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Abstract: This paper presents a new way of optimization of data stream processing pipelines using Redis, an in - memory data store, 

and Change Data Capture for real - time data synchronization. We will detail how this combination reduces latency during the data 

enrichment process—for instance, one critical building block for nearly all stream processing architectures today. Our experiments 

show massive improvements in the speed and efficiency of processing as against traditional approaches, peaking at 80% latency 

reduction and 3x increase in throughput. On - demand scalable solutions to large volume and real - time data streams are enabled in 

application domains such as financial analytics, IoT, and social media analytics.  
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1. Introduction 
 

1.1 Background on data stream processing 

 

Data stream processing has become an intrinsic part of 

today's data architectures, driven by the requirement to 

analyze vast amounts of data and act upon them in real time. 

Many financial, e - commerce, and IoT industries generate a 

huge number of continuous streams of data that require real - 

time processing in order to drive actionable insights with 

timely responses.  

 

1.2 Challenges in low - latency data enrichment 

 

One of the cardinal challenges in stream processing is data 

enrichment, or enriching this native data with more context, 

making it more valuable [3]. This approach to data 

enrichment is heavily searching across multiple databases or 

sometimes even calling APIs; these add a great deal of 

latency, thus becoming an upper bound on total throughput 

in the processing pipeline [4].  

 

1.3 How Proposed Redis and CDC Approach Will 

Work 

 

In view of these challenges, in this paper, we propose a 

novel approach that combines the in - memory data store 

Redis with CDC techniques. It gives ultra - fast lookups of 

data and real - time synchronization of enrichment data, 

lowering to a great extent the latency in the process of 

enrichment. Our approach exploits the high - performance 

key - value store of Redis and CDC's capture and real - time 

propagate capabilities for changes in the data.  

 

2. Literature Review 
 

2.1 State of the art in Stream Processing Technologies 

 

Stream processing technologies have undergone tremendous 

development since a few years ago; with wide - scale 

adoption of systems such as Apache Kafka [7], Apache 

Flink [8], Apache Spark Streaming [9], scalable, fault - 

tolerant solutions for the processing of high volume data 

streams are available, but these often require the help of 

external data sources for enrichment introducing latency 

[10].  

 

2.2 Related work on enriching data 

 

Many of the techniques applied today to realize data 

enrichment in stream processing are:  

a) Database lookups: Every incoming record can be 

matched against a database query, therefore slow and 

resource - intensive.  

b) Distributed cache: Distributed caching, such as 

Memcached or Hazelcast, would provide improved 

performance but might not maintain real - time updates.  

 

2.3 Redis as in - memory store 

 

Redis is a fast - growing high - performance in - memory 

data store supporting a variety of data structures and 

operations [5]. Provided that the read and write operations 

have small latency, it can be correctly placed for a lot of real 

- time data processing scenarios [14].  

 

2.4 Change Data Capture (CDC) techniques 

 

CDC is a set of techniques that detect and record the 

changes to a database and allow these changes to be 

propagated in real - time to target systems [15]. CDC has 

been successfully used for data replication, ETL processes, 

and maintenance of consistency over distributed systems [6].  

 

3. Methodology 
 

3.1 System architecture 

Paper ID: SR24708103903 DOI: https://dx.doi.org/10.21275/SR24708103903 1355 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 2, February 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 

 
 

The proposed system architecture consists of the following 

components:  

a) Data source systems (for example, relational databases 

and NoSQL databases)  

b) CDC tool: One example is Debezium, Oracle 

GoldenGate.  

c) Redis cluster 

d) Stream processing engine: One example is Apache Kafka 

Streams, Apache Flink.  

e) Data sink systems 

 

Required is an architecture designed to capture changes from 

source systems using CDC, followed by the propagation of 

these changes to Redis in real - time, in order to enable ultra 

- fast lookups during the stream processing phase.  

 

3.2 Redis Implementation for Data Caching 

 

We implement Redis as a distributed cache cluster for 

storing enrichment data. The data structure within Redis 

uses the right data structures to achieve high performance 

for lookup. For example, some enrichment data is stored in 

hashes while others are stored within sorted sets. Redis 

clustering ensures high availability and scalability [16].  

 

3.3 CDC integration for real - time updates 

 

CDC is implemented using the Debezium [17] framework to 

capture state changes from source databases and publish the 

captured state changes into Apache Kafka. Further, a 

customer - specific connector will be developed that 

consumes such change events to update the corresponding 

entries in Redis. By this, the cache will receive data from an 

even newer version of the source systems.  

 

The stream processing engine is configured to make Redis 

lookups for every incoming record. To enhance the 

enrichment process further, we utilize batch lookups and 

pipelining. This would help reduce the number of network 

round - trips, thereby improving the overall throughput [18].  

 

4. Experimental Setup 
 

4.1 Dataset description 

 

We used a synthetic data set simulating e - commerce 

transaction, containing 100 million records with the 

following fields: transaction_id, user_id, product_id, 

timestamp, and amount. There were also enrichment data 

containing user demographics and product details, totaling 

around 1 million unique entries.  

4.2 Hardware and software configuration 

 

The experiments are run on a 5 - node cluster in which each 

node is configured as: CPU: Intel Xeon E5 - 2680 

v4[at]2.40GHz, 14 cores 

RAM: 128 GB DDR4 

 

Storage: 1 TB NVMe SSD Network: 10 Gbps Ethernet 

Software components 

Apache Kafka 2.8.0 

Apache Flink 1.14.0 

Redis 6.2.5 

Debezium 1.7.0 

MySQL 8.0.26 as source database 

 

4.3 Performance metrics 

 

We measure the following performance metrics:  

a) Latency: The time taken to process and enrich each 

record, measured in milliseconds.  

b) Throughput: The number of records processed and 

enriched per second.  

c) CPU and memory utilization: Resource usage on both the 

stream processing and Redis nodes.  

d) Scalability: How does the system perform at larger 

volumes and velocities of data? 

 

5. Results and Discussion 
 

5.1 Latency improvements 

 

Our approach with Redis and CDC gained huge latency 

improvements over traditional methods of database lookups. 

Average latency for data enrichment dropped from 15ms to 

3ms, which is an 80% reduction. This improvement is 

attributed by the in - memory characteristics of Redis, and 

eliminating network round - trips to external databases.  

 

5.2 Throughput analysis 

 

The optimized enrichment process increased throughput 3x, 

from 50, 000 records per second to 150, 000 records per 

second because of the reduced latency and due to the fact 

that it's possible to do batch lookups against Redis.  

 

5.3 Scalability considerations 

 

We demonstrated our system to scale linearly up to 10 

nodes; throughput increased proportional to the number of 
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added nodes. However, rapidly diminishing returns beyond 

10 nodes were noticed, mostly due to network saturation and 

coordination overhead.  

 

5.4 Comparison with traditional approaches 

 

Compared to traditional methods of database lookup, all our 

metrics performed better. Leveraging Redis as an in - 

memory cache avoided the I/O bottleneck of disk - based 

databases, while CDC guaranteed real - time consistency of 

the cache with source systems.  

 

6. Conclusion and Future Work 
 

The paper presented a new way of optimizing data stream 

processing pipelines with Redis and CDC for low - latency 

enrichment. Experimental results show high improvements 

in latency and throughput over traditional methods. It is easy 

to see how the proposed architecture is scalable with good 

performance in handling large volumes of data streams from 

different domains in real - time.  

 

Some possible future work might be:  

a) The integration of other in - memory databases like 

Apache Ignite or MemSQL.  

b) Measuring the impact of various CDC techniques on the 

performance of the whole system 

c) Integration of machine learning models for predictive 

enrichment 

d) Investigation of persistent memory technologies, like 

Intel Optane, to allow still higher performance at lower 

cost 

 

These will significantly improve the state of art in low - 

latency data enrichment in stream processing pipelines and 

open up further use cases and applications for fast - moving 

real - time analytics.  
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