ISSN: 2319-7064 SJIF (2022): 7.942

Common Fixed Point Theorem in Fuzzy Metric Spaces for Compatible Maps

Uma M.

Abstract: The FPT itself attractive combination of investigation, topology moreover geometry. Over the last few decades the theory of FP has appeared as especially dominant as well as significant instrument inside the learn of NonLP. In particular, FPT have been applied in a variety of diverse fields as biology, chemistry, economics, engineering, game theory and physics. The situation is also likely to evaluates some existing complications beginning science and technology, where one is concerned with a system of differential, integral and FE

Keywords: Fuzzy metric space, Compatible maps, nonstop, completeness, uniqueness, invertible, summable

1. Introduction

In genuine world, the many-sided quality by and large emerges from uncertainly as equivocalness. The PT has been age old and powerful instrument to deal with uncertainly, yet it very well may be connected just to the circumstances whose attributes depend on irregular procedures, i.e., process in which the event of occasions is entirely controlled by shot. Uncertainly may emerge because of PI about the issue, or because of data which isn't CD, or because of natural imprecision in the dialect with which the issue is characterized or because of receipt of data from in excess of one source. FST is an EMT to deal with the uncertainly emerging because of uncertainty. In 1965, Lotfi A-Zadeh [101] propounded the FST in his section.

Our aim of this chapter is to find some more results for compatible map of type (β) in FMS.

For the sake of completeness, we recall some definition and known results in FMS, which are used in this chapter.

Definition 1.1.1: Let *X* be any set. A FS in *X* is a function with area *X* and values in [zero, one].

Definition 1.1.2: A binary operation \star : [zero, one] \times [zero, one] \rightarrow [zero, one] is continuo zero, one us $\parallel t - norm \parallel$ with star is fulfilling the subsequent situation:

 $1.1.2(a) \star is comme \& asse,$

1.1.2 (b) \star is continuous,

1.1.2 (c) $a \star 1 = aforalla \in [zero, one]$

1.1.2 (d) $a \star b \leq c \star d$ whenever $a \leq c$ and $b \leq d$,

for all $a, b, c, d \in [\text{zero, one}]$

Examples of t - norm are $a * b = min\{a, b\}$ and a * b = ab.

Definition 1.1.3: A 3-tuple (X, M, \star) is a FMS whenever X is an AS \star is continuous ||t - norm|| and M is FA on $X \times X \times$ [zero, +infinite) fulfilling, every point $x, y, z \in X$ and s, t > zero, the FC:

1.1.3 (a) M(x, y, t) nonnegtive

1.1.3 (b) M(x, y, 0) = 0

1.1.3 (c) M(x, y, t) = 1 iff x = y

1.1.3 (d) M(x, y, t) is comme

1.1.3 (e) $M(x, y, t) \star M(y, z, s) \leq M(x, z, t + s)$

1.1.3 (f) $M(x, y, \cdot)$: $(0, \infty^+) \rightarrow [0,1]$ is continuous.

We note that, M(x, y, t) can be realized as the measure of closeness with connecting x & y w.r. tt. It be identified to $M(x, y, \cdot)$ is $\text{ND} \forall x, y \in X$. Let $M(x, y, \star)$ be a FMS for t > 0, the OB

Ball(space, metric, variable) equal $\{y \in X: M((space, metric, variable)) > 1 - r\}.$

Now, the collection $\{B((space, metric, variable)): x \in X, 0 < r < 1, t > 0 \text{ is a NBDs for a topology } \tau \text{on } X \text{ induced by the FMS. I.e topology is Housdroff and FC.}$

Example 1.1.4suppose (universal, distance) be a MS. Define $a \star b = \text{LUB of a}$ and b = uniform and $M(space, metric, variable) = <math>\frac{t}{t + dis(x,y)} \forall x, y \in X$ and all t > 0. subsequently (X, M, \star) is a FMS. It is call the FMSI through d.

Definition 1.1.5A sequence $\{x_n\}$ in a FMS (X,M,\star) be known as converges to x if f for each $\varepsilon > 0$ and each t > 0, $n_0 \in N$ s.t $M(x_n,x,t) > 1 - \varepsilon for all n \ge n_0$. **Definition 1.1.6** A $\{x_n\}$ be in a FMS (X,M,\star) be known to be a CSC to x iff each $\varepsilon > 0$ and each t > 0, $n_0 \in N$ s.t $M(x_m,x_n,t) > 1 - \varepsilon for all m, n \ge n_0$.

A FMS(X, M, \star) is known's to be complete if each CS in it conto a point in it.

Definition 1.1.7SM A and S of a FMS(X, M, \star) are is knowns to be compatible if and only if $M(ASx_n, SAx_n, t) \rightarrow 1$ for all t > 0, i.e{ x_n } is a in X s.t Sx_n , $Ax_n \rightarrow p$ of various $p \in Xasn \rightarrow \infty$.

Definition 1.1.8SM A and S of a FMS(X, M, \star) are said to be compatible of type $(\beta) \leftrightarrow M(AAx_n, SSx_n, t) \rightarrow 1$ eacht > 0, i.e $\{x_n\}$ is a in X s.t Sx_n , $Ax_n \rightarrow p$ and $p \in Xasn \rightarrow \infty$.

Definition 1.1.92-map A and B from a FMS(X, M, \star) into itself are known to be WC if they commute at their CP i.e., Ax = Bx implies ABx = BAx each $x \in X$.

Remark 1.1.10 The concept of CM of type (β) is more general then the concept of CM in FMS.

Volume 11 Issue 10, October 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ES231022124024 DOI: 10.21275/ES231022124024 1351

ISSN: 2319-7064 SJIF (2022): 7.942

Definition 1.1.11suppose A and S be2-SM of a FMs(X, M, \star) then A and S is said to be a WC if $M(ASx_n, SAx_n, t) \leq M(Sx_n, Ax_n, t)$ for all x in X.

It can be seen that $CMs(ASx = SAx \forall x \in X)$ are CM but opposite is not right.

Lemma 1.1.12 In a FMS (X, M, \star) limit of a sequence is exclusive.

Lemma 1.1.13 Let (X, M, \star) be a FMS. Then for all $x, y \in XM(x, y, .)$ is a NDF.

Lemma 1.1.14suppose t (X, M, \star) be a FMS. If $\exists k \in (0,1)$ s.tFA $x, y \in X, M(x, y, kt) \ge M(x, y, t) \forall t > 0$, then x = y.

Lemma 1.1.15A $\{x_n\}$ in a FMS $(X, M, \star)(X, M, \star)$. If \exists a number $k \in (0,1)$ such that

 $M(x_{n+2}, x_{n+1}, kt) \ge M(x_{n+1}, x_n, t) \ \forall \ t > 0 \ and n \in N$ after that $\{x_n\}$ is a CS in X.

Lemma 1.1.16 The only $t - norm \star \text{ satisfying } r \star r = r$ for all $r \in [0,1]$ is the min t - norm that is $a \star b = min\{a, b\}$ for all $a, b \in [0,1]$.

1.2 Common Fixed Point Theorem for Compatible Maps of Type (β) and Type (α)

In this section we prove a CFPT for CM of type (β) and type (α) in FMS. In fact we prove the following theorem.

Theorem 1.2.1suppose (X, M, \star) be a FMS and let A, B, S, T, PandQ be mappings from X into itself s.t the following conditions are satisfied:

1.2.1(a) $P(X) \subset ST(X)$ and $Q(X) \subset AB(X)$,

1.2.1(b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.2.1(c) either P or AB is continuous,

1.2.1(d) (P, AB) is compatible of type (β) and (Q, ST) is weak compatible,

1.2.1(e) $\exists k \in (0,1)$ such that for every $x, y \in X$ and t > 0 $M^2(Px, Qy, kt) \ge M^2(ABx, STy, t) * M^2(Px, ABx, t)$ $* M^2(Qy, STy, t) * M^2(Px, STy, t) * M^2(ABx, ABx, t)$

To show A, B, S, T, P and Q have a UCFP in X.

Proof: Let $x_0 \in X$, then from 1.2.1(a) we have $x_1, x_2 \in X$ s.t $Px_0 = STx_1 and Qx_1 = ABx_2$

Inductively, we $CS\{x_n\}$ and $\{y_n\}$ in X s.t for $n \in N$

$$Px_{2n-2} = STx_{2n-1} = y_{2n-1} and Qx_{2n-1} = ABx_{2n} = y_{2n}$$

Step 1 Put $x = x_{2n} and y = x_{2n+1}$ in 1.2.1(e) then we have

$$\begin{split} M^2(Px_{2n},Qx_{2n+1},kt) &\geq M^2(ABx_{2n},STx_{2n+1},t) \star \\ M^2(Px_{2n},ABx_{2n},t) & \star M^2(Qx_{2n+1},STx_{2n+1},t) \star M^2(Px_{2n},STx_{2n+1},t) \\ & \star M^2(Qx_{2n+1},STx_{2n+1},t) \star M^2(Px_{2n},STx_{2n+1},t) \\ & \star M^2(ABx_{2n},ABx_{2n},t) \\ M^2(y_{2n+1},y_{2n+2},kt) & \geq M^2(y_{2n},y_{2n+1},t) \star M^2(y_{2n+1},y_{2n},t) \end{split}$$

$$\star M^{2}(y_{2n+2}, y_{2n+1}, t) \star M^{2}(y_{2n+1}, y_{2n+1}, t)
\star M^{2}(y_{2n}, y_{2n}, t)$$

$$M^{2}(y_{2n+1}, y_{2n+2}, kt)
\geq M^{2}(y_{2n}, y_{2n+1}, t) \star M^{2}(y_{2n+2}, y_{2n+1}, t)$$

From lemma 2.1.13 and 2.1.14 we have

$$M^{2}(y_{2n+1}, y_{2n+2}, kt) \ge M^{2}(y_{2n}, y_{2n+1}, t)$$
That is
$$M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n}, y_{2n+1}, t)$$

likewise WH

$$\begin{split} &M(y_{2n+2},y_{2n+3},kt) \geq M(y_{2n+1},y_{2n+2},t) \\ &\text{TWH} \\ &M(y_{n+1},y_{n+2},kt) \geq M(y_n,y_{n+1},t) \\ &M(y_{n+1},y_{n+2},t) \geq M\left(y_n,y_{n+1},\frac{t}{k}\right) \\ &M(y_n,y_{n+1},t) \geq M\left(y_0,y_1,\frac{t}{k^n}\right) \to 1 \ asn \to \infty, \\ &\text{and hence } M(y_n,y_{n+1},t) \to 1 \ asn \to \infty \ for all t > 0. \end{split}$$

For each $\epsilon > 0$ and t > 0, we can choose $n_0 \in N$ such that $M(y_n, y_{n+1}, t) > 1 - \epsilon forall n > n_0$.

FAm, $n \in N$ we suppose that $\geq n$. i.e

$$M(y_n, y_m, t) \ge M\left(y_n, y_{n+1}, \frac{t}{m-n}\right) \star M\left(y_{n+1}, y_{n+2}, \frac{t}{m-n}\right) \star \dots \star M\left(y_{m-1}, y_m, \frac{t}{m-n}\right) M(y_n, y_m, t) \ge (1 - \epsilon) \star (1 - \epsilon) \star \dots \star (1 - \epsilon)(m - ntimes M(y_n, y_m, t) \ge (1 - \epsilon)$$
And hence $\{y_n\}$ is a CS in X.

Since (X, M, \star) is complete, $\{y_n\}$ con to some point $z \in X$. Also its SSC to the SP $z \in X$.

That is
$$\{Px_{2n+2}\} \rightarrow zand\{STx_{2n+1}\} \rightarrow z \ 1.2.1 \ (i)$$
 $\{Qx_{2n+1}\} \rightarrow zand\{ABx_{2n}\} \rightarrow z \ 1.2.1 \ (ii)$ Case 1 if AB is nonstop if AB is nonstop, we have $(AB)^2x_{2n} \rightarrow ABzandABPx_{2n} \rightarrow ABz$ As (P,AB) is CP of type (β) , we have $M(PPx_{2n}, (AB)(AB)x_{2n}, t) = 1$, $forallt > 0$ Or $M(PPx_{2n}, ABz, t) = 1$ Therefore, $PPx_{2n} \rightarrow ABz$. Step 2 Put $x = (AB)x_{2n}andy = x_{2n+1}$ in 1.2.1(e) we have $M^2(P(AB)x_{2n}, Qy, kt) \ge M^2(AB(AB)x_{2n}, STx_{2n+1}, t) + M^2(P(AB)x_{2n}, AB(AB)x_{2n}, t) + M^2(Qx_{2n+1}, STx_{2n+1}, t) + M^2(P(AB)x_{2n}, AB(AB)x_{2n}, t) + M^2(ABABx^2n, ABABx^2n, t)$ Taking $n \rightarrow \infty$ we get $M^2((AB)z, z, kt)$ $M^2((AB)z, z, t) + M^2((AB)z, z, t) + M^2((AB)z, z, t) + M^2((AB)z, z, t)$

 $M^2((AB)z,z,kt) \ge M^2((AB)z,z,t) \star M^2((AB)z,z,t)$

Volume 11 Issue 10, October 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

```
ABz = z . 1.2.1(iii)
i.eM((AB)z, z, kt) \ge M((AB)z, z, t)
TF by lemma 2.1.14 we have
Step -3 Put x = zandy = x_{2n+1} in 2.2.1(e) we have
                                                         M^2(ABz,STx_{2n+1},t)\star M^2(Pz,ABz,t)\star
                 M^{2}(Pz,Qx_{2n+1},kt) \geq \binom{M^{2}(Qx_{2n+1},STx_{2n+1},t) * M^{2}(Pz,STx_{2n+1},t) * M^{2}(ABz,ABz,t)}{M^{2}(Qx_{2n+1},STx_{2n+1},t) * M^{2}(ABz,ABz,t)}
Takn \to \infty and using equation 1.2.1 (i) we have
                                                                     Step 7: Putting x = x_{2n} and y = Tz in 2.2.1(e) we get
      M^2(Pz, z, kt) \ge M^2(ABz, z, t) \star M^2(Pz, ABz, t)
                                                                               M^2(Px_{2n}, QTz, kt)
                                                                                                  \geq M^2(ABx_{2n},STTz,t)
                         \star M^2(z,z,t) \star M^2(Pz,z,t)
                         * M^2(ABz, z, t) \star M^2
                                                                                                  \star M^2(Px_{2n},ABx_{2n},t)
That is M^2(Pz, z, kt) \ge M^2(Pz, z, t)
And hence M(Pz, z, kt) \ge M(Pz, z, t)
                                                                     M^2(QTz,STTz,t) \star M^2(Px_{2n},STTz,t) *
                                                                     M^2(ABx_{2n},ABx_{2n},t)
Therefore by using lemma 1.1.14, we get
                            Pz = z
                                                                     As QT = TQ and ST = TS we have
So we have ABz = Pz = z.
                                                                                        QTz = TQz = Tz
Step- 4 Putting x = Bzandy = x_{2n+1}in 2.2.1(e), we get
                                                                     And ST(Tz) = T(STz) = TQz = Tz.
        M^2(PBz, Qx_{2n+1}, kt)
                           \geq M^2(ABBz, STx_{2n+1}, t)
                                                                     Taking n \to \infty we get
                           \star M^2(PBz, ABBz, t)
                                                                                   M^2(z,Tz,kt) \ge M^2(z,Tz,t) \star M^2(z,z,t)
                           \star M^2(Qx_{2n+1},STx_{2n+1},t)
                                                                               \star M^2(Tz,Tz,t) \star M^2(z,Tz,t)M^2(z,z,t)
                           \star M^2(PBz, STx_{2n+1}, t)
                           *M^2(ABBz, ABBz, t)
                                                                                          M^2(z,Tz,kt) \ge M^2(z,Tz,t)
As BP = PB and AB = BA, so we have
                                                                     Therefore M(z,Tz,kt) \ge M(z,Tz,t)
    P(Bz) = B(Pz) = Bzand(AB)(Bz) = (BA)(Bz)
                                                                     Therefore by Lemma 1.1.13 we have Tz = z
                       = B(ABz) = Bz.
                                                                     Now STz = Tz = zimpliesSz = z.
Taking n \to \infty and using 1.2.1(i) we get
                                                                     Hence
M^2(Bz,z,kt) \ge M^2(Bz,z,t) \star M^2(Bz,Bz,t) \star M^2(z,z,t)
                                                                     Sz = Tz = Qz = z
                                                                                                                     1.2.1(v)
                   \star\,M^2(Bz,z,t)*M^2(Bz,z,t)
                                                                     Combining 2.2.1(iv) and 2.2.1(v) we have
                M^2(Bz,z,kt) \ge M^2(Bz,z,t)
                                                                                        Az = Bz = Pz = Sz = Tz = Qz = z
That is M(Bz, z, kt) \ge M(Bz, z, t)
                                                                     Hence z is the CFP of A, B, S, T, P and Q.
Therefore by Lemma 1.1.14 we have Bz = z
And also we have ABz = zimpliesAz = z
                                                                     Case - II suppose P is nonstop
Therefore Az = Bz = Pz = z . 1.2.1 (iv)
                                                                     As P is continuous
                                                                                   P^2x_{2n} \to PzandP(AB)x_{2n} \to Pz
Step – 5 As P(X) ⊂ ST(X) there exists u \in X such that
                                                                     As (P,AB) is compatible pair of type (\beta),
                        z = Pz = STu
                                                                                        M(PPx_{2n}, (AB)(AB)x_{2n}, t) =
Putting x = x_{2n} and y = u in 1.2.1(e) we get
                                                                     1 forallt > 0
           M^2(Px_{2n}, Qu, kt)
                                                                                        M(Pz, (AB)(AB)x_{2n}, t) = 1
                              \geq M^2(ABx_{2n},STu,t)
                                                                     Therefore (AB)^2 x_{2n} \rightarrow Pz.
                              \star M^2(Px_{2n},ABx_{2n},t)
\star M^2(Qu,STu,t) \star M^2(Px_{2n},STu,t) * M^2(ABx_{2n},STu,t)
                                                                     Step -8 Putting x = Px_{2n} and y = x_{2n+1} in 2.2.1(e) then
                                                                     we get
Taking n \to \infty and using 1.2.1(i) and 1.2.1(ii) we get
                                                                             M^2(PPx_{2n},Qx_{2n+1},kt)
        M^2(z, Qu, kt) \ge M^2(z, STu, t) \star M^2(z, z, t)
                                                                                                \geq M^2(ABPx_{2n}, STx_{2n+1}, t)
              \star M^2(Qu,STu,t) \star M^2(z,STu,t)
                                                                                                \star M^2(PPx_{2n},ABPx_{2n},t)
                M^2(z, Qu, kt) \ge M^2(z, Qu, t)
That is M(z, Qu, kt) \ge M(z, Qu, t)
TF by using Lemma 1.1.13 we have Qu = z
                                                                               \star M^{2}(Qx_{2n+1}, STx_{2n+1}, t) \star
                                                                     M^{2}(PPx_{2n}, STx_{2n+1}, t) * M^{2}(ABPx_{2n}, ABPx_{2n}, t)
Hence STu = z = Qu.
Hence (Q, ST) is WC, therefore, we have
                                                                     Taking n \to \infty, we get
                                                                                  M^2(Pz,z,kt) \ge M^2(Pz,z,t) \star M^2(Pz,Pz,t)
                        QSTu = STQu
Thus Qz = STz.
                                                                                                                     \star M^2(z,z,t) \star
                                                                     M^2(Pz,z,t) * M^2(Pz,Pz,t)
Step – 6 Putting x = x_{2n} and y = z in 1.2.1(e) we get
                                                                                          M^2(Pz, z, kt) \ge M^2(Pz, z, t)
           M^2(Px_{2n}, Qz, kt) \ge M^2(ABx_{2n}, STz, t)
                             \star M^2(Px_{2n},ABx_{2n},t)
                                                                     Hence M(Pz, z, kt) \ge M(Pz, z, t)
\star M^2(Qz,STz,t) \star M^2(Px_{2n},STz,t)M^2(ABx_{2n},ABx_{2n},t)
                                                                     Therefore by Lemma 1.1.13 we get Pz = z
Taking n \to \infty and using 1.2.1(ii) and step 5 we get
                                                                     Step- 9 Put x = ABx_{2n} and y = x_{2n+1} in 2.2.1(e) then
         M^2(z, Qz, kt) \ge M^2(z, STz, t) \star M^2(z, z, t)
                                                                     we get
        \star M^2(Qz,STz,t) \star M^2(z,STz,t)M^2(z,z,t)
                                                                            M^2(PABx_{2n},Qx_{2n+1},kt)
                M^2(z, Qz, kt) \ge M^2(z, Qz, t)
                                                                                               \geq M^2(ABABx_{2n}, STx_{2n+1}, t)
And hence M(z, Qz, kt) \ge M(z, Qz, t)
                                                                                               \star M^2(PABx_{2n}, ABABx_{2n}, t)
                                                                                        \star \, M^2(Qx_{2n+1},STx_{2n+1},t) \, \star
Therefore by using Lemma 1.1.13 we get Qz = z.
                                                                     M^{2}(PABx_{2n}, PABx_{2n}, t) * M^{2}(ABABx_{2n}, STx_{2n+1}, t)
```

Volume 11 Issue 10, October 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

```
Taking n \to \infty we get M^2(ABz,z,kt) \ge M^2(ABz,z,t) \star M^2(ABz,z,t) \\ \star M^2(z,z,t) \star M^2(z,z,t) \star M^2(z,z,t) \star M^2(z,z,t)  Therefore M^2(z,z,t) \ge M^2(z,z,t) And hence M(z,z,t) \ge M(z,z,t)
```

 $M(ABZ, Z, Kt) \ge M(ABZ, By Lemma 1.1.13 we get <math>ABZ = Z$

By applying step 4,5,6,7,8 we get

$$Az = Bz = Sz = Tz = Pz = Qz = z.$$

That is z is a common fixed point of A,B,S,T,P,Q in X.

Uniqueness Let u be another common fixed point of A,B,S,T,P and Q. Then

Au = Bu = Su = Tu = Pu = Qu = u Putting x = uandy = z in 1.2.1(e) then we get $M^2(Pu, Qz, kt) \ge M^2(ABu, STz, t) \star M^2(Pu, ABu, t) \\ \star M^2(Qz, STz, t) \star M^2(Pu, STz, t) \star M^2(ABu, ABu, t)$ Taking limit both side then we get

 $M^{2}(u,z,kt) \ge M^{2}(u,z,t) * M^{2}(u,u,t)$ $* M^{2}(z,z,t) * M^{2}(u,z,t)M^{2}(u,u,t)$ $M^{2}(u,z,kt) \ge M^{2}(u,z,t)$

And hence $M(u, z, kt) \ge M(u, z, t)$ By lemma 1.1.13 we get z = u.

That is z is a unique common fixed point of A,B, S, T, P and Q in X.

Remark 1.2.2: If we take B = T = I identity map on X in Theorem 2.2.1 then condition 1.2.1(b) is satisfy trivially and we get following Corollary

Corollary 1.2.3 suppose (X, M, \star) be a FMS and let A, B, S, T, PandQ be mappings from X into itself s.t the following conditions are satisfied:

1.2.3(a) $P \subset SandQ(X) \subset A$, are in universal space 1.2.3(b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.2.3(c) either P or AB is continuous,

1.2.3(d) (P, AB) is compatible of type (β) and (Q, ST) is weak compatible,

1.2.3(e) $\exists k \in (0,1)$ such that for every $x, y \in X$ and t > 0 $M^2(Px, Qy, kt) \ge M^2(Ax, STy, t) * M^2(Px, Ax, t)$ $* M^2(Qy, Sy, t) * M^2(Px, Sy, t)$ $* M^2(Ax, STy, t) M^2(Ax, Ax, t)$

To show A, S, P and Q have a UCFP in X.

Remark 1.2.4 If we take the pair (P, AB) is weakly compatible in place of compatible type of (β) in Theorem 2.2.1 then we get the following result.

Corollary 1.2.5 suppose (X, M, \star) be a CFMS and let A, B, S, T, PandQ be mappings from X into itself s.t the following conditions are satisfied:

1.2.5(a) $P(X) \subset ST(X)$ and $Q(X) \subset AB(X)$,

1.2.5(b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.2.5(c) either P or AB is continuous,

1.2.5(d) (P, AB) is compatible of type (β) and (Q, ST) is weak compatible,

1.2.5(e) $\exists k \in (\text{zero, one}) \text{s.t for each point } x, y \in X \text{ and } t > 0$

 $M^2(Px,Qy,kt) \ge M^2(ABx,STy,t) \star M^2(Px,ABx,t)$ $\star M^2(Qy,STy,t) \star M^2(Px,STy,t) \star M^2(ABx,ABx,t)$ To show A, B,S,T, P and Q have a UCFP in X. **Remark 1.2.6** If we take B = T = I identity map on X in Corollay 1.2.5 then condition 1.2.1(b) is satisfy trivially and we get following Corollary

Corollary 1.2.7

suppose (X, M, \star) be a CFMS and let A, B, S, T, PandQ be mappings from X into itself s.t the following conditions are satisfied:

1.2.7(a) $P \subset SandQ(X) \subset A$, are in universal space 1.2.7(b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.2.7(c) either P or AB is continuous,

1.2.7(d) (P, AB) is compatible of type (β) and (Q, ST) is weak compatible,

1.2.7(e) $\exists k \in (0,1)$ such that for every $x, y \in X$ and t > 0 $M^2(Px, Qy, kt) \ge M^2(Ax, STy, t) * M^2(Px, Ax, t)$ $* M^2(Qy, Sy, t) * M^2(Px, Sy, t)$ $* M^2(Ax, STy, t) M^2(Ax, Ax, t)$

To show A, ,S,, P and Q have a UCFP in X.

Definition 1.2.8SM A and S of a FMS(X, M, \star) are said to be compatible of type $(\alpha) \Leftrightarrow \text{if } M(ASx_n, SSx_n, t) \to 1$ and $M(AAx_n, ASx_n, t) \to 1 \forall t > 0$, where $\{x_n\}$ is a in X s.t Sx_n , $Ax_n \to p$ for some $p \in Xasn \to \infty$.

It is easy to see that compatible map of type (α) is equivalent to the compatible map of type (β) .

Now following results are equivalent to Theorem 1.2.1

Theorem 1.2.9Let (X, M, \star) be a complete fuzzy metric space and let A, B, S, T, PandQ be mappings from X into itself such that the following conditions are satisfied:

1.2.9(a) $P(X) \subset ST(X)$ and $Q(X) \subset AB(X)$,

1.2.9(b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.2.9(c) moreover P or AB is nonstop,

1.2.9(d) (P, AB) is compatible of type (α) and (Q, ST) is WC,

1.2.9(e) there exists $k \in (0,1)$ such that for every $x, y \in X$ and t > 0

$$M^2(Px, Qy, kt) \ge M^2(ABx, STy, t) \star M^2(Px, ABx, t)$$

 $\star M^2(Qy, STy, t) \star M^2(Px, STy, t) \star M^2(ABx, ABx, t)$

Then A, B,S,T, P and Q have a UCFP in X.

Proof: Form the definition 1.2.8 and proof of the Theorem 1.2.1, we get the result.

Remark 1.2.10 If we take B = T = IIM on X in Theorem 1.2.9 then condition 1.2.9(b) is satisfy trivially and we get following Corollary

Corollary 1.2..10 if (X, M, \star) be a CFMS and let A, S, PandQ be mappings from X into itself s.t:

1.2.10(a) $P(X) \subset S(X)$ and $Q(X) \subset A(X)$,

1.2.10(b) either P or A is continuous,

1.2.10(c) (P, A) is compatible of type (α) and (Q, S) is weak compatible,

1.2.10(d) $\exists k \in (\text{zero, one}) \text{ s.t for every } x, y \in X \text{ and } t > 0$ $M^2(Px, Qy, kt) \ge M^2(Ax, Sy, t) * M^2(Px, Ax, t)$ $* M^2(Qy, Sy, t) * M^2(Px, Sy, t) * M^2(Ax, Ax, t)$

To show A, S,P and Q have a UCFP unique common fixed point in X.

Volume 11 Issue 10, October 2022

www.ijsr.net

<u>Licensed Under Creative Commons Attribution CC BY</u>

Paper ID: ES231022124024 DOI: 10.21275/ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

1.3 Common Fixed Point Theorem for Integer Type Mapping in Fuzzy Metric Space.

On the way of generalization of Banach contraction principle [21] one of the most famous generalization is introduced by Branciari [21] in general setting of lebgesgue integrable function and proved following fixed point theorems in metric spaces.

Theorem 1.3.1: Suppose (X, d) be a CMS, $\alpha \in (0,1)$ and let $T: X \to X$, be a mapping s.t for each $x, y \in X$,

$$\int_0^{d(Tx,Ty)} \xi(v) dv \le \int_0^{d(x,y)} \xi(v) dv$$

i.e ξ : [zero, +infinite] \rightarrow [zero, +infinite] is a LIM which is summable on ECSS of [zero, +infinite], NN, and such that, $\forall \ \varepsilon > 0$, $\int_0^{\varepsilon} \xi(v) \, dv > 0$ to show, T has UFPz \in X such that for each $x \in X$, $T^n x \to z$ as $n \to \infty$.

It should be noted that if $\xi(v) = 1$ to show BCP is obtained. Inspired from the result of Branciari [] we prove following CFPT in FMS.

Theorem 1.3.2 if (X, M, \star) be a CMFS and let A, B, S, T, PandQ be mappings from X into s.t:

 $1.3.2(a) P(X) \subset ST(X) and Q(X) \subset AB(X),$

1.3.2 (b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.3.2 (c) moreover P or AB is nonstop,

1.3.2 (d) (P, AB) is compatible of type (β) and (Q, ST) is

$$\int_{0}^{M^{2}(Px,Qy,kt)} \xi(v) dv \ge \int_{0}^{W(x,y,t)} \xi(v) dv$$

 $W(x,y,t) = M^2(ABx,STy,t) \star M^2(Px,ABx,t)$ $\star M^2(Qy,STy,t) \star M^2(Px,STy,t) \star M^2(ABx,ABx,t)$

i.e ξ : $[0,+\infty] \to [0,+\infty]$ is a LIM which is summable on each CSS of $[0, +\infty]$, NN, and s.t, $\forall \varepsilon > 0, \int_0^{\varepsilon} \xi(v) dv > 0$. to show A,B,S,T, P and Q have a UCFP in X.

Proof: if $x_0 \in X$, then from 2.3.2(a) we have $x_1, x_2 \in X$ s.t $Px_0 = STx_1 and Qx_1 = ABx_2$

Inductively, we $CS\{x_n\}$ and $\{y_n\}$ in X s.t for $n \in N$

$$Px_{2n-2} = STx_{2n-1} = y_{2n-1}$$
 and $Qx_{2n-1} = ABx_{2n} = y_{2n}$

Step 1 Put
$$x = x_{2n}$$
 and $y = x_{2n+1}$ in 2.3.2 (e) i.e
$$\int_{0}^{M^{2}(Px_{2n},Qx_{2n+1},kt)} \xi(v) dv \ge \int_{0}^{W(x_{2n},x_{2n+1},t)} \xi(v) dt$$

$$W(x_{2n},x_{2n+1},t) = M^{2}(ABx_{2n},STx_{2n+1},t)$$

$$+ M^{2}(Bx_{2n},ABx_{2n},t)$$

$$W(x_{2n}, x_{2n+1}, t) = M^{-}(ABx_{2n}, SIx_{2n+1}, \star M^{2}(Px_{2n}, ABx_{2n}, t))$$

$$\star M^{2}(Qx_{2n+1}, STx_{2n+1}, t) \star M^{2}(Px_{2n+1}, STx_{2n+1}, t) \star M^{2}(AR)$$

$$M^{2}(Px_{2n},STx_{2n+1},t) \times M^{2}(Px_{2n},STx_{2n+1},t) \times M^{2}(ABx_{2n},ABx_{2n},t)$$

$$\int_{0}^{M^{2}(y_{2n+1},y_{2n+2},kt)} \xi(v) dv \ge \int_{0}^{W(y_{2n+1},y_{2n+2},t)} \xi(v) dv$$

 $W(y_{2n+1}, y_{2n+2}, t) = M^2(y_{2n}, y_{2n+1}, t) \star M^2(y_{2n+1}, y_{2n}, t)$

 $\star M^2(y_{2n+2}, y_{2n+1}, t) \star$

$$M^{2}(y_{2n+1}, y_{2n+1}, t) * M^{2}(y_{2n}, y_{2n}, t)$$

$$\int_{0}^{M^{2}(y_{2n+1}, y_{2n+2}, kt)} \xi(v) dv$$

$$\geq \int_{0}^{M^{2}(y_{2n}, y_{2n+1}, t) * M^{2}(y_{2n+2}, y_{2n+1}, t)} \xi(v) dv$$

From Lemma 1.1.13 and 1.1.14 we have

$$\int_0^{M^2(y_{2n+1},y_{2n+2},kt)} \xi(v) \, dv \ge \int_0^{M^2(y_{2n},y_{2n+1},t)} \xi(v) \, dv$$

Since $\xi(v)$ is LIFs.t

$$M^2(y_{2n+1},y_{2n+2},kt)\geq M^2(y_{2n},y_{2n+1},t)$$

That is

$$M(y_{2n+1}, y_{2n+2}, kt) \ge M(y_{2n}, y_{2n+1}, t)$$

likewise

$$M(y_{2n+2}, y_{2n+3}, kt) \ge M(y_{2n+1}, y_{2n+2}, t)$$

Thus we have

$$M(y_{n+1}, y_{n+2}, kt) \ge M(y_n, y_{n+1}, t)$$

$$M(y_{n+1}, y_{n+2}, t) \ge M\left(y_n, y_{n+1}, \frac{t}{k}\right)$$

$$M(y_{n+1}, y_{n+2}, t) \ge M\left(y_n, y_{n+1}, \frac{t}{k}\right)$$

$$M(y_n, y_{n+1}, t) \ge M\left(y_0, y_1, \frac{t}{k^n}\right) \to 1 \ asn \to \infty,$$

to hence $M(y_n, y_{n+1}, t) \rightarrow 1 \ asn \rightarrow$ in ∞ *forallt* > 0.

Every point $\epsilon > 0$ and t > 0, we can choose $n_0 \in N$ s.t $M(y_n, y_{n+1}, t) > 1 - \epsilon forall n > n_0.$

Every point $m, n \in N$ we suppose that $\geq n$. consider

$$M(y_{n}, y_{m}, t) \geq M\left(y_{n}, y_{n+1}, \frac{t}{m-n}\right) \\ \star M\left(y_{n+1}, y_{n+2}, \frac{t}{m-n}\right) \star \\ \dots \star M\left(y_{m-1}, y_{m}, \frac{t}{m-n}\right) \\ M(y_{n}, y_{m}, t) \geq (1-\epsilon) \star (1-\epsilon) \star \dots \\ \star (1-\epsilon)(m-n) times \\ M(y_{n}, y_{m}, t) \geq (1-\epsilon)$$

And hance $\{y_n\}$ is a CS in X.

Since (X, M, \star) is complete, $\{y_n\}$ cons to $SPz \in X$. Also its SSC to the SP $\in X$.

$$\begin{array}{l} \{Px_{2n+2}\} \rightarrow zand\{STx_{2n+1}\} \rightarrow z \ 1.3.2 \ (\mathrm{i}) \\ \{Qx_{2n+1}\} \rightarrow zand\{ABx_{2n}\} \rightarrow y_{2n} \ 1.3.2 (\mathrm{ii}) \end{array}$$

Case 1 Suppose AB is nonstop

Since AB is nonstop, we have

$$(AB)^2 x_{2n} \rightarrow ABz and ABP x_{2n} \rightarrow ABz$$

As (P, AB) is CP of type (β) , we have

$$M(PPx_{2n}, (AB)(AB)x_{2n}, t) = 1, forallt > 0$$

Or $M(PPx_{2n}, ABz, t) = 1$

Therefore, $PPx_{2n} \rightarrow ABz$.

Step 2 Put
$$x = (AB)x_{2n}$$
 and $y = x_{2n+1}$ in 1.3.2(e) we have
$$\int_0^{M^2(P(AB)x_{2n},Qy,kt)} \xi(v) dv \ge \int_0^{W(P(AB)x_{2n},Qy,kt)} \xi(v) dv$$

$$W(P(AB)x_{2n},Qy,t) = M^2(AB(AB)x_{2n},STx_{2n+1},t)$$

$$\star M^2(P(AB)x_{2n},AB(AB)x_{2n},t) \star M^2(Qx_{2n+1},STx_{2n+1},t)$$

$$\star M^2(P(AB)x_{2n},STx_{2n+1},t)$$

$$\star M^2(AB(AB)x_{2n},AB(AB)x_{2n},t)$$

Taking $n \to \infty$ we get

$$\int_{0}^{M^{2}(P(AB)x_{2n},Qy,kt)} \xi(v) dv \ge \int_{0}^{W(P(AB)x_{2n},Qy,t)} \xi(v) dv$$

$$M^{2}((AB)z,z,kt) \ge M^{2}((AB)z,z,t)$$

$$\star M^{2}((AB)z,(AB)z,t)$$

$$\star M^{2}((AB)z,z,t)$$

$$\star M^{2}((AB)z,z,t) \star M^{2}((AB)z(AB),z,t)$$

Volume 11 Issue 10, October 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ES231022124024 DOI: 10.21275/ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

$$\int_{0}^{M^{2}((AB)z,z,kt)} \xi(v) \, dv$$

$$\geq \int_{0}^{M^{2}((AB)z,z,t) \star M^{2}((AB)z,z,t)} \xi(v) \, dv$$
i.e of $\xi(v)$ we have
$$M((AB)z,z,kt) \geq M((AB)z,z,t)$$
i.e by lemma 1.1.14 we have
$$ABz = z \cdot 1.3.2(iii)$$
Step -3 Put $x = zandy = x_{2n+1}$ in 2.3.2(e) we have
$$\int_{0}^{M^{2}(Pz,Qx_{2n+1},kt)} \xi(v) \, dv \geq \int_{0}^{W(Pz,Qx_{2n+1},t)} \xi(v) \, dv$$

$$W(Pz,Qx_{2n+1},t) = M^{2}(ABz,STx_{2n+1},t) \star M^{2}(Pz,ABz,t)$$

$$\star M^{2}(Qx_{2n+1},STx_{2n+1},t) \star M^{2}(Pz,STx_{2n+1},t)$$
Taking $n \to \infty$ and using equation 1.3.2 (i) we have
$$\int_{0}^{M^{2}(Pz,z,kt)} \xi(v) \, dv \geq \int_{0}^{W(Pz,z,t)} \xi(v) \, dv$$

$$W(Pz,z,t) \geq M^{2}(ABz,z,t) \star M^{2}(Pz,ABz,t)$$

$$\star M^{2}(z,z,t) \star M^{2}(Pz,z,t) \star M^{2}(ABz,ABz,t)$$

*
$$M^{-}(Z, Z, t)$$
 * $M^{-}(PZ, Z, t)$ * $M^{-}(ABZ, ABZ, t)$
So that $M^{2}(Pz, z, kt) \ge M^{2}(Pz, z, t)$
And hence $M(Pz, z, kt) \ge M(Pz, z, t)$
i.e by using lemma 1.1.14, we get $Pz = z$
i.e $ABz = Pz = z$.

$$\int_{0}^{M^{2}(PBz,Qx_{2n+1},kt)} \xi(v) dv \ge \int_{0}^{W(PBz,Qx_{2n+1},t)} \xi(v) dv$$

$$\int_{0}^{M^{2}(Bz,z,kt)} \xi(v) dv \ge \int_{0}^{W(Bz,z,t)} \xi(v) dv$$

$$W(Bz,z,t) = M^{2}(Bz,z,t) \star M^{2}(Bz,Bz,t)$$

$$\star M^{2}(z,z,t) \star M^{2}(Bz,z,t) \star M^{2}(Bz,z,t)$$
So we have $M^{2}(Bz,z,kt) \ge M^{2}(Bz,z,t)$

That is $M(Bz, z, kt) \ge M(Bz, z, t)$ Consequently by Lemma 1.1.14 we have Bz = zAnd also we have ABz = zimpliesAz = z

Therefore

$$Az = Bz = Pz = z . 1.3.2$$
 (iv)

Step – 5 As
$$P(X)$$
 ⊂ $ST(X)$ there exists $u \in X$ such that $z = Pz = STu$

Putting
$$x = x_{2n} andy = u$$
 in 2.3.2(e) we get
$$\int_{0}^{M^{2}(Px_{2n},Qu,kt)} \xi(v) dv \ge \int_{0}^{W(Px_{2n},Qu,t)} \xi(v) dv$$

$$W(Px_{2n},Qu,t) = M^{2}(ABx_{2n},STu,t)$$

$$\star M^{2}(Px_{2n},ABx_{2n},t)$$

$$\star M^2(Qu,STu,t)$$

$$\star M^2(Px_{2n},STu,t) * M^2(ABx_{2n},ABx_{2n},t)$$

Taking
$$n \to \infty$$
 and using 1.3.2(i) and 1.3.2(ii) we get
$$\int_0^{M^2(z,Qu,kt)} \xi(v) \, dv \ge \int_0^{W(z,Qu,t)} \xi(v) \, dv$$
$$W(z,Qu,t) = M^2(z,STu,t) \star M^2(z,z,t)$$
$$\star M^2(Qu,STu,t) \star M^2(z,STu,t) \star M^2(z,Z,t)$$
So we have $M^2(z,Qu,kt) \ge M^2(z,Qu,t)$ i.e $M(z,Qu,kt) \ge M(z,Qu,t)$

Consequently by using Lemma 1.1.13 we have Qu = z

Hence
$$STu = z = Qu$$
.

Hence (Q, ST) is weak compatible, therefore, we have QSTu = STQu

Thus Qz = STz.

Step - 6 Putting
$$x = x_{2n} andy = z$$
 in 1.3.2(e) we get
$$\int_{0}^{M^{2}(Px_{2n},Qz,kt)} \xi(v) dv \ge \int_{0}^{W(Px_{2n},Qz,t)} \xi(v) dv$$

$$W(Px_{2n},Qz,t) = M^{2}(ABx_{2n},STz,t) \star M^{2}(Px_{2n},ABx_{2n},t)$$

$$\star M^{2}(Qz,STz,t) \star M^{2}(Px_{2n},STz,t)$$
Taking $n \to \infty$ and using 1.3.2(ii) and step 5 we get

$$\int_{0}^{M^{2}(z,Qz,kt)} \xi(v) dv \ge \int_{0}^{W(z,Qz,t)} \xi(v) dv$$

$$W(z,Qz,t) = M^{2}(z,STz,t) \star M^{2}(z,z,t)$$

$$\star M^{2}(Qz,STz,t) \star M^{2}(z,STz,t) \star M^{2}(STz,STz,t)$$
That is $M^{2}(z,Qz,kt) \ge M^{2}(z,Qz,t)$
And therefore $M(z,Qz,kt) \ge M(z,Qz,t)$

consequently by using Lemma 1.1.13 we get Qz = z.

$$\begin{aligned} \textbf{Step-7} & \text{ Putting } x = x_{2n} andy = Tz \text{ in } 2.3.2 \text{(e)} \text{ we get} \\ & \int_{0}^{M^2(Px_{2n},QTz,kt)} & \xi(v) \, dv \geq \int_{0}^{W(Px_{2n},QTz,t)} & \xi(v) \, dv \\ & W(Px_{2n},QTz,t) \\ & = M^2(ABx_{2n},STTz,t) \\ & \star M^2(Px_{2n},ABx_{2n},t) \\ & \star M^2(QTz,STTz,t) \star M^2(Px_{2n},STTz,t) \\ & \star M^2(ABx_{2n},ABx_{2n},t) \end{aligned}$$
 As $QT = TQandST = TS$ we have $QTz = TQz = Tz$

And ST(Tz) = T(STz) = TQz = Tz.

Taking
$$n \to \infty$$
 we get
$$\int_0^{M^2(z,Tz,kt)} \xi(v) \, dv \ge \int_0^{W(z,Tz,t)} \xi(v) \, dv$$

$$W(z,Tz,t) = M^2(z,Tz,t) \star M^2(z,z,t) \star M^2(Tz,Tz,t) \star M^2(z,Tz,t) \star M^2(z,Tz,t) \star M^2(z,Tz,t)$$

And hence $M^2(z, Tz, kt) \ge M^2(z, Tz, t)$

Consequently $M(z, Tz, kt) \ge M(z, Tz, t)$

Consequently by Lemma 1.1.13 we have Tz = z

Now STz = Tz = zimpliesSz = z.

Hence
$$Sz = Tz = Qz = z \cdot 1.3.2(v)$$

Volume 11 Issue 10, October 2022

www.ijsr.net

<u>Licensed Under Creative Commons Attribution CC BY</u>

Paper ID: ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

Combining 1.3.2(iv) and 1.3.2(v) we have
$$Az = Bz = Pz = Sz = Tz = Qz = z$$

Hence z is the common fixed point of A, B, S, T, P and Q.

Case - II suppose P is continuous

As P is continuous

$$P^2x_{2n} \to PzandP(AB)x_{2n} \to Pz$$

As (P, AB) is compatible pair of type
$$(\beta)$$
,
 $M(PPx_{2n}, (AB)(AB)x_{2n}, t) = 1 \text{ for all } t > 0$

Or
$$M(Pz, (AB)(AB)x_{2n}, t) = 1$$

Therefore $(AB)^2 x_{2n} \rightarrow Pz$.

Step -8 Putting $x = Px_{2n} and y = x_{2n+1}$ in 1.3.2(e) then

$$\int_{0}^{M^{2}(PPx_{2n},Qx_{2n+1},kt)} \xi(v) dv \ge \int_{0}^{W(PPx_{2n},Qx_{2n+1},t)} \xi(v) dv$$

$$W(PPx_{2n},Qx_{2n+1},t)$$

$$= M^{2}(ABPx_{2n},STx_{2n+1},t)$$

$$\star M^{2}(PPx_{2n},ABPx_{2n},t)$$

$$\star M^2(Qx_{2n+1},STx_{2n+1},t) \star \\ M^2(PPx_{2n},STx_{2n+1},t)M^2(ABPx_{2n},ABPx_{2n},t)$$

Taking
$$n \to \infty$$
, we get

$$\int_{0}^{M^{2}(Pz,z,kt)} \xi(v) \, dv \ge \int_{0}^{W(Pz,z,t)} \xi(v) \, dv$$

$$W(Pz,z,t) = M^{2}(Pz,z,t) \star M^{2}(Pz,Pz,t) \star M^{2}(z,z,t)$$

$$\star M^{2}(Pz,z,t)M^{2}(Pz,Pz,t)$$

$$\int_{0}^{M^{2}(Pz,z,kt)} \xi(v) dv \geq \int_{0}^{M^{2}(Pz,z,t)} \xi(v) dv$$
consequently we have

$$M^2(Pz, z, kt) \ge M^2(Pz, z, t)$$

Hence $M(Pz, z, kt) \ge M(Pz, z, t)$ consequently by Lemma 1.1.13 we get Pz = z

Step- 9 Put $x = ABx_{2n}$ and $y = x_{2n+1}$ in 1.3.2(e) then we

$$\int_{0}^{M^{2}(PABx_{2n},Qx_{2n+1},kt)} \xi(v) dv$$

$$\geq \int_{0}^{W(PABx_{2n},Qx_{2n+1},t)} \xi(v) dv$$

$$W(PABx_{2n},Qx_{2n+1},t)$$

$$= M^{2}(ABABx_{2n},STx_{2n+1},t)$$

$$\star M^{2}(PABx_{2n},ABABx_{2n},t)$$

$$\star M^{2}(Qx_{2n+1},STx_{2n+1},t)$$

$$\star M^{2}(PABx_{2n},ABABx_{2n},ABABx_{2n},t)$$

Taking
$$n \to \infty$$
 we get
$$\int_0^{M^2(ABz,z,kt)} \xi(v) \, dv \ge \int_0^{W(ABz,z,t)} \xi(v) \, dv$$

$$W(ABz,z,t) = M^{2}(ABz,z,t) * M^{2}(ABz,z,t)$$

* $M^{2}(z,z,t) * M^{2}(ABz,z,t)$

$$\int_{0}^{M^{2}(ABz,z,kt)} \xi(v) \, dv \ge \int_{0}^{M^{2}(ABz,z,t)} \xi(v)$$

Therefore $M^2(ABz, z, kt) \ge M^2(ABz, z, t)$

And hence $M(ABz, z, kt) \ge M(ABz, z, t)$

By lemma 2.1.13 we get ABz = z

By applying step 4,5,6,7,8 we get
$$Az = Bz = Sz = Tz = Pz = Qz = z.$$

That is z is a CFP of A,B,S,T,P,Q in X.

Exclusivity Let u be another CFP of A,B,S,T,P and Q. Then Au = Bu = Su = Tu = Pu = Qu = uPutting x = uandy = z in 1.2.1(e) then we get

$$\int_{0}^{M^{2}(Pu,Qz,kt)} \xi(v) dv \ge \int_{0}^{W(Pu,Qz,t)} \xi(v) dv$$

$$W(Pu,Qz,t) = M^{2}(ABu,STz,t) \star M^{2}(Pu,ABu,t)$$

$$\star M^{2}(Qz,STz,t) \star M^{2}(Pu,STz,t)M^{2}(ABu,ABu,t)$$

Taking limit both side then we g

$$\int_{0}^{M^{2}(u,z,kt)} \xi(v) dv \ge \int_{0}^{W(u,z,t)} \xi(v) dv$$

$$W(u,z,t) = M^{2}(u,z,t) \star M^{2}(u,u,t) \star M^{2}(z,z,t)$$

$$\star M^{2}(u,z,t) \star M^{2}(u,u,t)$$
i.e. $M^{2}(u,z,kt) \ge M^{2}(u,z,t)$

And hence $M(u, z, kt) \ge M(u, z, t)$

By lemma 1.1.13 we get z = u. i.e. z is a UCFP of A,B, S, T, P and Q in X.

Remark 1.3.3 Theorem 1.2.1 is a special case of the Theorem 1.3.2. It is sufficient if we take $\xi(v) = 1$ in Theorem 1.3.2.

Remark 1.3.4 If we take B = T = IIM on X in Theorem 1.2.3.2 to show condition 1.3.2(b) is satisfy trivially and we get following Corollary

Corollary 1.3.5 suppose (X, M, \star) be a CFMS and suppose *A*, *S*, *PandQ* be mappings from X into itself s.t: 1.3.5(a) $P(X) \subset S(X)$ and $Q(X) \subset A(X)$,

1.3.5 (b) moreover P or AB is nonstop,

1.3.5 (c) (P, AB) is c of t (β) and (Q, ST) is WC,

1.3.5 (d) $\exists k \in (\text{zero, one}) \text{ s.t for every } x, y \in X \text{ and } t > 0$ $\int_0^{M^2(Px,Qy,kt)} \xi(v) \, dv \ge \int_0^{W(x,y,t)} \xi(v) \, dv$

$$\int_{0}^{M^{2}(Px,Qy,kt)} \xi(v) \, dv \ge \int_{0}^{W(x,y,t)} \xi(v) \, dv$$

$$W(x,y,t) = M^{2}(Ax,Sy,t) * M^{2}(Px,Ax,t)$$

$$* M^{2}(Qy,Sy,t) * M^{2}(Px,Sy,t) * M^{2}(Ax,Ax,t)$$

anywhere $\xi : [0, +\infty] \to [0, +\infty]$ is a LIM which is summable on each CSS of $[0, +\infty]$, NN, and s.t, $\forall \varepsilon >$ $0, \int_0^{\varepsilon} \xi(v) dv > 0$. to show A,B,S,T, P and Q have a UCFP

Remark 1.3.6 If we take the pair (P, AB) is WC in place of CT of (β) in Theorem 1.3.2 then we get the following result.

Corollary 1.3.7 suppose(X, M, \star) be a CFMC and let A, B, S, T, PandQ be mappings from X into itself s.t the subsequent situation are fulfilled:

Volume 11 Issue 10, October 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ES231022124024 Paper ID: ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

1.3.7(a) $P(X) \subset ST(X)$ and $Q(X) \subset AB(X)$, 1.3.7 (b)AB = BA, ST = TS, PB = BP, QT = TQ, 1.3.7(c) moreover P or AB is nonstop, 1.3.7 (d) (P, AB) and (Q, ST) are WC, 1.3.7 (e) $\exists f(x) = k \in (0,1)$ s.tevery point $x, y \in X$ and t > 0

 $\int_0^{M^2(Px,Qy,kt)} \xi(v) \, dv \ge \int_0^{W(x,y,t)} \xi(v) \, dv$ $W(x, y, t) = M^2(ABx, STy, t) \star M^2(Px, ABx, t)$ $\star M^2(Qy,STy,t) \star M^2(Px,STy,t) \star M^2(ABx,ABx,t)$ i.e ξ : [zero, +infinite] \rightarrow [zero, +infinite] which is summable on ECSS of [zero, +infinite], NN, and ST, $\forall \, \varepsilon > 0, \int_0^\varepsilon \xi(v) \, dv > 0$. To show A,B,S,T, P and Q have a UCFT in X.

Remark 1.3.8 If we take B = T = IIP on X in Corollay 1.3.7 then condition 1.3.7(b) is satisfy insignificantly and we get following Corollary

Corollary 1.3.9 Let (X, M, \star) be a CFMS and let A, S, PandQ be mappings from X into itself such that the following conditions are satisfied:

1.3.9(a) $P(X) \subset S(X)$ and $Q(X) \subset A(X)$,

1.3.9(b) either P or AB is continuous,

1.3.9 (c) (P, A) and (Q, S) are weak compatible,

1.3.9 (d)
$$\exists f(x) = k \in (0,1)$$
 s. tevery point $x, y \in X$ and $t > 0$

$$\int_{0}^{M^{2}(Px,Qy,kt)} \xi(v) dv \ge \int_{0}^{W(x,y,t)} \xi(v) dv$$

$$W(x,y,t) = M^{2}(Ax,Sy,t) \star M^{2}(Px,Ax,t)$$

$$\star M^{2}(Qy,Sy,t) \star M^{2}(Px,Sy,t)$$

i.e. ξ : [zero, +infinite] \rightarrow [zero, +infinite] which is summable on ECSS of [zero, +infinite], NN, and ST, $\forall \, \varepsilon > 0$, $\int_0^\varepsilon \xi(v) \, dv > 0$. To show A,S, P and Q have a UCFT in X.

Now following results are also equivalent to Theorem 2.3.2

Theorem 1.3.10: Suppose (X, M, \star) be a CFMS and suppose A, B, S, T, PandQ be mappings from X into itself s.t the following conditions are satisfied:

1.3.10(a) $P(X) \subset ST(X)$ and $Q(X) \subset AB(X)$,

1.3.10 (b)AB = BA, ST = TS, PB = BP, QT = TQ,

1.3.10(c) moreover P or AB is nonstop,

1.3.10(d) (P, AB) is CofT (α) and (Q, ST) is WC,

1.3.10 (e) there exists $k \in (0,1)$ such that for every $x, y \in$ Xandt > 0

$$\int_0^{M^2(Px,Qy,kt)} \xi(v) \, dv \ge$$

$$\int_0^{W(x,y,t)} \xi(v) dv$$

$$W(x,y,t) = M^2(ABx,STy,t) \star M^2(Px,ABx,t)$$

$$\star M^2(Qy,STy,t) \star M^2(Px,STy,t)$$

Where $\xi : [0, +\infty] \to [0, +\infty]$ is a LIM which is summable and such ECSS of $[0, +\infty]NN$, $\forall \ \varepsilon > \ 0, \int_0^\varepsilon \xi(v) \ dv > 0$. to show A,S, P and Q have a

Proof: Form the explanation 1.2.8 and proof of the Theorem 1.3.2, we get the result.

Remark 1.3.11: If we take B = T = I identity map on X in Theorem 1.3.10 then condition 1.3.10(b) is ST and we get following Corollary

Theorem 1.3.12 suppose(X, M, \star) be a CFMS and let A, S, PandQ be mappings from X into itself i.e. the subsequent situation are fulfilled:

1.3.12(a) $P(X) \subset S(X)$ and $Q(X) \subset A(X)$,

1.3.12 (b) moreover P or AB is nonstop,

1.3.12 (c) (P, AB) is $CofT(\alpha)&(Q, ST)$ is WC,

1.3.12 (d) $\exists k \in (\text{zero, one}) \text{ s.tevery point } x, y \in X \text{ and } t > t$

$$\int_0^{M^2(Px,Qy,kt)} \xi(v) dv$$

$$\geq \int_0^{W(x,y,t)} \xi(v) dv$$

$$y,t) = M^2(Ax,Sy,t) \star M^2(Px,Ax,t)$$

 $W(x,y,t) = M^2(Ax,Sy,t) \star M^2(Px,Ax,t)$ $\star M^2(Qy, Sy, t) \star M^2(Px, Sy, t) \star M^2(Ax, Ax, t)$

i.e ξ : [zero, +infinite] \rightarrow [zero, +infinite] is a LIM which is summable on each ECSS of [zero, +infinite], NN and S.t, $\forall \varepsilon > 0, \int_0^{\varepsilon} \xi(v) dv > 0$.to show A,S, P and Q have a UNCFP in X.

2. Conclusion

Here we proved Common Fixed Point Theorem for Compatible Maps of Type (β) and Type (α) in Fuzzy Metric Space and Common Fixed Point Theorem for Integer Type Mapping in Fuzzy Metric Space important corollaries.

References

- Aage, C. T. and Salunke, J. N., "On Fixed Point [1] Theorems in Fuzzy Metric Spaces." Int. J. Open Problems Compt. Math., 3 (2), (2010), 123-131.
- Aage C.T., Salunke J.N., "On Fixed point Theorems in Fuzzy Metric Spaces Using a Control Function." International Journal of Nonlinear Analysis and Applications, 6(2), (2010), 50-57.
- Aage, C.T., Salunke, J.N., "The Result on Fixed point Theorems in Dislocated Quasi- Metric Spaces." Applied Mathematical Sciences, 2(59), (2008), 2941-2948.
- Aamri, M., El Moutawakil, D., "Some New Common [4] Fixed Point Theorems underStrict Contractive Conditions." Journal of Mathematical Analysis and Applications, 226, (1988), 251-258.
- Abbas, M., Ali Khan M., "Common Fixed Point Theorem of Two Mappings Satisfying a Generalized Weak Contractive Condition." Int J Math. Sci, 9, (2009), Article ID 131068.
- Alaca, C., Turkoglu D. and Yildiz, C., "Fixed Point in Intuitionistic Fuzzy Metric Spaces." Chaos, Solitons & Fractals, 29, (2006), 1073-1078.
- Alaca, C., Altun, I. and Turkoglu, D., "On Compatible Mapping of Type (I) and (II) in Intuitionistic Fuzzy Metric Spaces." Korean Mathematical Society, 23(3), (1986), 771-779.
- Alber, Ya I, Guerre-Delabriere S., "Principles of Weakly Contractive Maps in Hilbert Spaces." Oper. Theory Adv. Appl., 98, (1997), 7-22.
- Aliprantis, C.D. and TourkyR., "Cones and Duality in Graduate Studies in Mathematics." Amer. Math. Soc., 84, (2007), 215-240.

Volume 11 Issue 10, October 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ES231022124024 Paper ID: ES231022124024

ISSN: 2319-7064 SJIF (2022): 7.942

- [10] Al-Thagafi, A. and Shahzad, N.,"Generalized I-NonexpansiveSelfmaps and Invariant Approximations." Acta Mathematica Sinica, English Series Vol. 24, No. 5, (2008), 867-876.
- [11] Atanssove, K., "Intuitionstic Fuzzy Sets." Fuzzy Sets and Systems, 2(1), (1986), 87-96.
- [12] Altun, I. and Turkoglu, D., "Some Fixed Point Theorems on Fuzzy Metric Spaces with Implicit Relations." Comm. Korean Math. Soc., 23(1), (2008), 111-124.
- [13] Banach, S. "Surles Operation Dansles Ensembles AbstraitesEtleur Application Integrals." Fund. Math., 3, (1922), 133-181.
- [14] Balasubramaniam, P., Muralisankar S., Pant R.P., "Common Fixed Points of Four Mappings in a Fuzzy Metric Space." J. Fuzzy Math., 10 (2), (2002), 379-384.

Volume 11 Issue 10, October 2022 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ES231022124024 DOI: 10.21275/ES231022124024 1359