
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Harnessing the Power of Terraform: Infrastructure

as Code for Agile DevOps

Nagaraju Islavath

Independent Researcher

Email: islavath.nagaraju[at]gmail.com

Abstract: Terraform is an open - source tool that automates infrastructure management through code. It has gained much importance

in the DevOps community because it is cloud - agnostic and efficient at providing infrastructure. Among the many benefits, Terraform

enables users to manage multi - platform infrastructures consistently and declaratively. This makes the facilitation of infrastructure setup,

management, and scaling possible. This is essential to organizations that require fast deployments and reliable scaling. The reproducibility

in infrastructure due to the declarative nature of Terraform reduces manual errors and maintains consistency across several

environments. Moreover, Terraform has versioning capabilities that enable teams to track changes in infrastructure as a way of auditing

for troubleshooting and regulatory purposes. As organizations' interest in Agile increases, Terraform provides the requisite tools to

manage infrastructure and code coherently with the speed and tempo required for modern software development. The place of Terraform

in improving DevOps practices is explored here by considering usage, impacts, and challenges across agile settings. These findings

highlight that Terraform is a powerful enabler of the DevOps ecosystem, providing a seamless and automated infrastructure management

process. With this, Terraform minimizes the dreaded complexities of manually provisioning the infrastructure, enhancing the DevOps

operations manifold's agility and scalability. This paper discusses how Terraform can revolutionize the way DevOps is being carried out

in the case of continuous deployment pipelines and replicating the same in multi - cloud environments for infrastructure reliability.

Keywords: Terraform, Infrastructure as Code, Agile DevOps, automation, cloud infrastructure, DevOps practices, scalability, infrastructure

consistency

1. Introduction

Over time, Terraform has become a really important part of

DevOps workflows as an infrastructure and code tool. Built

by HashiCorp, Terraform aims to provide and maintain

infrastructure from the cloud, on - premises, and hybrid

systems, with broad support for environments. Cloud -

agnostic itself, the tool can operate with a variety of providers,

including but not limited to AWS, Google Cloud, and Azure.

Terraform enables infrastructure provisioning with a

declarative language. It allows the DevOps team to define

infrastructure as code and make environment creation,

management, and scaling automatic. This automation

becomes critical within agile environments where rapid

iterative releases, continuous integration, and continuous

delivery are necessary for success. With the rise of such agile

methodologies in companies, Terraform has become a

necessary tool for creating reproducible, scalable, and

consistent infrastructure environments. This paper looks at

the increasing role of Terraform in agile DevOps

environments, focusing on benefits and challenges regarding

streamlining infrastructure management, improving

scalability, and fostering collaboration between the

development and operations teams.

The most important advantages are using declarative

language in Terraform for infrastructure descriptions and

provisioning at higher levels. On the contrary, traditional

infrastructure management includes much manual

configuration. At the same time, Terraform's declarative

syntax enables teams to declare the desired state of their

infrastructure, while details of how such a state is reached

would be handled by this tool. This drastically reduces the

hassle of maintaining infrastructure between environments.

By automating the provisioning and management of

infrastructure, Terraform eradicates human errors that always

appear in manual processes. It's very important to remember

for agile DevOps teams where speed, reliability, and

repeatability are key to success. Thus, infrastructure

deployment automation becomes key in an agile environment

that needs to deliver new features and feature updates as soon

as possible. Terraform enables teams to focus on their

development tasks while the infrastructure is correctly

configured and maintained in a reproducible manner.

Its infrastructure management capabilities span cloud - native

environments, on - premises, and hybrid infrastructures. This

makes Terraform very important for an organization in cases

where multi - cloud strategies are employed, where services

from multiple providers are used to avoid vendor lock - in or

to leverage specific features of different platforms. Terraform

has eased managing and orchestrating such diverse resources

through a common interface, which defines and provisions

the infrastructure. Such cloud - agnostic capability has

positioned Terraform as one of the important players in the

modern DevOps environment, where organizations

increasingly leverage multiple cloud platforms to drive

flexibility and resiliency. Documentation supporting

Terraform for on - premise infrastructure is finally rewarding

for those businesses either not having fully moved to the

cloud or those continuing to keep hybrid environments.

Terraform reduces the complexity associated with hybrid

deployments by providing a uniform interface to manage both

cloud and on - premises infrastructures; thus, scaling and

managing infrastructure becomes quite easy for

organizations.

In agile environments, continuous integration and delivery are

core practices. Terraform ensures that infrastructure is easily

integrated into the CI/CD pipelines. Continuous integration

means frequent code changes integrated into a shared

repository and then automatically tested and validated.

Paper ID: SR20709085028 DOI: https://dx.doi.org/10.21275/SR20709085028 1367

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Continuous delivery is an extension in that the code will be

automatically deployed to a production or staging

environment. Terraform goes well with CI/CD pipelines in

testing, validating, and deploying infrastructure changes

automatically with application code changes. Such

integration would ensure that the infrastructure always

complements the application's requirements and reduces the

chances of errors and consistency between environments.

Terraform enhances the DevOps team's agility to respond

quicker because of changes in requirements or scaling needs

through the automation of testing and deployment of

infrastructure. Because of the infrastructure provision,

Terraform has become priceless in a world where fast

development cycles and frequent updates are becoming

norms.

The other advantage of using Terraform is the state

management of infrastructure. It maintains the current state of

the infrastructure through a state file as changes or updates

are applied effectively. The state file acts as a source of truth

for the infrastructure because it allows Terraform to compare

the desired state that will be defined through configuration

files with the real state of the infrastructure. Because of this

feature, Terraform will make only the changes it deems fit to

align the infrastructure with the desired state. This saves extra

time and does not disrupt the process. This capability of

infrastructure state management is pretty basic for an agile

team. It lets teams scale and modify infrastructures without

causing major disruptions to development workflows. But, in

large and complex environments, state management becomes

a little tough, especially if many teams work on the same

infrastructure. Using remote state storage and locking

mechanisms comprise some best practices that will neutralize

the challenges to boot and ensure Terraform is effectively

used in collaborative environments.

This paper intends to deliberate on the advantages and

disadvantages that come with the adoption of Terraform in

agile DevOps environments. Its major contribution is to the

automation of managing infrastructure, thereby enhancing

scalability and collaboration between development and

operation teams. Current research will, therefore, undertake a

critical review of how Terraform supports agile practices with

an all - inclusive understanding of the contribution of

Infrastructure as Code to efficient and reliable DevOps

workflows.

2. Problem Statement

Today, while living in a digital world at warp speed, handling

infrastructure has become overbearingly complex in multi -

cloud or hybrid environments. Configurations are usually

done manually to maintain infrastructure using traditional

methods, which are time - consuming and prone to human

errors. This is where the need for speed and reliability in

infrastructure provisioning has become critical for an

organization changing its pace by adopting agile

methodologies. The outcome is that DevOps teams must

manage dynamic, large - scale environments today where

resources need to be rapidly provisioned, scaled, and updated

continuously to support the velocity of development cycles.

This is quite a challenge since manual infrastructure

management processes cannot scale to agile workflows.

Furthermore, with manual infrastructure management, it's

tough to keep consistency across multiple environments:

development, staging, and production. Terraform helps

alleviate these pains by providing a structured way of

managing infrastructure with code. But even with the evident

advantages, many organizations struggle to bear the steep

learning curve that Terraform brings into their operations, let

alone integration with other systems.

The second significant challenge is handling the "state" of the

infrastructure, particularly in big, complex environments with

many teams working. If incorrectly handled, state

management could lead to inconsistencies and potential

downtime. This research focuses on finding those challenges

and exploring solutions that help an organization tap into the

full power of Terraform. Concretely, the research will explore

the learning curve of Terraform, state management

challenges, and integration with legacy systems, as well as

how to mitigate those challenges to reach maximum

efficiency in agile DevOps.

3. Solution

Terraform is such a powerful tool that it has revolutionized

how organizations manage their infrastructure. Being one of

the key players in the Infrastructure as Code domain,

Terraform solves many of the challenges traditional

infrastructure management faces, which is why it is an

essential tool for any DevOps team. One of the key features

of Terraform is its declarative language. That means teams get

to describe what needs to be done to their infrastructure and

not specify how it should be created. This makes management

less complex and introduces automation into the system; thus,

reliable, consistent, and repeatable. This provides even finer

control of the infrastructure for the DevOps teams, brings

more transparency and collaboration, and, of course, agility.

Terraform's declarative language is a basic paradigm shift

compared to the imperative methods that have dominated

infrastructure management. Using traditional methodology,

he would want the teams to manually set up systems and

specify in detail step - by - step instructions for each resource

to reach a desired state. It gets error - prone and hard to

maintain, especially in complex environments involving

many dependencies. In contrast, Terraform is a declarative

way of managing infrastructure whereby teams describe the

desired state of their infrastructure within a high - level

configuration file. Terraform determines the steps to achieve

the described state once defined. Besides, this automation

drastically reduces human errors, manages complicated

infrastructure - related tasks, and liberates the teams to focus

on higher - value activities rather than manually doing

repetitive tasks.

One of the most valuable strengths of Terraform is the

capability to create and manage infrastructure in a predictable

and repeatable manner. By defining infrastructure

configurations in code, Terraform ensures that the same

environment can be reproduced multiple times with no

discrepancies, reducing the likelihood of misconfigurations.

Consistency is welcome in an agile environment where rapid

iteration, frequent updates, and CI/CD are standard practices.

Paper ID: SR20709085028 DOI: https://dx.doi.org/10.21275/SR20709085028 1368

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Manual infrastructure management is often a cause of

problems that most organizations face because of the

development, testing, and production drifting from each

other. In Terraform, teams can use the same configuration file

across all environments to ensure consistency and reliability

in deployments.

Another powerful Terraform advantage is the treatment of

infrastructure as code, which means bringing version control

into infrastructure management. This means infrastructure

configurations can be stored in version control systems like

Git, where teams collaboratively track changes and can easily

roll back to any previous versions if something goes wrong.

In traditional infrastructure management, tracking changes

across environments is very hard, which leads to

inconsistencies and errors. This means that with Terraform,

all infrastructure configuration changes are tracked, and the

history is always there. This adds to the transparency, but

more importantly, it makes debugging or troubleshooting a lot

easier.

Another major advantage of Terraform is multi - cloud

support, wherein organizations can pursue multi - cloud

strategies without having to go through the pain of

maintaining different tools for different cloud platforms. With

increased cloud adoption, many organizations have adopted

multi - cloud strategies to avoid vendor lock - in, enhance

redundancy, and utilize various strengths across different

cloud providers. In most cases, though, infrastructure

management across multi - clouds becomes very cumbersome

without an integrated toolset to manage it. Terraform solves

this problem by providing a consistent interface for managing

infrastructure on all major cloud providers, such as AWS,

Azure, and Google Cloud. DevOps teams use the same skills

and tools to manage infrastructures across cloud

environments. This reduces the learning curve and

complexity associated with managing multi - clouds.

Besides, Terraform easily integrates with CI/CD pipelines.

This facilitates automated testing and deployment of

infrastructure changes. The CI/CD pipeline automates

building, testing, and deploying an application in a modern

software development lifecycle. Adding Terraform into such

pipelines enables one to automate the creation, testing, and

deployment of infrastructure changes so that all infrastructure

changes undergo testing and are deployed together with the

code changes. This facilitates even smoother development

and fewer chances of error in a production environment. An

example would be testing changes in the staging environment

before deploying them to production.

Therefore, adopting Terraform has challenges regarding state

management and team collaboration. The state file is

probably among the most critical files in Terraform, which

keeps track of the current state of your infrastructure. In this

way, Terraform knows what changes must be applied to your

infrastructure to bring it into the desired state. It is in

managing the state file, though, where the challenge mostly

occurs in multi - team, same - infrastructure environments.

Conflicts arise when users simultaneously attempt to affect

their state file changes if not properly managed. This leads to

inconsistencies and errors.

It is worth noting that overcoming state management

challenges incorporates best organizational practices such as

remote storage of states and locking mechanisms. Remote

storage ensures the state file is kept in a centrally placed area

for team members to access and use rather than the local

storage of a single machine. That way, conflict chances are

minimal, while the state file is always current. In addition,

Terraform provides a state - locking mechanism that

disallows several users to make changes to the state file at

once. During any infrastructure work - in - progress by one

user, the state file is locked, and no other changes can be made

until the lock is released. This is because it runs the

protections for changes to be applied controlled, and orderly.

Team collaboration is another important reason for Terraform

adoptions, especially when multiple teams work on parts of

the same infrastructure. Traditional infrastructure

management usually happens within silos; that means teams

do not collaborate or share much about what they do.

However, Terraform's Infrastructure - as - Code raises many

instances of collaboration in successfully administering the

infrastructure. Organizations should invest in training and

education for DevOps teams to understand nuances in

Terraform and best practices to collaborate amongst teams

effectively. The training shall be provided on how to write

maintainable Terraform configuration easily, use version

control appropriately, and manage state files in multi - team

environments.

Besides training, the organization should establish workflows

and governance processes that allow these teams to share the

work smoothly. This will likely include clarifying the roles

and responsibilities for maintaining the Terraform

configuration, establishing peer review processes for

infrastructure changes, and guidelines on version control and

state file management. With these processes in place,

organizations will be guaranteed the proper use of Terraform

and their teams working together to perform their work

without introducing errors or conflicts to a system.

Overcoming such challenges means taking full advantage of

Terraform and making infrastructure management processes

more effective and reliable. Therefore, Terraform will be very

helpful in handling modern infrastructure through its

declarative language, automation, and multi - cloud support

in agile environments characterized by fast iterations and

frequent updates.

4. Uses

Terraform is an open - source IaC tool, and because of its

versatility and the capability to manage both cloud and on -

premise infrastructure, it has become a must - have in today's

agile DevOps world. It automates the provisioning and

managing of infrastructure resources such as virtual

machines, databases, networking resources, etc. Terraform

automates the overall setup of environments and removes that

burden from DevOps teams so they can focus on developing

applications, not spending all their time setting up and

maintaining environments. It features a declarative

configuration language and multi - cloud support, making it

perfect for any organization looking to improve operational

efficiency and avoid vendor lock - in while managing

complex infrastructures across various platforms.

Paper ID: SR20709085028 DOI: https://dx.doi.org/10.21275/SR20709085028 1369

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Infrastructure Provisioning and Management

One of the most common usages of Terraform in agile

DevOps environments is the management of cloud

infrastructure provision and maintenance. Conventionally,

infrastructure setup uses very manual processes, which can be

time - consuming and prone to errors. Using Terraform, teams

can define, modify, and update infrastructure resources

regularly and efficiently by writing infrastructure in code

form. Terraform empowers DevOps teams to create virtual

machines, database systems, storage, networking, and other

services on most providers like AWS, Azure, Google Cloud,

and many more.

Automation of these infrastructure tasks reduces the amount

of manual intervention required to a great extent; it gives

more focus to building, testing, and deployment of

applications by the DevOps teams. Thus, this helps reduce

human error, which generally occurs in the case of a manual

setup. Therefore, infrastructure - as - code practices promoted

by Terraform result in more stable and consistent

environments, which are more reliable and much more

scalable. Besides, Terraform enables infrastructure

versioning, meaning that changes made to the infrastructure

are traceable, testable, and can be rolled back if necessary,

adding another layer of security and coherence to the

infrastructure management process.

Terraform in Multi - Cloud Strategies

The ever - increasing multi - cloud trend brings challenges,

especially concerning infrastructure management across

cloud platforms. Multi - cloud refers to using services

provided by different cloud providers to avoid vendor lock -

in or take advantage of key features on specific platforms. For

instance, an organization might opt to run workloads on AWS

due to its computing services and use Google Cloud for

machine learning tools. One way or the other, the

infrastructure management over multiple providers turns out

to be an extremely cumbersome and time - consuming task.

Terraform helps simplify this by providing a unified tool for

managing resources across multiple clouds. Instead of

learning to use and manage the native IaC tools for each cloud

provider, such as AWS CloudFormation or Azure Resource

Manager, the DevOps teams will leverage Terraform for

provisioning and managing resources across any supported

cloud platform. This enables the organizations to move to a

truly flexible multi - cloud approach without getting tied to

the native tools provided by any specific vendor. This means

that teams can define the infrastructure as code for different

cloud providers in a single codebase by writing Terraform

configuration files, which makes life easier for management.

It further allows teams to apply security policies consistently,

naming conventions, and resource allocation strategies in

these diverse cloud platforms, guaranteeing that such an

organization could manage the security and compliance

problems pretty well in such heterogeneous clouds. Suppose

there is a need for rapid workload migration or replication

across these clouds by teams. In that case, the state

management provided by Terraform offers seamless

portability: assurance that infrastructure deployed into one

cloud is easily replicated into another.

Infrastructure Orchestration

Terraform is not a mere provisioning tool but an elaborate

infrastructure orchestration tool, hence becoming ideal for

large - scale and interdependent systems. Many organizations

today move into microservices architectures or containerized

applications where many services and components need

coordination for the application to function. Such systems

typically comprise databases, APIs, load balancers, and

storage services working together to deliver a functional

application. In that case, Terraform can define and orchestrate

the complete infrastructure to guarantee all components are

created, configured, and linked in due order. This capability

of infrastructure orchestration is, in particular, valuable in an

environment where Kubernetes is used for container

orchestration. While Kubernetes is a powerful tool for

managing containerized applications, Terraform can provide

the underlying infrastructure that supports Kubernetes

clusters: computing instances, volumes for data storage, and

networking components, among others. It also does

configurations within Kubernetes for the cluster itself to

ensure that the right number of nodes, resources, and

configurations are deployed and maintained across the

system.

Besides that, Terraform works quite well with other DevOps

tools: configuration management such as Ansible, continuous

integration and delivery like Jenkins, and secrets management

like Vault. Infrastructure and orchestration layers managed by

Terraform - systems are resilient, scalable, and highly

available. For example, one Terraform configuration file

would instruct the creation of a highly available web

application, including load balancers, auto - scaling groups,

and database failover configurations, in one orchestration

workflow.

Hybrid Cloud and On - Premises Infrastructure

Besides cloud - based resource management, Terraform is

flexible in hybrid cloud environments, where cloud and on -

premises infrastructure are connected. Several organizations

still manage their data centers' physical servers, networking

hardware, and storage systems. While managing these

resources with traditional IaC is often difficult, Terraform

provides modules and providers for various on - premises

technologies.

For example, Terraform would manage the VMware virtual

machines and networks in an on - premise data center and

enable the DevOps team to keep one toolchain for the cloud

and physical infrastructure. By abstracting the underlying

differences between cloud and on - premises systems,

Terraform allows organizations to manage their entire

portfolio using one set of tools and processes. This is

important for finance, healthcare, and government industries

since a large fraction of the regulatory requirements demand

hosting such sensitive data on - premises. Terraform supports

popular infrastructure monitoring and management software

like Prometheus and Datadog, which are widely used in

hybrid environments. That will enable teams to observe the

performance and health of their infrastructure continuously,

be it in the cloud or on - premises, thereby making the

necessary adjustments using Terraform if something goes

awry.

Paper ID: SR20709085028 DOI: https://dx.doi.org/10.21275/SR20709085028 1370

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Disaster Recovery

The ability to restore quickly to a known stable state of

systems in the event of an infrastructure outage or disaster is

critical. Terraform plays an important role in disaster

recovery due to its ability to store the infrastructure state as

code. The state file generated after every run of Terraform

creates a snapshot of the current state of the infrastructure,

including resources, configurations, and the relationships that

set them up. With such a state file, teams could rapidly and

reliably rebuild the infrastructure should any disaster or

outage occur. Using version control on the Terraform

configuration and state files will allow organizations to keep

records of the exact infrastructure configuration at any time.

This makes it easier to roll back to a previous state or rebuild

an environment in case of catastrophic failure.

5. Impact

Terraform's impact on DevOps practices, especially in an

agile environment, has been profound. For one, it has

accelerated the infrastructure provisioning process, allowing

teams to do what took hours or days in mere minutes. Speed

is essential in Agile workflows where the development cycles

are short. Therefore, new features must be tested and put into

production incredibly fast. By automating the provisioning

process, Terraform frees more time and effort that would have

to be invested by teams in managing the infrastructure to

focus on more value - added tasks. Besides, Terraform

enhances infrastructure reliability by ensuring environments

are consistently provisioned from predefined configurations.

This is most desired in agile environments, as there are

frequent changes, and infrastructure has to be updated

regularly to support new features or because scaling

requirements change. Another good thing about Terraform is

that it encourages closer cooperation between development

and operations since they now share the same infrastructure

codebase. That reduces the possibility of miscommunication

and ensures changes in the infrastructures are true as required

by the application c. Another big impact of Terraform has

been managing infrastructure across many cloud providers,

giving organizations way more leeway in their cloud

strategies. By simplifying multi - cloud management,

Terraform enables organizations to leverage best - of - breed

solutions from multiple providers without the headaches and

intricacies of managing a variety of tools for each separate

platform. Finally, Terraform has substantially impacted

overall organizational agility in its ability to respond to

changes in the marketplace or customer rapid needs by scaling

up or down infrastructure as required.

6. Scope

The scope of Terraform's application is wide, from cloud -

native to on - premises and hybrid environments. Therefore,

capabilities such as multi - cloud provider infrastructure

management make Terraform a serious enabler for

organizations in search of flexibility and minimal risk of

vendor lock - in in cloud - native environments. Terraform

can manage various cloud services, ranging from compute

and storage resources to networking, making it all - around in

cloud infrastructure management. Beyond cloud

environments, Terraform is also applied within on - premise

environments, where it can manage physical servers,

networking equipment, and storage devices. This benefits

organizations operating hybrid environments across cloud

and on - premise infrastructure. Terraform's ability to manage

various environments allows it to fit organizations from small

startups to large enterprises. Besides that, Terraform provides

huge scalability for small projects and large and complex

environments. For example, a small development team might

use Terraform to manage a few virtual machines in a cloud

environment, while a large enterprise might use it to manage

thousands of resources across multiple clouds and data

centers. This makes it a core piece of the infrastructure

automation puzzle, considering its integration with other

DevOps tools such as Ansible for configuration management

and Kubernetes for container orchestration. The more

organizations adopt DevOps practices and cloud

technologies, the wider the scope of Terraform's application

will be, making the tool essential in modern infrastructure

management.

7. Conclusion

Ultimately, Terraform has reimagined how infrastructure is

managed within agile DevOps. With one common approach

to Infrastructure as Code, Terraform now provides a way for

organizations to automate the creation and management of

infrastructure across complex, multi - environment, multi -

cloud environments. Such automation reduces the chance for

errors to occur, speeds up deployment, and enhances the

reliability of the infrastructure. This flexibility, especially in

its cloud - agnostic nature findings, finds an exact equivalent

value to the value it brings into an organizational context. This

is quite crucial in multi - cloud and hybrid strategies.

Terraform integrates with the CI/CD pipeline, making it much

more useful since teams can automate testing and deployment

of infrastructure changes next to application code. Of course,

challenges persist, such as with the implementation of

Terraform, around the learning curve and state management.

These challenges can be mitigated with best practices and

training. As organizations embrace agile methodologies and

DevOps practices, Terraform's usage in infrastructure

management is more likely to be great. The capability for

automation of infrastructure provisioning, consistency across

environments, and managing complex multi - cloud

infrastructure securely makes Terraform an essential tool for

modern DevOps teams. After all, investment in Terraform or

Infrastructure as Code better equips an organization with

modern software development and infrastructure

management challenges. It equips them to respond swiftly to

market or customer needs changes without sacrificing

reliability or scalability in the infrastructure.

References

[1] Bachras, M. (2020). Supporting infrastructure

development as code using Ansible: a smart IDE

integrating external sources.

[2] Bonnín Soler, J. (2022). Enhancement and

Standardization of the Software Development Process

in an NLP focused Company (Bachelor's thesis,

Universitat Politècnica de Catalunya).

[3] Chijioke - Uche, J. (2022). Infrastructure as Code

Strategies and Benefits in Cloud Computing (Doctoral

dissertation, Walden University).

Paper ID: SR20709085028 DOI: https://dx.doi.org/10.21275/SR20709085028 1371

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[4] e Souza, I. S., Franco, D. P., & Silva, J. P. S. G. (2022).

Infrastructure as Code as a Foundational Technique for

Increasing the DevOps Maturity Level: Two Case

Studies. IEEE Software, 40 (1), 63 - 68.

[5] Jiménez, M. (2022). An infrastructure for autonomic

and continuous long - term software evolution (Doctoral

dissertation).

[6] Lamanna, V. (2022). Organizational consequences of

adopting cloud computing in a complex enterprise

context (Doctoral dissertation, Politecnico di Torino).

[7] Lekkala, C. (2022). Automating Infrastructure

Management with Terraform: Strategies and Impact on

Business Efficiency. European Journal of Advances in

Engineering and Technology, 9 (11), 82 - 88.

[8] Pereira, R. M. R. (2021). Cloud provider independence

using DevOps methodologies with Infrastructure - as -

Code (Doctoral dissertation).

Paper ID: SR20709085028 DOI: https://dx.doi.org/10.21275/SR20709085028 1372

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

