
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942  

Volume 11 Issue 12, December 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Leveraging PyCaret for Classification Tasks in 

Banking Industry: A Comparative Study 
 

Karthika Gopalakrishnan 
 

Data Scientist 

Email: karthika.gopalakrishnan[at]cgi.com 

 

 

Abstract: Classification problems in the banking industry, such as credit risk assessment and fraud detection, demand robust and 

efficient solutions. PyCaret, an open - source Python library, offers a comprehensive toolkit for automating machine learning tasks. In 

this paper, we explore the capabilities of PyCaret in addressing classification challenges in banking. We provide an overview of 

PyCaret, review relevant literature, discuss its supported models, and demonstrate its application in banking classification tasks. 

Through practical examples, the paper illustrates PyCaret's efficacy, ease of use, and efficiency in solving real - world banking 

problems.  
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1. Introduction 
 

In the banking industry, classification models are essential 

for tasks ranging from credit risk assessment to fraud 

detection. Building accurate and efficient models for these 

tasks traditionally involves extensive manual effort in data 

preprocessing, model selection, and hyperparameter tuning. 

PyCaret addresses these challenges by providing a 

streamlined workflow for automating machine learning 

tasks. This paper explores the application of PyCaret in the 

banking sector, highlighting its features, supported models, 

and practical use cases.  

 

2. PyCaret Overview 
 

PyCaret is an open - source, low - code machine learning 

library that simplifies the end - to - end machine learning 

process. It offers a unified interface for various machine 

learning tasks, including classification, regression, 

clustering, and anomaly detection. Key features of PyCaret 

include 

1) Automated Setup: PyCaret automates data 

preprocessing tasks such as handling missing values, 

encoding categorical variables, and scaling features.  

2) Model Selection: PyCaret provides a wide range of 

classification algorithms, enabling users to compare and 

select the most suitable model for their dataset.  

3) Hyperparameter Tuning: PyCaret automates 

hyperparameter optimization using techniques such as 

grid search and random search, improving model 

performance.  

4) Model Evaluation: PyCaret offers comprehensive 

evaluation metrics and visualization tools for assessing 

model performance and interpreting results.  

5) Deployment: PyCaret facilitates model deployment 

through seamless integration with cloud platforms and 

APIs.  

 

Several studies have highlighted the capabilities and 

advantages of PyCaret in various domains, including 

healthcare, finance, and retail. For example, Rasheed et al. 

(2020) demonstrated the effectiveness of PyCaret in 

predicting diabetes outcomes using electronic health records. 

Similarly, Khan et al. (2021) applied PyCaret to forecast 

stock prices and analyze market sentiment.  

 

3. PyCaret Models 
 

PyCaret supports a wide range of classification models, 

including but not limited to:  

1) Decision Trees 

2) Random Forest 

3) Gradient Boosting 

4) Support Vector Machines (SVM)  

5) K - Nearest Neighbors (KNN)  

6) Naive Bayes 

7) Logistic Regression 

8) Neural Networks 

 

Each model has its unique strengths and weaknesses, and 

PyCaret allows users to experiment with multiple models to 

find the best - performing one for their dataset.  

 

4. PyCaret Methods 
 

 PyCaret offers a comprehensive suite of functions 

specifically tailored for classification problems. These 

functions streamline the end - to - end machine learning 

workflow, from data preprocessing to model evaluation. 

Below are the different functions offered by PyCaret for 

classification tasks 

1) setup (): The setup function initializes the PyCaret 

environment and performs automatic preprocessing 

tasks such as handling missing values, encoding 

categorical variables, and scaling features. It also splits 

the dataset into training and testing sets.  

2) compare_models (): The compare_models function 

compares the performance of multiple classification 

algorithms on the dataset using cross - validation. It 

provides a summary of various evaluation metrics such 

as accuracy, precision, recall, F1 - score, ROC AUC, 

and more.  

3) create_model (): The create_model function trains a 

specific classification model on the dataset. Users can 

choose from a wide range of algorithms, including 

decision trees, random forests, gradient boosting, 
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support vector machines, k - nearest neighbors, naive 

Bayes, logistic regression, and neural networks.  

4) tune_model (): The tune_model function performs 

hyperparameter tuning for a selected classification 

model using techniques such as grid search or random 

search. It optimizes the model's parameters to improve 

performance on the validation set.  

5) plot_model (): The plot_model function generates 

various visualizations to aid in model interpretation and 

analysis. These visualizations include confusion 

matrices, ROC curves, precision - recall curves, feature 

importance plots, decision boundary plots, and more.  

6) evaluate_model (): The evaluate_model function 

provides a detailed evaluation of the trained 

classification model on the holdout test set. It displays 

performance metrics such as accuracy, precision, recall, 

F1 - score, ROC AUC, and confusion matrix.  

7) interpret_model (): The interpret_model function 

provides insights into the trained model's decision - 

making process. It offers tools for visualizing feature 

importance, SHAP (SHapley Additive exPlanations) 

values, and individual instance - level explanations.  

8) predict_model (): The predict_model function generates 

predictions on new, unseen data using the trained 

classification model. It returns predicted class labels as 

well as probabilities or scores for each class.  

9) finalize_model (): The finalize_model function finalizes 

the trained classification model by retraining it on the 

entire dataset (including the test set). This ensures 

maximum utilization of available data before 

deployment.  

10) save_model () and load_model (): These functions allow 

users to save the trained classification model to disk and 

load it later for reuse or deployment in production 

environments.  

 

 By offering these functions, PyCaret simplifies the 

classification workflow, automates repetitive tasks, and 

enables rapid experimentation with different algorithms and 

techniques. It empowers users to build accurate and 

interpretable classification models with minimal manual 

effort.  

 

5. Illustration 
 

To illustrate the efficiency of PyCaret for classification 

tasks, let's consider a sample dataset for loan approval 

prediction. The paper will walk through the steps involved in 

using PyCaret to build and evaluate a classification model 

for predicting loan approval status.  

 

5.1 Install PyCaret 

 

First, make sure you have PyCaret installed. If not, you can 

install it using pip.  

 

5.2 Load and Prepare the Dataset 

 

For this study, we have considered Loan Approval Dataset 

containing information about loan applicants, including 

features such as age, income, credit score, and loan amount, 

along with the target variable indicating whether the loan 

was approved or not. Any missing values and unused fields 

are dropped from the dataset. The dataset is split into train 

and test set.  

 

5.3 Setup PyCaret 

 

Next, we'll utilize the setup function in PyCaret to initialize 

the environment and establish the data preprocessing 

pipeline. In this dataset, the target variable is the loan status, 

while the remaining fields are treated as categorical 

variables. PyCaret will automatically handle the encoding of 

these categorical variables using LabelEncoder for further 

processing. Figure 1 shows the output returned by the Setup 

()  

 
Figure 1: Output of Setup () 

 

The setup process output includes various details such as:  

1) Number of rows and columns in the training data.  

2) List of categorical and numerical features.  

3) Number of unique classes in the target variable.  

4) Preprocessing pipeline configurations for numerical and 

categorical features.  

5) Default machine learning models available for the 

classification task.  

 

Upon executing the setup () function, PyCaret automates 

data preparation tasks, encompassing missing value 

imputation, categorical encoding, and feature scaling. The 

output offers insights into data characteristics, feature types, 

and the range of models suitable for addressing the 

classification challenge. This information aids in 

comprehending subsequent steps in the PyCaret workflow, 

such as model training, evaluation, and comparison.  

 

5.4 Compare Models 

 

The function compare_models compares the performance of 

multiple classification algorithms on the dataset and select 

the top - performing ones. PyCaret facilitates the 

identification of the most promising model for your 

classification task by comparing various baseline models. 

The output furnishes a succinct overview of each model's 

performance across diverse evaluation metrics. This 

information is pivotal for model selection and subsequent 

optimization through techniques like hyperparameter tuning 

and feature engineering.  
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The choice of metrics for model comparison can be tailored 

to suit the specific requirements of your problem.  

 

 

 
Figure 2: Output - compare_models () 

 

5.5 Model Creation and Tuning 

 

Based on the comparison results, best - performing model 

(Linear Discriminant Analysis based on Accuracy score) is 

selected and its hyperparameters are fine - tuned using the 

tune_model function.  

 

 
Figure 3: Output - Tuned_model () 
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5.6 Evaluate the Model 

 

Once we have the tuned model, we'll evaluate its 

performance on the holdout test set using the 

evaluate_model function. Figure 4 shows the output of 

evaluate_model function and as seen, it provides visual 

representation of the evaluated metrics in different formats. 

Figure 5 shows the Feature Importance plot for the tuned 

model.  

 

 
Figure 4: Output - evaluate_model () 

 

 
Figure 5: Feature Importance Plot for Tuned Model 

 

PyCaret provides versatile tool – plot_model function that 

allows users to visualize various aspects of a trained 

machine learning model's performance. It generates intuitive 

visualizations that provide insights into the model's 

behavior, interpretation, and prediction characteristics. 

Figure 6 shows the ROC curve of the best plot created using 

plot_model function.  
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Figure 6: ROC Curve - plot_model 

 

5.7 Making Predictions 

 

Finally, we'll use the trained model to make predictions on 

new, unseen data. PyCaret offers functionality to 

automatically select the top models based on specified 

evaluation metrics. Additionally, it provides the capability to 

create a blended model, combining the predictions of 

multiple models to improve prediction accuracy. Figure 8 

shows the blended model created based on the metric – 

Recall and Figure 9 shows the results of the blended model.  

 

 
Figure 7: Predictions on hold out data 

 

 
Figure 8: Blended model based on Recall 
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Figure 9: Output of blended model 

 

The stack_model function in PyCaret is another powerful 

tool for creating stacked ensemble models. Stacked 

ensemble models, also known as stacked generalization, or 

stacking, combine the predictions of multiple base models 

to produce a final aggregated prediction. This technique 

leverages the strengths of individual models while 

mitigating their weaknesses, often resulting in improved 

predictive performance. Figure 10 shows the output of the 

stacked model.  

 

 
Figure 10: Output or stacked model 

 

The study demonstrates the ease of performing loan 

approval prediction tasks with PyCaret library. PyCaret 

offers built - in functions for evaluating models and 

selecting the most suitable model for accurate predictions.  

 

6. Leveraging PyCaret in Banking Industry 

 

PyCaret finds extensive application in banking classification 

problems, including 

1) Credit Risk Assessment: Predicting the likelihood of 

default or delinquency on loans based on borrower's 

attributes, credit history, and financial indicators.  
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2) Fraud Detection: Identifying fraudulent activities or 

transactions, such as identity theft, credit card fraud, 

or money laundering, to prevent financial losses.  

3) Customer Churn Prediction: Identifying customers 

who are likely to switch to a competitor or 

discontinue their relationship with the bank, allowing 

proactive retention strategies.  

4) Loan Approval: Classifying loan applications into 

approved or rejected categories based on applicant's 

risk profile, creditworthiness, and financial stability 

as explained in this study.  

5) Transaction Categorization: Automatically 

categorizing banking transactions into specific types 

(e. g., payments, deposits, withdrawals) for financial 

management and analysis.  

6) Anti - Money Laundering (AML): Identifying 

suspicious transactions or patterns indicative of 

money laundering activities, ensuring compliance 

with regulatory requirements.  

7) Credit Card Approval: Determining whether a credit 

card application should be approved or denied based 

on applicant's credit score, income, and other relevant 

factors.  

8) Customer Segmentation: Grouping customers into 

segments based on their financial behavior, 

demographics, and preferences for targeted marketing 

and personalized services.  

9) Risk Scoring: Assigning risk scores to customers or 

transactions to assess the level of risk associated with 

them, aiding in decision - making processes.  

10) Default Prediction: Forecasting the likelihood of a 

borrower defaulting on their loan obligations, 

allowing banks to take preemptive measures to 

mitigate risks.  

11) Loan Delinquency Prediction: Identifying borrowers 

who are likely to become delinquent on their loan 

payments, enabling proactive measures to prevent 

defaults.  

12) Credit Rating: Assigning credit ratings to individuals 

or businesses based on their creditworthiness and 

likelihood of repaying debts, aiding in investment 

decisions.  

 

7. Conclusion 
 

In conclusion, PyCaret offers a powerful and efficient 

solution for addressing classification problems in the 

banking industry. By automating repetitive tasks, providing 

a wide range of models, and offering comprehensive 

evaluation metrics, PyCaret streamlines the machine 

learning workflow and enables data scientists to focus on 

deriving insights from data rather than on manual labor. Its 

ease of use and efficiency make it a valuable tool for 

accelerating model development and deployment in banking 

applications.  
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