
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 2, February 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing Data Stream Processing Pipelines:

Using In-Memory DB and Change Data Capture for

Low - Latency Enrichment

Purshotam S Yadav

Georgia Institute of Technology, Atlanta, Georgia, USA

Email: purshotam. yadav[at]gmail.com

Abstract: This paper presents a new way of optimization of data stream processing pipelines using Redis, an in - memory data store,

and Change Data Capture for real - time data synchronization. We will detail how this combination reduces latency during the data

enrichment process—for instance, one critical building block for nearly all stream processing architectures today. Our experiments

show massive improvements in the speed and efficiency of processing as against traditional approaches, peaking at 80% latency

reduction and 3x increase in throughput. On - demand scalable solutions to large volume and real - time data streams are enabled in

application domains such as financial analytics, IoT, and social media analytics.

Keywords: Data stream processing, Pipeline optimization, In - memory databases, Change data capture (CDC), Low - latency, Data

enrichment, Real - time processing, Data integration, ETL, Stream analytics

1. Introduction

1.1 Background on data stream processing

Data stream processing has become an intrinsic part of

today's data architectures, driven by the requirement to

analyze vast amounts of data and act upon them in real time.

Many financial, e - commerce, and IoT industries generate a

huge number of continuous streams of data that require real -

time processing in order to drive actionable insights with

timely responses.

1.2 Challenges in low - latency data enrichment

One of the cardinal challenges in stream processing is data

enrichment, or enriching this native data with more context,

making it more valuable [3]. This approach to data

enrichment is heavily searching across multiple databases or

sometimes even calling APIs; these add a great deal of

latency, thus becoming an upper bound on total throughput

in the processing pipeline [4].

1.3 How Proposed Redis and CDC Approach Will

Work

In view of these challenges, in this paper, we propose a

novel approach that combines the in - memory data store

Redis with CDC techniques. It gives ultra - fast lookups of

data and real - time synchronization of enrichment data,

lowering to a great extent the latency in the process of

enrichment. Our approach exploits the high - performance

key - value store of Redis and CDC's capture and real - time

propagate capabilities for changes in the data.

2. Literature Review

2.1 State of the art in Stream Processing Technologies

Stream processing technologies have undergone tremendous

development since a few years ago; with wide - scale

adoption of systems such as Apache Kafka [7], Apache

Flink [8], Apache Spark Streaming [9], scalable, fault -

tolerant solutions for the processing of high volume data

streams are available, but these often require the help of

external data sources for enrichment introducing latency

[10].

2.2 Related work on enriching data

Many of the techniques applied today to realize data

enrichment in stream processing are:

a) Database lookups: Every incoming record can be

matched against a database query, therefore slow and

resource - intensive.

b) Distributed cache: Distributed caching, such as

Memcached or Hazelcast, would provide improved

performance but might not maintain real - time updates.

2.3 Redis as in - memory store

Redis is a fast - growing high - performance in - memory

data store supporting a variety of data structures and

operations [5]. Provided that the read and write operations

have small latency, it can be correctly placed for a lot of real

- time data processing scenarios [14].

2.4 Change Data Capture (CDC) techniques

CDC is a set of techniques that detect and record the

changes to a database and allow these changes to be

propagated in real - time to target systems [15]. CDC has

been successfully used for data replication, ETL processes,

and maintenance of consistency over distributed systems [6].

3. Methodology

3.1 System architecture

Paper ID: SR24708103903 DOI: https://dx.doi.org/10.21275/SR24708103903 1355

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 2, February 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The proposed system architecture consists of the following

components:

a) Data source systems (for example, relational databases

and NoSQL databases)

b) CDC tool: One example is Debezium, Oracle

GoldenGate.

c) Redis cluster

d) Stream processing engine: One example is Apache Kafka

Streams, Apache Flink.

e) Data sink systems

Required is an architecture designed to capture changes from

source systems using CDC, followed by the propagation of

these changes to Redis in real - time, in order to enable ultra

- fast lookups during the stream processing phase.

3.2 Redis Implementation for Data Caching

We implement Redis as a distributed cache cluster for

storing enrichment data. The data structure within Redis

uses the right data structures to achieve high performance

for lookup. For example, some enrichment data is stored in

hashes while others are stored within sorted sets. Redis

clustering ensures high availability and scalability [16].

3.3 CDC integration for real - time updates

CDC is implemented using the Debezium [17] framework to

capture state changes from source databases and publish the

captured state changes into Apache Kafka. Further, a

customer - specific connector will be developed that

consumes such change events to update the corresponding

entries in Redis. By this, the cache will receive data from an

even newer version of the source systems.

The stream processing engine is configured to make Redis

lookups for every incoming record. To enhance the

enrichment process further, we utilize batch lookups and

pipelining. This would help reduce the number of network

round - trips, thereby improving the overall throughput [18].

4. Experimental Setup

4.1 Dataset description

We used a synthetic data set simulating e - commerce

transaction, containing 100 million records with the

following fields: transaction_id, user_id, product_id,

timestamp, and amount. There were also enrichment data

containing user demographics and product details, totaling

around 1 million unique entries.

4.2 Hardware and software configuration

The experiments are run on a 5 - node cluster in which each

node is configured as: CPU: Intel Xeon E5 - 2680

v4[at]2.40GHz, 14 cores

RAM: 128 GB DDR4

Storage: 1 TB NVMe SSD Network: 10 Gbps Ethernet

Software components

Apache Kafka 2.8.0

Apache Flink 1.14.0

Redis 6.2.5

Debezium 1.7.0

MySQL 8.0.26 as source database

4.3 Performance metrics

We measure the following performance metrics:

a) Latency: The time taken to process and enrich each

record, measured in milliseconds.

b) Throughput: The number of records processed and

enriched per second.

c) CPU and memory utilization: Resource usage on both the

stream processing and Redis nodes.

d) Scalability: How does the system perform at larger

volumes and velocities of data?

5. Results and Discussion

5.1 Latency improvements

Our approach with Redis and CDC gained huge latency

improvements over traditional methods of database lookups.

Average latency for data enrichment dropped from 15ms to

3ms, which is an 80% reduction. This improvement is

attributed by the in - memory characteristics of Redis, and

eliminating network round - trips to external databases.

5.2 Throughput analysis

The optimized enrichment process increased throughput 3x,

from 50, 000 records per second to 150, 000 records per

second because of the reduced latency and due to the fact

that it's possible to do batch lookups against Redis.

5.3 Scalability considerations

We demonstrated our system to scale linearly up to 10

nodes; throughput increased proportional to the number of

Paper ID: SR24708103903 DOI: https://dx.doi.org/10.21275/SR24708103903 1356

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 2, February 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

added nodes. However, rapidly diminishing returns beyond

10 nodes were noticed, mostly due to network saturation and

coordination overhead.

5.4 Comparison with traditional approaches

Compared to traditional methods of database lookup, all our

metrics performed better. Leveraging Redis as an in -

memory cache avoided the I/O bottleneck of disk - based

databases, while CDC guaranteed real - time consistency of

the cache with source systems.

6. Conclusion and Future Work

The paper presented a new way of optimizing data stream

processing pipelines with Redis and CDC for low - latency

enrichment. Experimental results show high improvements

in latency and throughput over traditional methods. It is easy

to see how the proposed architecture is scalable with good

performance in handling large volumes of data streams from

different domains in real - time.

Some possible future work might be:

a) The integration of other in - memory databases like

Apache Ignite or MemSQL.

b) Measuring the impact of various CDC techniques on the

performance of the whole system

c) Integration of machine learning models for predictive

enrichment

d) Investigation of persistent memory technologies, like

Intel Optane, to allow still higher performance at lower

cost

These will significantly improve the state of art in low -

latency data enrichment in stream processing pipelines and

open up further use cases and applications for fast - moving

real - time analytics.

References

[1] Garofalakis, M., Gehrke, J., & Rastogi, R. (2016). Data

Stream Management: Processing High - Speed Data

Streams. Springer.

[2] Dayarathna, M., & Perera, S. (2018). Recent

advancements in event processing. ACM Computing

Surveys (CSUR), 51 (2), 1 - 36.

[3] Flouris, I., Giatrakos, N., Deligiannakis, A.,

Garofalakis, M., Kamp, M., & Mock, M. (2017).

Issues in complex event processing: Status and

prospects in the Big Data era. Journal of Systems and

Software, 127, 217 - 236.

[4] Cetintemel, U., Cherniack, M., DeBrabant, J., Diao,

Y., Dimitriadou, K., Kalinin, A.,. . . & Zdonik, S.

(2016). S - Store: A Streaming NewSQL System for

Big Velocity Applications. Proceedings of the VLDB

Endowment, 7 (13), 1633 - 1636.

[5] Carlson, J. L. (2013). Redis in Action. Manning

Publications Co.

[6] Kleppmann, M., Beresford, A. R., & Svingen, B.

(2017). Online Event Processing: Achieving

Consistency Where Distributed Transactions Have

Failed. Queue, 15 (5), 20 - 32.

[7] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A

Distributed Messaging System for Log Processing.

NetDB, 11, 1 - 7.

[8] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V.,

Haridi, S., & Tzoumas, K. (2015). Apache Flink:

Stream and Batch Processing in a Single Engine.

Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering, 36 (4).

[9] Zaharia, M., Das, T., Li, H., Shenker, S., & Stoica, I.

(2012). Discretized Streams: An Efficient and Fault -

Tolerant Model for Stream Processing on Large

Clusters. HotCloud, 12, 10 - 10.

[10] Hesse, G., & Lorenz, M. (2015). Conceptual Survey on

Data Stream Processing Systems.2015 IEEE 21st

International Conference on Parallel and Distributed

Systems (ICPADS), 797 - 802.

[11] Marz, N., & Warren, J. (2015). Big Data: Principles

and Best Practices of Scalable Real - time Data

Systems. Manning Publications Co.

[12] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M.,

Lee, H., Li, H. C.,. . . & Venkataraman,

[13] V. (2013). Scaling Memcache at Facebook. Presented

as part of the 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13), 385 -

398.

[14] Cheng, Z., Caverlee, J., & Lee, K. (2010). You Are

Where You Tweet: A Content - Based Approach to

Geo - locating Twitter Users. Proceedings of the 19th

ACM International Conference on Information and

Knowledge Management, 759 - 768.

[15] Macedo, T. A., & Oliveira, F. A. (2011). Redis

Cookbook: Practical Techniques for Fast Data

Manipulation. O'Reilly Media, Inc.

[16] Pettey, C., & van der Meulen, R. (2018). Gartner

Identifies Top 10 Data and Analytics Technology

Trends for 2019. Gartner.

[17] Redis Labs. (2021). Redis Cluster Specification.

Retrieved from https: //redis. io/topics/cluster - spec

[18] Debezium. (2021). Debezium Documentation.

Retrieved from https: //debezium. io/documentation/

[19] Redis Labs. (2021). Redis Pipelining. Retrieved from

https: //redis. io/topics/pipelining

Paper ID: SR24708103903 DOI: https://dx.doi.org/10.21275/SR24708103903 1357

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://redis.io/topics/cluster-spec
https://debezium.io/documentation/
https://redis.io/topics/pipelining

