,t) > 1 —€eforalln > n,.

FAm,n € N we suppose that > n . i.e

MY, Y, 1) 2
M(yn'yn-kl'ﬁ) * M(yn+1ﬁyn+2!mtTn) *

ok M(ym_pym,ﬁ)

M, Vm,t) = (1—€)x (1—€)* ... * (1—¢e)(m-—
ntimes

M(yn:ym't) = (1 - 6)

And hence {y,}isa CSin X.

Since (X, M,x) is complete, {y,} con to some point z € X.
Also its SSC to the SPz € X.

That is
{Pxyp42} = zand{STx,, 1} = 2z 1.2.1(i)
{Qx2,41} = zand{ABx,,} — z 1.2.1(ii)
Case 1 if AB is nonstop
if AB is nonstop, we have
(AB)*x,, » ABzandABPx,, — ABz
As (P, AB) is CP of type (B), we have
M(PPx,,, (AB)(AB)x,,,t) = 1,forallt >0
Or
M(PPx,,,ABz,t) = 1
Therefore, PPx,, — ABz.
Step 2 Putx = (AB)x,,andy = x5,41 in 1.2.1(e) we have
MZ(P(AB)XZTU Qy! kt) =

M?(AB(AB)X2, STX3541,t)

* M?(P(AB)x,,, AB(AB)xy,,t)
* M?*(QX2n+1, STX2n 41, ) * M?*(P(AB) X2y, STX2p 11, t) *
M2ABABY21n,ABABA2 1t
Taking n — o we get

M?((AB)z,z, kt)
> M?((AB)z,z,t)
* M?((AB)z, (AB)z,t)

* M?((AB)z,z,t) * M*((AB)z,2,t) » M*((AB)z,z,t)
M*((AB)z,z,kt) > M*((AB)z,z,t)  M*((AB)z,z,t)
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i.eM((AB)Z, Z, kt) > M((AB)Z, Z, t)
TF by lemma 2.1.14 we have

Step -3 Put x = zandy = x,,,1 in 2.2.1(e) we have
M2 (P2, Qo k) =

Takn — oo and using equation 1.2.1 (i) we have
M?(Pz,z, kt) > M?>(ABz,z,t) *x M*(Pz, ABz,t)
x M%(z,z,t) *x M?>(Pz,z,t)
* M?(ABz, z,t) x M?
That is M?(Pz,z, kt) = M?*(Pz,z,t)
And hence M(Pz, z,kt) = M(Pz, z,t)
Therefore by using lemma 1.1.14, we get
Pz =z
So we have ABz = Pz = z.
Step- 4 Putting x = Bzandy = x3,41in 2.2.1(e), weget
MZ(PBZ' Qx2n+1' kt)
> M?(ABBz,STX3y41,1)
* M%(PBz, ABBz, t)
* M*(QX2n 41, STX2041, )
* M?(PBz,S5TXp41,t)
* M?>(ABBz, ABBz,t)
As BP = PBandAB = BA, so we have
P(Bz) = B(Pz) = Bzand(AB)(Bz) = (BA)(Bz)
= B(ABz) = Bz.
Taking n — oo and using 1.2.1(i) we get
M?(Bz,z,kt) = M?(Bz,z,t) * M*(Bz, Bz, t) x M*(z,z,t)
* M?(Bz, z,t) x M*(Bz, z,t)
M?(Bz,z,kt) = M?*(Bz,zt)
Thatis M(Bz,z, kt) = M(Bz,z,t)
Therefore by Lemma 1.1.14 we have Bz = z
And also we have ABz = zimpliesAz = z
Therefore Az = Bz = Pz =2.1.2.1(iv)
Step —5 As P(X) c ST(X) there exists u € X such that
z=Pz=S8Tu
Putting x = x,,andy = uin 1.2.1(e) we get
M?(Px,,, Qu, kt)
> M?(ABx,,,STu,t)
* M?(Pxy,, ABxy,,t)
* M?(Qu, STu,t) * M?(Px,,,STu,t)*M?(ABx,,,STu,t)
Taking n - oo and using 1.2.1(i) and 1.2.1(ii) we get
M?(z,Qu, kt) > M?(z,5Tu,t) * M*(z,z,t)
* M?(Qu,STu,t) * M?(z,STu,t)
M?(z,Qu, kt) = M?(z,Qu,t)
That is M(z, Qu, kt) = M(z, Qu,t)
TF by using Lemma 1.1.13 we have Qu = z
Hence STu = z = Qu.
Hence (Q, ST) is WC, therefore, we have
QSTu = STQu
Thus Qz = STz.
Step — 6 Putting x = x,,andy = zin 1.2.1(e) we get
M?(Px,,,Qz,kt) = M?(ABx,,,STz,t)
* M?(Pxy,, ABxy,,t)
* M?(Qz,STz,t) x M?>(Px,,,STz,t)M?(ABx,,, ABx,,,t)
Taking n — oo and using 1.2.1(ii) and step 5 we get
M?(z,Qz,kt) = M?(z,5Tz,t) x M*(z,z,t)
* M?(Qz,5Tz,t) * M%(z,5Tz,t)M?(z,z,t)
M?(z,Qz,kt) = M?(z,Qz,t)
And hence M(z, Qz, kt) = M(z,Qz,t)

Therefore by using Lemma 1.1.13 we get Qz = z.

ABz = z.1.2.1(iii)

M2(ABZ, STy 11, t) * M(Pz, ABz, t) * )
MZ(Qx2n+1,STx2n+1, t) * MZ(PZ, STxZn+1, t) * MZ (ABZ,ABZ, t)

Step 7: Putting x = x,,andy = Tz in 2.2.1(e) we get
M?(Px,,, QTz , kt)
> M?(ABx,,,STTz ,t)
* M?(Px,,, ABx,,,t)

M?(QTz,STTz,t) * M*(Px,,,STTz,t) *
M?(ABx,,, ABx,, ,t)
As QT = TQandST = TS we have

QTz =TQz =Tz
And ST(Tz) =T(STz) =TQz =Tz.

Taking n — oo we get
M?(z,Tz ,kt) > M?(z,Tz,t) * M?*(z,z,t)

* M%(Tz,Tz,t) *MZ(Z,TZ, t)Mz(z,z,t)
M?(z,Tz ,kt) = M?(z,Tz,t)
Therefore M(z,Tz ,kt) = M(z,Tz,t)
Therefore by Lemma 1.1.13 we have Tz = z
Now STz =Tz = zimpliesSz = z.
Hence
Sz=Tz=Qz =z
Combining 2.2.1(iv) and 2.2.1(v) we have
Az=Bz=Pz=Sz=Tz=Qz =z
Hence z isthe CFP of A, B, S, T, P and Q.

1.2.1(v)

Case - Il suppose P is nonstop
As P is continuous
P%x,, - PzandP(AB)x,, - Pz
As (P,AB) is compatible pair of type (B),
M(PPxy,, (AB)(AB)xzn, t) =
1 forallt >0
or M(Pz, (AB)(AB)xy,,t) = 1
Therefore (AB)%x,, — Pz.
Step -8 Putting x = Px,,andy = x,,41 in 2.2.1(e) then
we get
MZ(PPXan Qx2n+1! kt)
> M?(ABPx;,,STXpn 41, t)
* M?(PPx,,, ABPx,,,t)

* M?(QX2n41, STXgn41,t) *
M?(PPxy,,STXpn41,t) * M?>(ABPx,,, ABPxy,,t)
Taking n - oo, weget
M?(Pz,z,kt) > M*(Pz,z,t) x M*>(Pz, Pz,t)
* M?(z,2z,t) *
M?(Pz,z,t) * M*(Pz,Pz,t)
M?(Pz,z, kt) = M?(Pz,z,t)
Hence M(Pz,z kt) = M(Pz, z,t)
Therefore by Lemma 1.1.13 we get Pz =z
Step- 9 Put x = ABx;, and y = X3, in 2.2.1(e) then
we get
M?(PABXzy, QX3p 41, kt)
> M?(ABABxy,,STX3y11,t)
* M?(PABx,,, ABABx,,,t)
* MZ(Qx2n+1! STx2n+1! t) *

M?(PABx,,, PABx,,,t) * M*(ABABx,,,STX3y11,t)
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Taking n — oo we get
M?*(ABz,z,kt) = M?*(ABz, z,t) x M*(ABz, z,t)
* M?(z,z,t) *
M?( ABz,z,t)M?(ABz, ABzz,t)
Therefore M?(ABz, z, kt) = M?(ABz,z,t)
And hence
M(ABz,z,kt) = M(ABz,z,t)
By Lemma 1.1.13 we get ABz =z
By applying step 4,5,6,7,8 we get
Az =Bz=S8z=Tz =Pz=(Qz =z.
That is z is a common fixed point of A,B,S,T,P,Q in X.
Uniqueness Let u be another common fixed point of
A,B,S,T,P and Q. Then
Au=Bu=Su=Tu=Pu=Qu =u
Putting x = uandy = zin 1.2.1(e) then we get
M?(Pu, Qz, kt) > M?(ABu, STz, t) x M?(Pu, ABu, t)
* M?2(Qz,S5Tz,t) * M*(Pu,STz,t) x M*(ABu, ABu, t)
Taking limit both side then we get
M?(u,z, kt) = M?(u, z,t) * M*(u, u, t)
* M?(z,z,t) * M?>(u, z, t)M?(u,u, t)
M?*(u, z, kt) = M?(u,z,t)
And hence M(u,z kt) = M(u,zt)
Bylemma 1.1.13 we getz = u.

That is z is a uniqgue common fixed point of AB, S, T, P
and Q in X.

Remark 1.2.2: If we take B = T = I identity map on X in
Theorem 2.2.1 then condition 1.2.1(b) is satisfy trivially and
we get following Corollary

Corollary 1.2.3 suppose (X,M,x) be a FMS and let
A,B,S,T,PandQ be mappings from X into itself s.t the
following conditions are satisfied:
1.2.3(a) P c SandQ(X) c A, are in universal space
1.2.3(b)AB = BA,ST = TS,PB = BP,QT =TQ,
1.2.3(c) either P or AB is continuous,
1.2.3(d) (P,AB) is compatible of type (8) and (Q,ST) is
weak compatible,
1.2.3(e) 3k € (0,1) such that for every x,y € Xandt > 0

M?(Px,Qy, kt) > M?(Ax, STy, t) x M?>(Px, Ax, t)

* M2(Qy, Sy, t) * M*(Px,Sy,t)

* M?(Ax, STy, t)M? (Ax, Ax, t)

Toshow A, S, P and Q have a UCFP in X,

Remark 1.2.4 If we take the pair (P,AB) is weakly
compatible in place of compatible type of (8) in Theorem
2.2.1 then we get the following result.

Corollary 1.2.5 suppose (X,M,x) be a CFMS and let
A,B,S,T,PandQ be mappings from X into itself s.t the
following conditions are satisfied:
1.2.5(a) P(X) € ST(X)andQ(X) c AB(X),
1.2.5(b)AB = BA,ST = TS,PB = BP,QT = TQ,
1.2.5(c) either P or AB is continuous,
1.2.5(d) (P,AB) is compatible of type (B) and (Q,ST) is
weak compatible,
1.2.5(e) 3k € (zero, one )s.t for each point x,y € Xandt >
0

M?(Px,Qy, kt) > M?(ABx,STy,t) * M*(Px, ABx, t)

* M?(Qy, STy, t) * M?(Px,STy,t) * M?>(ABx, ABx, t)
To show A, B,S,T, P and Q have a UCFP in X.

Remark 1.2.6 If we take B = T = I identity map on X in
Corollay 1.2.5 then condition 1.2.1(b) is satisfy trivially and
we get following Corollary

Corollary 1.2.7
suppose (X, M,x) be a CFMS and let A4,B,S, T, PandQ be
mappings from X into itself s.t the following conditions are
satisfied:
1.2.7(a) P c SandQ(X) c A, are in universal space
1.2.7(b)AB = BA,ST = TS,PB = BP,QT =TQ,
1.2.7(c) either P or AB is continuous,
1.2.7(d) (P,AB) is compatible of type (B) and (Q,ST) is
weak compatible,
1.2.7(e) 3k € (0,1) such that for every x,y € Xandt > 0

M?(Px, Qy, kt) > M?(Ax, STy, t) x M?>(Px, Ax, t)

* M?(Qy, Sy, t) * M?(Px,Sy,t)

* M%(Ax, STy, t)M?(Ax, Ax, t)

To show A, ,S,, P and Q have a UCFP in X.

Definition 1.2.8SM A and S of a FMS(X, M,x)are said to be
compatible of type (a) <if M(ASx,,SSx,,t) » 1 and
M(AAx,, ASx,,t) - 1vt > 0, where {x,} is a in X
s.tSx, ,Ax, — p forsomep € Xasn — .

It is easy to see that compatible map of type (a) is
equivalent to the compatible map of type (B).

Now following results are equivalent to Theorem 1.2.1

Theorem 1.2.9Let (X,M,x) be a complete fuzzy metric
space and let A,B,S,T,PandQ be mappings from X into
itself such that the following conditions are satisfied:
1.2.9(a) P(X) c ST(X)andQ(X) c AB(X),
1.2.9(b)AB = BA,ST = TS,PB = BP,QT =TQ,
1.2.9(c) moreover P or AB is nonstop,
1.2.9(d) (P,AB) is compatible of type (a) and (Q,ST) is
WC,
1.2.9(e) there exists k € (0,1) such that for every x,y €
Xandt > 0

M?(Px,Qy, kt) = M?(ABx,STy,t) * M*(Px, ABx, t)

* M?(Qy, STy, t) * M?(Px,STy,t) * M*(ABx, ABx, t)

Then A, B,S, T, P and Q have a UCFP in X.

Proof : Form the definition 1.2.8 and proof of the Theorem
1.2.1, we get the result.

Remark 1.2.10 If we take B =T = IIM on X in Theorem
1.2.9 then condition 1.2.9(b) is satisfy trivially and we get
following Corollary

Corollary 1.2.10 if (X,M,x) be a CFMS and let
A, S, PandQ be mappings from X into itself s.t :
1.2.10(a) P(X) c S(X)andQ(X) c A(X),
1.2.10(b) either P or A is continuous,
1.2.10(c) (P, A) is compatible of type () and (Q, S) is weak
compatible,
1.2.10(d) 3k € (zero, one )s.t for every x,y € Xandt > 0
M?(Px, Qy, kt) > M?(Ax,Sy,t) * M?(Px, Ax,t)
* M?(Qy, Sy, t) * M?>(Px,Sy,t) x M*(Ax, Ax, t)
To show A, S,P and Q have a UCFP unique common fixed
point in X,

Volume 11 Issue 10, October 2022

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ES231022124024

DOI: 10.21275/ES231022124024

1354



International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

1.3 Common Fixed Point Theorem for Integer Type
Mapping in Fuzzy Metric Space.

On the way of generalization of Banach contraction
principle [21] one of the most famous generalization is
introduced by Branciari [21] in general setting of lebgesgue
integrable function and proved following fixed point
theorems in metric spaces.

Theorem 1.3.1: Suppose (X,d) be a CMS, « € (0,1) and
let T: X - X, be amapping s.t foreach x,y € X,

d(Tx,Ty) d(xy)
f EWw)dv < f EWw)dv
0

0
i.e ¢&: [zero,+infinite ] > [zero, +infinite] is a LIM
which is summable on ECSS of [zero, +infinite] , NN, and
such that, ¥ & > 0, [ £(v) dv > Oto show , T has UFPz €

X such that foreach x € X,T"x - zasn — oo,

It should be noted that if £(v) = 1to show BCP is obtained.
Inspired from the result of Branciari [] we prove following
CFPT in FMS.

Theorem 132 if (X,M,x) be a CMFS and let
A,B,S, T, PandQ be mappings from X into s.t:

1.3.2(a) P(X) c ST(X)andQ(X) c AB(X),

1.3.2(b)AB = BA,ST = TS,PB = BP,QT =TQ,

1.3.2 (c) moreover P or AB is nonstop,

1.3.2 (d) (P,AB) is compatible of type (8) and (Q,ST) is
w.c,

1.3.2 (e) 3k € (0,1)s.t for every x,y € Xandt > 0

M2 (Px,Qy kt) W(xy.t)
f Ew)dv = f () dv
0 0

W(x,y,t) = M?(ABx,STy,t) * M?>(Px, ABx,t)
* M?(Qy, STy, t) * M?(Px,STy, t)*M?(ABx, ABx, t)
ieé: [0,4w] - [0,4] is a LIM which is summable on
each CSS of [0, +o] , NN, and s.t, V & > 0, [ £(v) dv > 0
. to show A,B,S, T, P and Q have a UCFP in X.

Proof: if x, € X, then from 2.3.2(a) we have x;, x, € Xs.t
Pxy = STx;andQx; = ABx,
Inductively, we CS{x, }and {y,}in X s.tforn € N
Pxyn_y = STXyp_1 = Yop_1andQxyy,_1 = ABXyy = Yop
Step 1 Putx = x,,andy = x,,,1in 2.3.2 (e) i.e

M2 (Px25,Qx2n4+1,kt) W(x2nX2n+1,t)
f Ew)dv = f &) dv
0 0

W (X2n, Xan11,t) = M?(ABXpy, STXpn41,t)
* M?(Px,,, ABx,,,t)

* M?(Qxzn41, STXpp 11, 8) *
M2(Px3,, STX3p 41, t)*M?(ABx,,, ABx;,, t)

W(2n+1Y2n+2:t)
E(w)dv > f £(v) dv

0
W(}272n+1')’2n+2, t) = M*(V2n, Yan+1,t) * M*Vani1, Yons t)
* 1;/1 (V2n+2 Y2n+1,t) ’;
M (Y2n+1) Yan+1, ) M= (Yo, Yan, t)

M2 (o 41.Y2n4+2.kt)
| £(v) dv
0

fMZ D2n Y2 +18*M2 (Von42,.Y2n+1.t)

fMZ V2n+1.Y2n+2,kt)
0

=

s()dv

0
From Lemma 1.1.13 and 1.1.14 we have

EWw)dv = Ew)dv

sz(YZn+1IYZn+2'kt) sz(}’Zn»}’Zn+1»t)
0

Since £(v) is LIFs.t

. Mz(y2n+1:y2n+2:kt) = Mz(y2n1y2n+1:t)
That is

M (Yo +1) Yan+20 kt) = M(Van, Yan+1,t)
likewise

M(Yan+2, Yan+3, kt) = M(YV2n 41, Yan+2,t)
Thus we have

M(yn+1’ Yn+2, kt) = M(yn: Yn+1» t)

t
M(yn+1:yn+2:t) =M (yn:yn+1:E>

t
M(}’n; yn+1:t) =M <y0: yl;k_n> - lasn - 0,

in addition to hence M(y,,, V,,+1,t) = lasn -
o forallt > 0.

Every pointe > 0 andt > 0, we can choose n, € Ns.t
My, Vus1,t) > 1 —€eforalln > ny.

Every pointm,n € N we suppose that > n . consider

t
MY, Yo t) = M(yn,ynﬂ,m)

=)
*
m-—n
t
X M(}’m—p}/m'm)
MYy, V) = (1 —€)* (1 —€) * ...
* (1 —€e)(m — n)times
M(yn'ym't) = (1 - E)
And hance {y, }isa CS in X.
Since (X, M,x) is complete, {y,} cons to SPz € X. Also its
SSC to the SPe X.
i.e.
{Pxyn42} = zand{STx,, 1} = 2z 1.3.2 (i)
{Qx2n41} = zand{ABx;,} - y,,, 1.3.2(ii)

* M (yn+1! Vn+2

Case 1 Suppose AB is nonstop
Since AB is nonstop, we have
(AB)?x,, » ABzandABPx,, - ABz
As (P, AB) is CP of type (8), we have
M(PPx,,, (AB)(AB)x3,,t) = 1,forallt >0
Or M(PPx,,,ABz,t) = 1

Therefore, PPx,, —» ABz.

Step 2 Putx = (AB)xy,andy = x,,,1 in 1.3.2(e) we have

M2 (P(AB)x2y,Qy kt) W (P(AB)x2n,Qy kt)
J- EWw)dv = f EW) dv
0 0

W (P(AB)x2,, Qy, t) = M?(AB(AB)xX3y,, STz 41, t)
* M2 (P(AB)xZn! AB(AB)xZn' t) * MZ (Qx2n+1' STx2n+1' t)
* M2 (P(AB)xZn! STx2n+1l t)
* M?(AB(AB)xy,, AB(AB)x;,,t)
Taking n — o we get
M2 (P(AB)x27,Qy kt) W(P(AB)x2,,Qy )
)

E(w)dv = f E(w)dv

M%((AB)z,z,kt) = MZ(O(AB)Z, z,t)

* M?((AB)z, (AB)z,t)
* M?((AB)z,z,t)
* M?((AB)z,z,t) x M*((AB)z(AB), z, t)
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$(v)dv
M2 ((4B)z,z,t) *MZ((AB)z,z,t)
J

M2 ((AB)z,z,kt)
)

=

() dv

i.e of £(v) we have
M((AB)z,z,kt) = M((AB)z,z,t)
i.e by lemma 1.1.14 we have
ABz = z.1.3.2(iii)
Step -3 Putx = zandy = xy,1 in 2.3.2(e) we have

M2(Pz,Qx2pn4+1.,kt) W(Pz,Qx2n +1,t)
f EWw)dv = f EWw)dv
0 0

W (Pz,Qxp41,t) = M?(ABz,STxpy41,t) * M*(Pz, ABz,t)
* M?(Qx2n41, STX2n 41, ) * M?(P2,5T Xz 41, 1)
Takingn — oo and using equation 1.3.2 (i) we have

M2(Pz,z,kt) W(Pz,z,t)
f EW)dv = J ¢(w)dv
0

0
W(Pz,z,t) = M?(ABz,z,t) x M*>(Pz,ABz,t)
* M?(z,2,t) * M?(Pz,z,t) * M>(ABz,ABz,t)

So that M2(Pz,z, kt) = M?*(Pz,z,t)

And hence M(Pz, z,kt) = M(Pz,z,t)

i.e by using lemma 1.1.14, we get Pz =z

i.eABz = Pz = z.

Step- 4 Putting x = Bzandy = x,,,1in 2.3.2(e), weget

W(PBz,Qx2p+1,t)
EWwydv = f

M2 (PBz,Qx2n41.kt)
f EWw)dv
0 0

W (PBz, Qx3p41,t)
= M?(ABBz,STx,,,1,t)
* M?(PBz, ABBz,t)
* M?(QXzn41, STX2n 41, t)
* M%2(PBz,STxy,41,t) * M*(ABBz, ABBz,t)
As BP = PBandAB = BA, so we have
P(Bz) = B(Pz) = Bzand(AB)(Bz) = (BA)(Bz)
= B(ABz) = Bz.
Taking n — o and using 1.3.2(i) we get

M?2(PBz,Qx2n41,kt) W (PBz,Qx2n 41,t)
f EW)dv = j E(w)dv
0 0

M2(Bz,z,kt) W(Bz,z,t)
f EW)dv = J ¢(w)dv
0

0
W(Bz,z,t) = M*(Bz,z,t) x M*(Bz, Bz, t)
* M?(z,2,t) * M?>(Bz,z,t) x M*(Bz,z,t)
So we have M?(Bz, z, kt) > M?(Bz, z,t)

ThatisM(Bz,z,kt) = M(Bz,z,t)
Consequently by Lemma 1.1.14 we have Bz = z
And also we have ABz = zimpliesAz = z

Therefore
Az =Bz =Pz =2.13.2(iv)

Step —5 As P(X) c ST(X) there exists u € X such that
z=Pz=STu

Putting x = x,,andy = u in 2.3.2(e) we get

M2(Px2p,,Qu,kt) W(Px2n,Qu,t)
f EWw)ydv = f EWw)dv
0 0

W(Px,,,Qu,t) = M?>(ABx,,,STu,t)
* M?(Pxy,, ABxy,,t)

*x M?(Qu, STu, t)
* M2(Pxy,,STu, t) * M2(ABx,,, ABx;,, t)

Taking n — oo and using 1.3.2(i) and 1.3.2(ii) we get

M2 (z,Qu kt) W(z,Qu,t)
f EWwydv = f EWw)dv
0 0

W(z, Qu,t) = M*(z,STu,t) x M*(z, z,t)
* M2(Qu, STu, t) * M?(z,STu, t)*M?(z,Z, t)
So we have M?(z, Qu, kt) > M?(z,Qu,t)
i.eM(z,Qu, kt) = M(z, Qu,t)

Consequently by using Lemma 1.1.13 we have Qu = z
Hence STu = z = Qu.

Hence (Q, ST) is weak compatible, therefore, we have
QSTu = STQu
Thus Qz = STz.

Step — 6 Putting x = x,,andy = z in 1.3.2(e) we get

M?%(Px3p,Qz,kt) W(Px29,Q2,t)
f EWw)dv = f EWw)dv
0 0

W (Pxy,,Qz,t) = M?>(ABx,,,STz,t) * M*(Px,,, ABx,,,t)
* M?(Qz,STz,t) x M?*(Px,,,STz,t)
Taking n — oo and using 1.3.2(ii) and step 5 we get

Mz(z,Qz,kt) W(z,Qz,t)
f EWw)dv = f Ew)dv
0

0
W(z,Qz,t) = M?(z,5Tz,t) * M?(z,z,t)
* M?(Qz,STz,t) x M*(z,5Tz,t) * M?>(STz,STz,t)
That is M%(z, Qz, kt) = M?(z,Qz,t)
And therefore M(z, Qz, kt) = M(z,Qz,t)
consequently by using Lemma 1.1.13 we get Qz = z.
Step — 7 Putting x = x,,andy = Tz in 2.3.2(e) we get

M2(Pxy,,,QTz kt) W(Px27,QTz ,t)
f f ) dv
0

Ew)dv =

W (Pxy,, QTz ,t)
= M2(ABx,,,STTz ,t)
* M?(Px,,, ABx,,,t)
* M2(QTz,STTz,t) * M*(Px,,,STTz,t)
* M2(ABx,,,ABx,, ,t)
As QT =TQandST =TS wehave QTz =TQz =Tz
And ST(Tz) =T(STz) =TQz = Tz.

Taking n — o we get

M2(z,Tz kt) W(z,Tz t)
J. EW)dv = f EWw)dv
0

W(z,Tz,t) = M*(z,Tz,t) * Mzgz, z,t) * M?>(Tz,Tz,t) *
M?*(z,Tz,t) * M*(Tz,Tz,t)

And hence M?(z, Tz, kt) = M?(z,Tz,t)

Consequently M(z,Tz ,kt) = M(z,Tz,t)

Consequently by Lemma 1.1.13 we have Tz = z

Now STz =Tz = zimpliesSz = z.

Hence
Sz=Tz=Qz =2z1.3.2(V)
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Combining 1.3.2(iv) and 1.3.2(v) we have
Az=Bz=Pz=8Sz=Tz=Qz =z

Hence z is the common fixed point of A, B, S, T, P and Q.
Case - Il suppose P is continuous

As P is continuous
P%x,, — PzandP(AB)x,, — Pz

As (P, AB) is compatible pair of type (B),
M(PPx,,, (AB)(AB)x3,,t) = 1 forallt > 0

Or M(Pz, (AB)(AB)x,,,t) = 1
Therefore (AB)?x,,, — Pz.

Step -8 Putting x = Px,,andy = x,,,41 in 1.3.2(e) then
we get

fMZ(PPXanQx2n+1zkt) j-W(PPXZn.QXZnH.t)
0

EWw)ydv =

W (PPx2,,Qx3p41,t)
= MZ(ABPXZn,STx2n+1, t)
* M2(PPx,,, ABPx,,,t)

W) dv

* M?(QX2n41, STXgn 41, 1) *
M2(PPxy,, STy 41, t)M?(ABPX,,, ABPX,,, t)

Taking n = o, weget

M2 (Pz,z,kt) W(Pz,z,t)
f Ev)dv > J £(v) dv
0

0

W (Pz,z,t) = M*(Pz,z,t) * M*(Pz,Pz,t) x M?*(z,z,t)
* M?(Pz,z,t)M?(Pz,Pz,t)

M2 (Pz,z,kt) VE (Pz,z,t)
J fw)dv = f £(v) dv
0 0

consequently we have
M?(Pz,z, kt) = M?(Pz,z,1t)

Hence M(Pz, z, kt) = M(Pz, z,t) consequently by Lemma
1.1.13wegetPz =z

Step- 9 Put x = ABx,, and y = x,,4¢ in 1.3.2(e) then we
get

&) dv

fW(PABXZn,QXZnHI)
0

fMZ(PABXZH,Qx2n+1,kt)
0

=

E()dv

W(PABXZTL' Qx2n+1' t
= 1‘42 (ABABXZn, STxZn+1, t)
* M2(PABx,,, ABABx,,,t)
* M?(QxXzn41, STX2p11, )
* M2(PABx,,,STX3y4+1,t)M?(ABABx,,, ABABx,,,t)

Taking n — oo we get

fMZ(ABz,z,kt) W(ABz,z,t)

; Ew)dv> [ FW)dv

W(ABz,z,t) = M*(ABz,z,t) x M*(ABz, z,t)
* M?(z,2z,t) * M*( ABz,z,t)

J-MZ(ABz,z,kt) MZ2(ABz,z,t)

0 §Wydv 2 | s)

Therefore M?(ABz, z, kt) > M?(ABz,z,t)
And hence M(ABz, z, kt) = M(ABz,z,t)
By lemma 2.1.13 we get ABz = z

By applying step 4 ,5,6,7,8 we get
Az =Bz=8z=Tz =Pz=(Qz =z.

That is z is a CFP of A,B,S,T,P,Q in X.

Exclusivity Let u be another CFP of A,B,S,T,P and Q. Then
Au=Bu=Su=Tu=Pu=Qu =u
Putting x = uandy = z in 1.2.1(e) then we get

2
fOM (Pu,Qz,kt) f(V) dv > fOW(Pu,Qz,t) f(v) dv

W (Pu, Qz,t) = M2(ABu, STz, t) x M?(Pu, ABu, t)
* M2(Qz,STz,t) * M2(Pu, STz, t)M?(ABu, ABu, t)

Taking limit both side then we get

M2 (u,z,kt) W (u,z,t)
f F(v) dv > f £(v) dv
0 0

W(u,zt) = M*(u,z,t) * M*(u,u, t) * M*(z,z,t)
* M?(u,z,t) * M*(u,u, t)
i.e.M?(u,z kt) = M?*(u,zt)

And hence M(u, z, kt) = M(u,z,t)

By lemma 1.1.13we getz = u.
i.e.z isaUCFPof AB,S, T,Pand Q in X.

Remark 1.3.3 Theorem 1.2.1 is a special case of the
Theorem 1.3.2. It is sufficient if we take é(v) = 1 in
Theorem 1.3.2.

Remark 1.3.4 If we take B =T = IIM on X in Theorem
1.2.3.2 to show condition 1.3.2(b) is satisfy trivially and we
get following Corollary

Corollary 1.3.5 suppose (X,M,x) be a CFMS and
suppose4, S, PandQ be mappings from X into itself s.t:
1.3.5(@) P(X) c S(X)andQ(X) c A(X),

1.3.5 (b) moreover P or AB is nonstop,

1.3.5() (P,AB) iscoft (B) and (Q,ST) is WC,

1.3.5(d) 3k € (zero, one )s.t for every x,y € Xandt > 0

e sy vz [0 vy av
W(x,y,t) = M?>(Ax,Sy,t) * M?(Px, Ax,t)

* M?(Qy, Sy, t) * M?>(Px,Sy,t) x M*(Ax, Ax, t)
anywhere & : [0,4+o] - [0,+] is a LIM which is
summable on each CSS of [0,+x] , NN, and s.t, Ve >
0, f, €(w)dv > 0 . to show AB,ST, P and Q have a UCFP

in X.

Remark 1.3.6 If we take the pair (P, AB) is WC in place of
CT of (B) in Theorem 1.3.2 then we get the following result.

Corollary 1.3.7 suppose(X,M,x) be a CFMC and let
A,B,S,T,PandQ be mappings from X into itself s.t the
subsequent situation are fulfilled:
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1.3.7(@) P(X) c ST(X)andQ(X) c AB(X),

1.3.7 (0)AB = BA,ST = TS,PB = BP,QT =TQ,

1.3.7(c) moreover P or AB is nonstop,

1.3.7 (d) (P, AB) and (Q, ST) are WC,

1.3.7 (e) 3f (x) = k € (0,1)s.tevery pointx,y € Xandt > 0

fMZ (Px,Qy kt) W(x,y,t)

; swydvz [0 ew)dv
W(x,y,t) = M?(ABx,STy,t) * M?>(Px, ABx,t)
* M?(Qy, STy, t) * M?(Px,STy,t) * M?>(ABx, ABx, t)
i.e & : [zero, +infinite] —» [zero, +infinite] is a LIM
which is summable on ECSS of [zero, +infinite] , NN, and
ST, Ve> 0, fogf(v) dv >0 . To show AB,ST, P and Q
have a UCFT in X.

Remark 1.3.8 If we take B =T = IIP on X in Corollay
1.3.7 then condition 1.3.7(b) is satisfy insignificantly and we
get following Corollary

Corollary 139 Let (X,M,x) be a CFMS and let
A, S, PandQ be mappings from X into itself such that the
following conditions are satisfied:

1.3.9(a) P(X) c S(X)andQ(X) c A(X),

1.3.9(b) either P or AB is continuous,

1.3.9 (c) (P, 4) and (Q, S) are weak compatible,

1.3.9(d) 3f(x) = k € (0,1)s.tevery pointx,y € Xandt > 0

MZ(Px,Qy kt) W(x,y,t)
J. EW)dv = f EWw)dv
0

W(x,y,t) = M*(Ax,Sy,t) * M*(Px, Ax,t)
* M?(Qy, Sy,t) * M*(Px,Sy,t)
i.e. & : [zero, +infinite] — [zero, +infinite] is a LIM
which is summable on ECSS of [zero, +infinite] , NN, and
ST,Ve> 0, [ §()dv>0.ToshowA,S, Pand Q have a
UCFT in X.
Now following results are also equivalent to Theorem 2.3.2

Theorem 1.3.10: Suppose (X, M,x) be a CFMS and suppose
A,B,S,T,PandQ be mappings from X into itself s.t the
following conditions are satisfied:

1.3.10(a) P(X) c ST(X)andQ(X) c AB(X),

1.3.10 (b)AB = BA,ST = TS,PB = BP,QT =TQ,
1.3.10(c) moreover P or AB is nonstop,

1.3.10(d) (P, AB) is CofT(a) and (Q, ST) is WC,

1.3.10 (e) there exists k € (0,1) such that for every x,y €
Xandt > 0

2
fOM (Px,Qy,kt)f(U) dv >

Jo " €@y dv

W(x,y,t) = M?*(ABx,STy,t) * M*(Px, ABx, t)

* M?(Qy, STy, t) » M?(Px,STy,t)

Where & : [0, +o] - [0, +o0] isa LIM which is summable
on ECSSof [0, +]NN, and such that,
Ve> 0,[/é(w)dv>0 . to show AS, P and Q have a
UNCFP in X.
Proof : Form the explanation 1.2.8 and proof of the Theorem
1.3.2, we get the result.

Remark 1.3.11: If we take B = T = I identity map on X in
Theorem 1.3.10 then condition 1.3.10(b) is ST and we get
following Corollary

Theorem 1.3.12 suppose(X,M,x) be a CFMS and let
A,S,PandQ be mappings from X into itself i.e. the
subsequent situation are fulfilled:

1.3.12(a) P(X) c S(X)andQ(X) c A(X),

1.3.12 (b) moreover P or AB is nonstop,

1.3.12 (c) (P, AB) is CofT(a)&(Q, ST) is WC,

1.3.12 (d) 3k € (zero, one )s.tevery point x,y € Xandt >
0

s()dv

W(x,y,t)
= f EWw)dv

0
W(x,y,t) = M?>(Ax,Sy,t) * M?(Px, Ax,t)
* M?(Qy, Sy, t) * M?>(Px,Sy,t) x M?(Ax, Ax, t)
i.e & : [zero, +infinite] - [zero, +infinite] is a LIM
which is summable on each ECSS of [zero, +infinite] , NN
and St, Ve > 0, [ &(v)dv >0 .to show AS, P and Q
have a UNCFP in X.

fMZ(Px,Qy,kt)
0

2. Conclusion

Here we proved Common Fixed Point Theorem for
Compatible Maps of Type (B) and Type (@) in Fuzzy
Metric Space and Common Fixed Point Theorem for Integer
Type Mapping in Fuzzy Metric Space important corollaries.
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