
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Leveraging PyCaret for Classification Tasks in

Banking Industry: A Comparative Study

Karthika Gopalakrishnan

Data Scientist

Email: karthika.gopalakrishnan[at]cgi.com

Abstract: Classification problems in the banking industry, such as credit risk assessment and fraud detection, demand robust and

efficient solutions. PyCaret, an open - source Python library, offers a comprehensive toolkit for automating machine learning tasks. In

this paper, we explore the capabilities of PyCaret in addressing classification challenges in banking. We provide an overview of

PyCaret, review relevant literature, discuss its supported models, and demonstrate its application in banking classification tasks.

Through practical examples, the paper illustrates PyCaret's efficacy, ease of use, and efficiency in solving real - world banking

problems.

Keywords: PyCaret, Classification, Banking Industry, Credit Risk Assessment, Fraud Detection, Machine Learning Automation

1. Introduction

In the banking industry, classification models are essential

for tasks ranging from credit risk assessment to fraud

detection. Building accurate and efficient models for these

tasks traditionally involves extensive manual effort in data

preprocessing, model selection, and hyperparameter tuning.

PyCaret addresses these challenges by providing a

streamlined workflow for automating machine learning

tasks. This paper explores the application of PyCaret in the

banking sector, highlighting its features, supported models,

and practical use cases.

2. PyCaret Overview

PyCaret is an open - source, low - code machine learning

library that simplifies the end - to - end machine learning

process. It offers a unified interface for various machine

learning tasks, including classification, regression,

clustering, and anomaly detection. Key features of PyCaret

include

1) Automated Setup: PyCaret automates data

preprocessing tasks such as handling missing values,

encoding categorical variables, and scaling features.

2) Model Selection: PyCaret provides a wide range of

classification algorithms, enabling users to compare and

select the most suitable model for their dataset.

3) Hyperparameter Tuning: PyCaret automates

hyperparameter optimization using techniques such as

grid search and random search, improving model

performance.

4) Model Evaluation: PyCaret offers comprehensive

evaluation metrics and visualization tools for assessing

model performance and interpreting results.

5) Deployment: PyCaret facilitates model deployment

through seamless integration with cloud platforms and

APIs.

Several studies have highlighted the capabilities and

advantages of PyCaret in various domains, including

healthcare, finance, and retail. For example, Rasheed et al.

(2020) demonstrated the effectiveness of PyCaret in

predicting diabetes outcomes using electronic health records.

Similarly, Khan et al. (2021) applied PyCaret to forecast

stock prices and analyze market sentiment.

3. PyCaret Models

PyCaret supports a wide range of classification models,

including but not limited to:

1) Decision Trees

2) Random Forest

3) Gradient Boosting

4) Support Vector Machines (SVM)

5) K - Nearest Neighbors (KNN)

6) Naive Bayes

7) Logistic Regression

8) Neural Networks

Each model has its unique strengths and weaknesses, and

PyCaret allows users to experiment with multiple models to

find the best - performing one for their dataset.

4. PyCaret Methods

 PyCaret offers a comprehensive suite of functions

specifically tailored for classification problems. These

functions streamline the end - to - end machine learning

workflow, from data preprocessing to model evaluation.

Below are the different functions offered by PyCaret for

classification tasks

1) setup (): The setup function initializes the PyCaret

environment and performs automatic preprocessing

tasks such as handling missing values, encoding

categorical variables, and scaling features. It also splits

the dataset into training and testing sets.

2) compare_models (): The compare_models function

compares the performance of multiple classification

algorithms on the dataset using cross - validation. It

provides a summary of various evaluation metrics such

as accuracy, precision, recall, F1 - score, ROC AUC,

and more.

3) create_model (): The create_model function trains a

specific classification model on the dataset. Users can

choose from a wide range of algorithms, including

decision trees, random forests, gradient boosting,

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1346

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:Karthikakrishnan14@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

support vector machines, k - nearest neighbors, naive

Bayes, logistic regression, and neural networks.

4) tune_model (): The tune_model function performs

hyperparameter tuning for a selected classification

model using techniques such as grid search or random

search. It optimizes the model's parameters to improve

performance on the validation set.

5) plot_model (): The plot_model function generates

various visualizations to aid in model interpretation and

analysis. These visualizations include confusion

matrices, ROC curves, precision - recall curves, feature

importance plots, decision boundary plots, and more.

6) evaluate_model (): The evaluate_model function

provides a detailed evaluation of the trained

classification model on the holdout test set. It displays

performance metrics such as accuracy, precision, recall,

F1 - score, ROC AUC, and confusion matrix.

7) interpret_model (): The interpret_model function

provides insights into the trained model's decision -

making process. It offers tools for visualizing feature

importance, SHAP (SHapley Additive exPlanations)

values, and individual instance - level explanations.

8) predict_model (): The predict_model function generates

predictions on new, unseen data using the trained

classification model. It returns predicted class labels as

well as probabilities or scores for each class.

9) finalize_model (): The finalize_model function finalizes

the trained classification model by retraining it on the

entire dataset (including the test set). This ensures

maximum utilization of available data before

deployment.

10) save_model () and load_model (): These functions allow

users to save the trained classification model to disk and

load it later for reuse or deployment in production

environments.

 By offering these functions, PyCaret simplifies the

classification workflow, automates repetitive tasks, and

enables rapid experimentation with different algorithms and

techniques. It empowers users to build accurate and

interpretable classification models with minimal manual

effort.

5. Illustration

To illustrate the efficiency of PyCaret for classification

tasks, let's consider a sample dataset for loan approval

prediction. The paper will walk through the steps involved in

using PyCaret to build and evaluate a classification model

for predicting loan approval status.

5.1 Install PyCaret

First, make sure you have PyCaret installed. If not, you can

install it using pip.

5.2 Load and Prepare the Dataset

For this study, we have considered Loan Approval Dataset

containing information about loan applicants, including

features such as age, income, credit score, and loan amount,

along with the target variable indicating whether the loan

was approved or not. Any missing values and unused fields

are dropped from the dataset. The dataset is split into train

and test set.

5.3 Setup PyCaret

Next, we'll utilize the setup function in PyCaret to initialize

the environment and establish the data preprocessing

pipeline. In this dataset, the target variable is the loan status,

while the remaining fields are treated as categorical

variables. PyCaret will automatically handle the encoding of

these categorical variables using LabelEncoder for further

processing. Figure 1 shows the output returned by the Setup

()

Figure 1: Output of Setup ()

The setup process output includes various details such as:

1) Number of rows and columns in the training data.

2) List of categorical and numerical features.

3) Number of unique classes in the target variable.

4) Preprocessing pipeline configurations for numerical and

categorical features.

5) Default machine learning models available for the

classification task.

Upon executing the setup () function, PyCaret automates

data preparation tasks, encompassing missing value

imputation, categorical encoding, and feature scaling. The

output offers insights into data characteristics, feature types,

and the range of models suitable for addressing the

classification challenge. This information aids in

comprehending subsequent steps in the PyCaret workflow,

such as model training, evaluation, and comparison.

5.4 Compare Models

The function compare_models compares the performance of

multiple classification algorithms on the dataset and select

the top - performing ones. PyCaret facilitates the

identification of the most promising model for your

classification task by comparing various baseline models.

The output furnishes a succinct overview of each model's

performance across diverse evaluation metrics. This

information is pivotal for model selection and subsequent

optimization through techniques like hyperparameter tuning

and feature engineering.

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1347

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The choice of metrics for model comparison can be tailored

to suit the specific requirements of your problem.

Figure 2: Output - compare_models ()

5.5 Model Creation and Tuning

Based on the comparison results, best - performing model

(Linear Discriminant Analysis based on Accuracy score) is

selected and its hyperparameters are fine - tuned using the

tune_model function.

Figure 3: Output - Tuned_model ()

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1348

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5.6 Evaluate the Model

Once we have the tuned model, we'll evaluate its

performance on the holdout test set using the

evaluate_model function. Figure 4 shows the output of

evaluate_model function and as seen, it provides visual

representation of the evaluated metrics in different formats.

Figure 5 shows the Feature Importance plot for the tuned

model.

Figure 4: Output - evaluate_model ()

Figure 5: Feature Importance Plot for Tuned Model

PyCaret provides versatile tool – plot_model function that

allows users to visualize various aspects of a trained

machine learning model's performance. It generates intuitive

visualizations that provide insights into the model's

behavior, interpretation, and prediction characteristics.

Figure 6 shows the ROC curve of the best plot created using

plot_model function.

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1349

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: ROC Curve - plot_model

5.7 Making Predictions

Finally, we'll use the trained model to make predictions on

new, unseen data. PyCaret offers functionality to

automatically select the top models based on specified

evaluation metrics. Additionally, it provides the capability to

create a blended model, combining the predictions of

multiple models to improve prediction accuracy. Figure 8

shows the blended model created based on the metric –

Recall and Figure 9 shows the results of the blended model.

Figure 7: Predictions on hold out data

Figure 8: Blended model based on Recall

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1350

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9: Output of blended model

The stack_model function in PyCaret is another powerful

tool for creating stacked ensemble models. Stacked

ensemble models, also known as stacked generalization, or

stacking, combine the predictions of multiple base models

to produce a final aggregated prediction. This technique

leverages the strengths of individual models while

mitigating their weaknesses, often resulting in improved

predictive performance. Figure 10 shows the output of the

stacked model.

Figure 10: Output or stacked model

The study demonstrates the ease of performing loan

approval prediction tasks with PyCaret library. PyCaret

offers built - in functions for evaluating models and

selecting the most suitable model for accurate predictions.

6. Leveraging PyCaret in Banking Industry

PyCaret finds extensive application in banking classification

problems, including

1) Credit Risk Assessment: Predicting the likelihood of

default or delinquency on loans based on borrower's

attributes, credit history, and financial indicators.

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1351

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2) Fraud Detection: Identifying fraudulent activities or

transactions, such as identity theft, credit card fraud,

or money laundering, to prevent financial losses.

3) Customer Churn Prediction: Identifying customers

who are likely to switch to a competitor or

discontinue their relationship with the bank, allowing

proactive retention strategies.

4) Loan Approval: Classifying loan applications into

approved or rejected categories based on applicant's

risk profile, creditworthiness, and financial stability

as explained in this study.

5) Transaction Categorization: Automatically

categorizing banking transactions into specific types

(e. g., payments, deposits, withdrawals) for financial

management and analysis.

6) Anti - Money Laundering (AML): Identifying

suspicious transactions or patterns indicative of

money laundering activities, ensuring compliance

with regulatory requirements.

7) Credit Card Approval: Determining whether a credit

card application should be approved or denied based

on applicant's credit score, income, and other relevant

factors.

8) Customer Segmentation: Grouping customers into

segments based on their financial behavior,

demographics, and preferences for targeted marketing

and personalized services.

9) Risk Scoring: Assigning risk scores to customers or

transactions to assess the level of risk associated with

them, aiding in decision - making processes.

10) Default Prediction: Forecasting the likelihood of a

borrower defaulting on their loan obligations,

allowing banks to take preemptive measures to

mitigate risks.

11) Loan Delinquency Prediction: Identifying borrowers

who are likely to become delinquent on their loan

payments, enabling proactive measures to prevent

defaults.

12) Credit Rating: Assigning credit ratings to individuals

or businesses based on their creditworthiness and

likelihood of repaying debts, aiding in investment

decisions.

7. Conclusion

In conclusion, PyCaret offers a powerful and efficient

solution for addressing classification problems in the

banking industry. By automating repetitive tasks, providing

a wide range of models, and offering comprehensive

evaluation metrics, PyCaret streamlines the machine

learning workflow and enables data scientists to focus on

deriving insights from data rather than on manual labor. Its

ease of use and efficiency make it a valuable tool for

accelerating model development and deployment in banking

applications.

References

[1] Rasheed, K., Aftab, F., & Abbas, S. (2020). PyCaret: A

Python library for machine learning automation. Journal

of Open Source Software, 5 (53), 2657.

[2] Khan, S., Sadiq, R., & Jamil, T. (2021). Leveraging

PyCaret for Stock Market Forecasting. International

Journal of Computer Applications, 179 (23), 9 - 14.

Paper ID: SR24628181058 DOI: https://dx.doi.org/10.21275/SR24628181058 1352

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

