
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Building High - Throughput Payment Transaction

Systems with Kafka and Microservices

Pavan Kumar Joshi

Abstract: The incidence of payment transactions has grown exponentially, placing high throughput payment transaction systems in

high demand. Payment processing systems need to be used for a large number of transactions while experiencing a low amount of delay,

being highly scalable and tolerant to failures. In this context, Apache Kafka, which is a distributed event streaming platform coupled with

a microservices architecture, has been seen as the best approach to the development of efficient, reliable, and scalable payment transaction

systems. This is because Kafka is a distributed system combining the characteristics of microservices to important decentralized

functionality while at the same time handling large transaction volumes, fault isolation, faster data recovery, and ease of development.

For this paper, I propose the implementation of Kafka and microservices to develop a fast - processing payment transaction system. We

expound on the storage architecture of Kafka, particularly issues of partitioning, replication, and message retention for real - time

payment processing. Thinking of various functionalities, such as transaction validating, fraud, and settling, the microservices architecture

can be analyzed to determine whether it can separate all these and more as individually deployable services or not. We also explain how

the system achieves the concept of eventual consistency across distributed services; this is through Kafka as a message broker for

microservices. In addition, this paper demonstrates and compares the throughput, fault tolerance, and scalability of the monolithic

payment system and the microservices of the payment system connected with Kafka. Real - life examples of Kafka in financial

organizations, as well as new benchmarks and case studies that demonstrate how Kafka and microservices can be used in actual payment

systems, are also presented. Lastly, we look at some of the issues with adopting Kafka to existing payment platform architectures and how

to solve them. We also suggest how it is possible to solve issues, including distributed transactions, data consistency, strict security and

compliance requirements, before we draw our conclusion.

Keywords: Apache Kafka, Microservices architecture, Scalability, Fault tolerance, Event - driven architecture

1. Introduction

The advent of e - commerce, digital, and mobile payments has

put payment transactions on a new high of evolution. Systems

developed in a monolithic style that unifies the processing of

the application in one code base are not capable of addressing

the load of current real - time transaction processing,

scalability and fault tolerance requirements. There is an

increased need for high throughput, which must be served

while still keeping the quality of service high, mean time to

failure low, and compliance and regulation standards adhered

to. [1 - 4] This paper discusses how and to what extent the

application of Apache Kafka and microservices can address

these issues in contemporary payment systems.

1.1. The Role of Apache Kafka in Payment Systems

Figure 1: The Role of Apache Kafka in Payment Systems

• Apache Kafka: Apache Kafka is an open - source

messaging system for distributed event streaming capable

of handling vast data feeds at the lowest latency possible.

Initially, Kafka was built at LinkedIn but has evolved into

one of the core technologies of modern data platforms,

especially within the financial industry. Being built to be

highly reliable and scalable, it covers the areas of message

brokering as well as storage and processing of stream data

and is best suited for applications where real - time data

are processed.

• Event - Driven Architecture: Kafka fosters an event -

driven design that allows payment systems to process

transactions as individual, individual events, increasing

response rates. This architecture provides the independent

scalability of a producer space and a consumer space,

allowing different services to be compensated without

needing to touch each other. Consequently, the payment

system can be flexible in response to the varying amount

of load in the transaction without adverse effects on

system functionality.

• High Throughput and Low Latency: However, one of

Kafka’s strengths is its capability to handle massive

amounts of data with little delay, something very relevant

in today’s world of payment transactions. During busy

transaction operations, like promotional offers, Kafka’s

partitioning and replication enable the transactions to

happen concurrently across different brokers. This high

throughput capability makes it easier for the payment

systems to meet performance requirements and sustain a

good user interface.

• Data Durability and Reliability: Kafka’s architecture of

distributed logs ensures the high availability of data by

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1658

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

writing messages into multiple brokers, which is

important for payment systems. This durability means

transaction consistency and accuracy are not

compromised, let alone by system failures. Through the

replay of messages of the Kafka log, it is easy to recover

in case of data loss, which is important in compliance and

customers of financial transactions.

• Real - Time Data Processing: Due to the demands for

huge real - time processing in the financial sectors, Kafka

allows users to process transactional data in real - time.

Payment systems can use Kafka Streams or Kafka

Connect to build applications that can observe

transactional patterns and identify fraudulent transactions.

For example, if a transaction is suspicious, Kafka is

capable of immediately notifying its linked fraud detection

service, thereby enabling efficient preemption.

• Scalability: To sum it up, Kafka is scalable, allowing

organizations to scale up the flow of payments without the

addition of new architectures. Growing transaction traffic

is well managed by Kafka because organizations can scale

brokers and partitions as business increases. Overall, this

scalability is a great benefit for the payment service

providers because they often work with the rushing of

transactions, for example, during holidays or promotions.

• Integrating Microservices: Today, Kafka has become an

integral part of modern payment systems, acting as the

base component for microservices architecture that

provides the ability for its individual service operation.

Kafka supports Kafka topics, which enable each

microservice to generate and receive messages and thus

make it easier to modularize the application. This

separation of concerns helps to simplify the processes of

maintenance and deployment of individual services, as

well as greatly increases the overall flexibility of the

system.

• Monitoring and Audit Trails: Kafka’s logging

capabilities are the key to offering a sufficient level of

monitoring and auditing inside payment systems. Original

documents are important for documenting the audit trail

and as evidence for following compliance and regulation

standards since they track the life cycle of transactions.

Through tracking all events, Kafka successfully assists

organizations in analyzing system functionality and

enhances performance by addressing issues and enhancing

accountability.

1.2 The Need for Kafka and Microservices Integration

Due to hi - tech competition in the current technological

advances, the combination of Apache Kafka with

microservices is crucial for integrating compatible

applications. This integration solves some broad important

issues of business in general and notably those companies that

work in the growth industries, including finance and

electronic commerce. Following are the factors that, in one

way or the other, compel this integration to occur.

Figure 2: The Need for Kafka and Microservices Integration

• Enhanced Scalability: The primary purpose of using

Kafka in microservices is that it increases scalability since

it can be integrated with microservices. Underpinning this

is the fact that as business and more transactions are

facilitated, conventional architectures may not easily cope

with growing volumes. Microservice enables discrete

elements that may work within a system to have unique

scalability, while Kafka permits the fast handling of data.

Combined, the two guarantee organizations’ systematic

ability to scale their systems for increased or decreased

loads without major redesign.

• Improved Fault Tolerance: In a microservices

framework, failure would not have to bring down a whole

system of services. Kafka, being a message broker, is very

strong in its ability to reasonably pass messages from one

service to another without losing them in the case of the

failure of the service. This integration also generalizes

system fault tolerance in that payment systems can

continue processing transactions and maintaining

availability, improving user satisfaction.

• Real - Time Data Processing: Due to the increasing need

to make analytical results from data as it happens, the

demand for real - time big data processing has also

increased. Thus, Kafka can act as a strong support for real

- time processing since microservices can process events

on the fly. This capability is rather important in industries

such as finance, where any decision made should be timely

to affect the company’s profitability and security, for

example, to identify fraud transactions in real - time.

• Decoupled Architecture: Kafka is designed with a highly

decoupled system whereby producers and consumers can

work separately. This decoupling enables the

microservices to talk to each other but not rely on any of

it for functionality, making it easier to change or replace

one or more microservices in a large microservices

architecture. Flexibility of this type is essential in

organizations that require fast and dynamic changes and

adaptation to market needs.

• Efficient Data Stream Management: In managing data

streams, many difficulties arise due to the fact that the

involved systems are often complex. Kafka ensures

effective stream management with excellent features such

as data partitioning, replication, and retention. It is

especially relevant for technology - oriented

microservices that need real - time data to provide high

performance since proper data access mechanisms will

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1659

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

guarantee high performance and timely information

processing.

• Streamlined Communication: In a microservices

architecture, the interactions between services can be

reduced to a web API - style interaction, making the flow

of messages between the services complex and

cumbersome. Kafka eases this process by acting as the

middleman between producers and consumers, passing

around events. This reduces the overhead cost of

interacting between services and increases the efficiency

of services in providing desired applications.

• Monitoring and Auditing Capabilities: In industries

with tight governing rules, such as the finance industry, it

is necessary to keep a very keen monitor and audit trail.

Kafka’s basic logging features can be used to track all the

events and transactions, making the organization fulfil

regulatory standards. It also helps with audits and

amplifies a capacity to diagnose and track system

inefficiencies.

• Adaptability to Changing Business Needs: Kafka

management, in combination with microservices, makes

an organization more versatile to new business

requirements. With constantly changing market

environments, companies can bring new services or

reshape existing services without rewriting the whole

system. The fact that Kafka has grown out of flexibility

makes it perfect for continuous delivery and deployment

practices, so the new iterations can be churned out quickly.

2. Literature Survey

2.1 Traditional Monolithic Payment Systems

Monolithic payment systems are developed and contained

within a single code covering all the functional aspects,

including User Interface, Database and Business Logic. [5 -

9] while building and deploying these kinds of systems is

relatively easy in the first place, as the number of transactions

exponentially increases, the number of problems associated

with this type of system also increases. Scalability becomes

seemly unmanageable because adding more capacity for one

functionality automatically involves scaling the entire system,

which wastes resources and increases operational costs. For

instance, boosting the throughput of payment processing may

necessitate growing different but ancillary functions, such as

fraud identification, which may be fiscally wasteful.

It explained that traditional monolithic payment systems have

more severe performance reduction problems or limitations

than intelligent payment Systems when transaction loads are

high. Due to the centralized nature inherent in monolithic

systems, coordination hitches result in decreased scalability

and slow transaction throughput. These systems are normally

ill - equipped to cater to performance demands that are

expected in today’s efficient and active financial markets,

especially in circumstances where there is large traffic of

transactions. Moreover, any modifications to the system can

cause a lack of running, or this environment is not very

friendly for changing the structure and conditions of the

system.

2.2 Event - Driven Architectures in Payment Systems

Event systems provide better approaches than monotonic

systems, especially when it comes to completing payment

transactions. These architectures, for example, those based on

Kafka, are meant to be event - driven; different systems may

change their state, and the other is not obliged to interact with

them simultaneously. This model dissociates the interaction

between the producer, for instance, the transaction initiation

from the consumer, such as payment processing, and the fact

that events can occur at scale. The system can horizontally

scale to encompass greater transaction rates, which has also

indicated that optimizing the performance of financial

systems, Kafka, in event - driven architecture, yields huge

benefits. Kafka’s partitioning system can be used to split

transaction data into a number of relatively small subgroups,

each of which can be processed by a different broker. This

form of processing allows systems to grow to accommodate

vast transaction rates of millions per second in a real sense.

At the same time, the quality of service is not materially

reduced. Another way in which Kafka helps build a very

reliable system is by using the replication feature to ensure

transactional data is copied to other brokers so that the data is

not lost even in case of failure. This architecture definitely

provides high availability during periods of increased

transaction volumes, which is ideal for today’s payment

systems.

2.3. Microservices in High - Throughput Systems

The use of microservices architecture has completely

transformed the ways in which the high throughput payment

systems are architected and managed. While traditional

systems are called monolithic, microservices distribute

functions into small services that do not have dependencies

on other services. For example, in the payment system,

payment validation services, fraud checking, and

authorization services can work on their own, all at different

levels of utilization, depending on demand. It also brings

problems of system decoupling, reliability, and flexibility

since it is easier to update or fix one or some services while

leaving the rest untouched. Specifically, investigated

differences between microservices - based payment systems

and monolithic - based payment systems and concluded that

the systems based on microservices performed better in terms

of scalability, high availability, and easy deployment.

Microservices make it possible to scale only that part of the

system needed rather than the whole application, hence

saving on resources and operational costs. Secondly,

Microservices architectures are usually more fail tolerant, in

the sense that if one service fails, it does not adversely affect

other services; hence, operating systems are very efficient.

The key aspect of this approach is modularity, which

empowers financial institutions and enables them to deal with

massive payments in high - traffic environments.

2.4. Kafka and Microservices Integration in Real - World

Use Cases

Many large banks and other types of financial institutions

have leveraged Kafka and microservices to enable support for

high throughput transaction processing. Goldman Sachs, for

example, has been able to adopt Kafka as part of their real -

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1660

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

time transaction streaming, which provides a huge capacity to

process millions of daily transactions and boasts high

availability with comparatively low latency. [10] Through

Kafka, Goldman Sachs was able to remove transaction

processing services into its own scalable isolated subdomain,

which increased response and stability at the peak loads. In

order to maintain an unchecked flow of transactions, Kafka is

designed to partition and replicate data, which allows for

parallel processing of data without the possible loss of data.

Stripe and PayPal have implemented Kafka and

microservices to handle their unprecedentedly large

transactional amounts. Payment processing for millions of

customers is achieved through microservices architecture

accompanied by Kafka, allowing every single service, like

fraud detection, user authentication and others, to grow

independently. Likewise, through Kafka’s implementation

and the use of microservices, PayPal has provided real - time

processing of payments at the same time when traffic loads

are expected to surge. The decoupled architecture makes it

possible to enhance fault tolerance and minimize the potential

loss of availability, creating favorable conditions for users to

complete payments. The genuine examples outlined above

show how the Kafka and microservices integration solution is

now a best practice for scalability and throughput in high -

frequency financial systems.

3. Methodology

3.1. System Design

The payment transaction system highlighted in this paper is

proposed to be implemented as a distributed structure that

would use Kafka for streaming and microservices for

handling ”tasks”, which essentially the payment transactions

would be classified into and referred to as ”micro - services”.

[11 - 15] It comprises three major tiers or parts; each part is

responsible for specific functionalities in order to give the

payment system an efficient face while at the same time

ensuring reliability and efficiency under very high transaction

volumes.

Figure 3: System Design

• Ingestion Layer: The Ingestion Layer is designed as the

real - time acquisition and storage layer for transactional

data. This is well done using Kafka brokers that are

distributed message queues. Kafka’s partitioning feature

makes it possible to scale the system horizontally, as

Kafka allows the system to manage millions of

transactions with brokers. The brokers receive the

incoming payment requests and also make a copy of them

to make them durable and fault - tolerant. This layer helps

to keep transaction data easily accessible to other stages of

processing and avoid traffic congestion at high loads.

• Processing Layer: The Processing Layer comprises a set

of micro - services that carry out different tasks relating to

payment processing, such as validation services, fraud

checking services, and authorization services. This means

that each microservice is deployable and can be managed

proportionally to the amount of transactions in an

organization. A specific example is that Kafka topics are

used by the microservices to communicate

asynchronously by queuing the calls so the system can

continue to process transactions even if some services are

unavailable briefly. For example, an example of a nearby

service is a validation service, which verifies data

coherence; an example of an instantaneous or real - time

analysis service is a fraud detection service, which

analyses the patterns of the transaction to make sure that

the payer is not a fraud before authorizing the payment.

• Storage Layer: Thus, the Storage Layer is intended to

provide a fast and highly reliable NoSQL database for data

storage. This means that one can easily access the

undertaking data, which is very useful in systems with

intensive read and write cycles. Especially, the system

maintains eventual consistency such that even when there

are delays in data synchronization in the NoSQL database,

the system can continue to function optimally. This is

particularly important when keeping system availability in

the distributed environment where setting up immediate

synch ensures high - performance lags. They include

operational data processing, analytics, and reporting by

using the NoSQL database, which is designed to facilitate

querying for various needs of an organization.

3.2 Kafka Configuration

In the proposed system, Kafka configuration is an important

aspect of meeting the system’s ideal performance in

scalability, fault tolerance and throughput capacity. Key

Kafka features such as partitioning of topics as well as the

replication factor set in Kafka are optimized to serve high

throughput transactional processing in distributed systems.

• Topic Partitioning: Topic Partitioning is one of the major

processes in Kafka that provides the capability of parallel

processing of payment transactions. Just to recap, each

Kafka topic, which in this case is the payment transactions

stream, is composed of several partitions. In everyday

usage, different Kafka brokers can consume partitions of

a Kafka topic and even be separately processed by distinct

microservices. This makes it possible to balance the load

among the nodes to support the horizontal scaling of the

payment transaction system as the transactions continue

rising. Because of partitioning, several microservices can

process transactions concurrently, thus decreasing latency

and boosting the total throughput of the system so that big

data can be processed in real - time.

• Replication Factor: The Replication Factor in Kafka

guarantees the availability and safety of the data because,

In this case, each transaction is set to be replicated across

the three nodes of the Kafka brokers. This ensures that if

one broker is off or goes down, the data is still obtainable

from the others, making it possible for the system to carry

on with the transaction without intermission. The

replication factor contributes to Kafka’s HA because

there’s always a backup copy of the transactions data

directory, avoiding data loss and enhancing dependability

in the wake of system crashes. This replication is critical

for applications such as payments where data loss could

result in severe monetary and company repercussions,

even for a short period.

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1661

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.3. Microservices Development

Microservices make up the architecture of the payment

transaction system and serve as the app’s core; these have

advantages like modularity, scalability, and fault tolerance.

Through container deployment and orchestration, the system

allows for easy service deployment and management since it

is given as an assurance that a particular service can be

developed, scaled, and managed without affecting the rest of

the system.

Figure 4: Microservices Development

• Containerized Environment (Docker): Hirsch and Shi:

Micro - services are created and run in a Docker

containerized setting. We ship each microservice along

with the services’ specific dependencies and runtime,

which are guaranteed to behave predictably across the

various environments. This approach makes the

deployment easy since microservices do not require the

whole system since they can be deployed, updated or

scaled independently, thus making the system agile and

containing a low level of coupling with infrastructure.

• Orchestration with Kubernetes: Containers are

managed and deployed on the system with the help of a

tool called Kubernetes. Recognizing that microservices

are dependent on each other to achieve scalability,

transaction handling capacity, load balancing, container

scaling, and health monitoring is automated by

Kubernetes. It also takes care of high availability in that it

can automate the recovery of failed containers and update

rollback without interrupting the system’s functionality.

• Communication Through Kafka (Consumers and

Producers): All the microservices interact using Kafka

either as consumers or producers. Producers put the

transactions into Kafka topics and consumers take the data

out to perform a task like validation of fraudulent

transactions. This decoupled communication model

allows services to execute concurrently without waiting

for responses, thereby enhancing the system and

throughput by paralleling the services.

3.4. Ensuring Data Consistency

Data integrity is a major factor in a distributed system and is

most important when dealing with financial transactions. The

payment transaction system utilizes Kafka functions and

microservice level transactional functionality to guarantee the

consistency of the data while used by functional [16 - 19]

scopes and across services, even if failures or network

problems occur.

Figure 5: Ensuring Data Consistency

• Eventual Consistency with Kafka: Kafka deals with an

eventually consistent model, where log replicas in

different brokers will ultimately be the same. This is

important in a high throughput environment in which

consistency at the point of creation can be time -

consuming. It is specific to Kafka’s distributed transaction

mechanisms that keep the system coherent even in case of

occasional pauses in sync, degrading efficiency.

• Transaction Management in Microservices: Every

microservice in the system has its logic of managing the

transactions so that the transactions in the system fail

either entirely or are rolled back in case of failure. This is

made possible by the Kafka system, which applies the

exactly - once semantics, thus ensuring that each

transaction occurring in Kafka is only processed a single

time and not partially. It helps to maintain the quality of

information in processing and checks, for example, the

validation and authorization of payments.

• Rollback and Failure Recovery: According to failure,

the system is equipped with an automatic rollback

mechanism to ensure it is never in an incorrect state. When

a microservice is unable to handle a transaction, Kafka and

the microservices framework guarantee that the

transaction is reverted or repeated. This avoids data

corruption and illustrates how the system gracefully

recovers from faults besides having the same quality

guarantee for all the different services.

3.5 Performance Benchmarks

The system’s performance was tested for capacity by

establishing threshold levels in terms of load, including 10,

000 TPS to 100, 000 TPS. It also shows that the system can

effectively keep the latency low and the throughput high even

under these circumstances, which are likely to be common in

payment system operations.

• Kafka Throughput: High throughput events described in

this paper were tested using Kafka by measuring its

throughput of transactional data. Kafka also grew well

with increasing transaction loads, and the processing rates

were constant because of distributed setup and

partitioning.

• Microservices Response Times: The efficiency of the

microservices was also analyzed based on the response

they offered under different loads. The overall outcome

revealed that even at high transaction rates, microservices

kept their latency minimum with less performance

degradation. This suggests that the architecture is viable

for use in high - traffic financial systems without suffering

a significant degradation in the response time.

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1662

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Results and Discussion

4.1. Performance Results

During the performance evaluation of a high - throughput

payment system based on Kafka, several parameters were

considered to verify its efficiency in the field of a large

number of transactions. The two measures of effectiveness

collected for this project were Throughput expressed in

Transactions Per Second (TPS) and delay measured in

milliseconds (ms). Also, the system’s availability was

captured in percentages to determine the percentage of uptime

for the system/program.

4.1.1. Throughput and Latency

Throughput expresses the number of payment transactions

this system can perform in one second. The tests evaluated the

system under three different transaction loads: This means

they organized test scenarios for the system into 10, 000 TPS,

50, 000 TPS, and 100, 000 TPS. This is evidenced by the

finding that the average latency also rises in the system as the

load rises.

Table 1: Throughput and Latency
Transactions per

Second (TPS)

Average Latency

(ms)

System Uptime

(%)

10, 000 50 99.9

50, 000 60 99.8

100, 000 70 99.7

• At 10, 000 TPS, the average latency was 50 milliseconds;

in other words, the rate at which the system processed each

transaction was quite short. The system availability was

99.9%; this clearly shows that the system was almost

always ready to serve the client despite a slight load.

• When running at 50, 000 TPS, the system’s average

latency clocked in at 60 ms, though this is still tolerable

for real - time financial processing. The system uptime

was steady at above 99.8%, demonstrating that Kafka

works effectively even when the application has a larger

number of simultaneous connections.

• When the TPS increased to 100, 000, the system latency

was measured at 70 milliseconds, which is not bad for

even the best high - performance payment systems.

System availability shows only a minor degradation even

though the system affirms to have served 99.7% of the

time during the test.

These results show that the Kafka - based payment system can

scale to a very large number of transactions while achieving

sub - 100 ms latency across all the scenarios tried out. This

makes it ideal for settings that experience extreme pressure,

for example, gigantic online stores or worldwide

organizations that need the constant endorsement of

instalments.

4.1.2. Kafka’s Role in Ensuring Low Latency

Kafka’s distributed characteristic mainly supports low latency

to high throughput of data streams. In the context of the topic

of microservices, Kafka serves as a message broker because

it helps to handle events (payment transactions here)

effectively. It also lets brokers split up topics and align

various aspects of the transaction flow so that Kafka supports

horizontal scaling.

• Partitioning: Thus, Kafka topics for payment transactions

are distributed across brokers to perform transactions

concurrently. This makes it possible to avoid overloading

a given node with the workload of several other nodes, and

hence, the system is capable of managing large volumes

of data.

• Replication: The other Kafka feature, known as the

replication mechanism, also contributes to the system’s

fault tolerance. This makes transactional processing fast

and reliable where data is copied across multiple Kafka

brokers; should a broker fail, another broker will take over

without losing any transaction. This contributes to the

system’s high availability (99.7%–99.9%), as captured in

the tests above.

• Retention and Durability: Kafka’s policy on retention

refers to how long the transaction data would be retained

depending on the set time to cater to failure issues. This

makes it possible to recover lost transactions or lack

certain security features because the effect offers

additional strength to the system.

4.1.3. Microservices Scalability and Independent Scaling

The Kafka - microservices architecture has many benefits,

including the possibility to adjust the size of separate elements

within the system, particularly the fact that most of the

microservices in a system, such as transaction validation

services, fraud detection services, settlement services, etc.,

are only required in very limited capacities and can be

independently scaled to certain levels. This means that there

is no need to over - allocate resources for the entire system or

for each layer to meet an anticipated load since each layer can

scale independently and operate optimally in its own right.

• Auto - Scaling of Microservices: The system

automatically scales the adopted microservices since it

uses Kubernetes or any other container orchestration tool.

For example, during a period of high transactions, more

requests for the fraud detection service are likely to be

produced in order to attend to the elevated demand, while

during low - intensity transactions, the number of requests

for the service is reduced in order to save resources.

• Fault Isolation: This is due to the breaking down the

payment system into microservices I, which, in the case of

a faulty service, doesn’t adversely impact the entire

system. For example, if the fraud detection service

provided faces problems, the payment processing and

settlement services can operate normally. This

encapsulation through Kafka’s event - driven model

ensures that transactions are placed in the queue and are

only affected once the faulty service is recovered.

4.1.4. System Availability and Reliability

While testing, Kafka’s excellent fault tolerance and

microservices’ ability to work independently explain the high

uptime percentages. Such telecommunication services need

high availability since unscheduled and brief outages can cost

organizations and, consequently, customers numerous

dollars.

• Failover Mechanisms: Kafka achieves high availability

by means of its failover systems. Whenever one or more

brokers fail, Kafka only redistributes transactions to a

different broker in the same partition group, reducing

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1663

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

severities. This is the reason for keeping availability at

more than 99.7%, even if the transaction loads are

extremely high.

• Microservices Redundancy: Duplicated microservices

are another approach used for failure in particular aspects

of the system. If one instance fails, another instance can

quickly step in and assume that instance’s duties, and this

can be done without jeopardizing the system’s capacity to

complete transactions.

4.1.5. Comparative Performance with Legacy Monolithic

Systems

The Kafka - based microservices system delivers a fairly good

performance compared to the system’s execution using a

traditional monolithic architectural style. The systems are

defined as legacy experience bottlenecks for all their

components: it is possible to scale only the general transaction

validation, fraud detection, settlement, and other components

together. Microservices architecture, on the other hand,

permits individual services that require scaling to be scaled in

line with the need without the need for the utilization of more

resources than needed.

Table 2: Comparative Performance with Legacy Monolithic

Systems

Metric
Monolithic

System

Kafka – Microservices

System

Throughput (TPS) 10, 000 100, 000

Average Latency (ms) 200 70

Fault Tolerance Limited High

Scalability Low High

Uptime (%) 95.5 99.7

Kafka - based system shows much higher overall Throughput:

10, 000 TPS higher than monolithic systems and much less

latency: 70ms against 200ms. Furthermore, the reliability and

availability of Kafka - microservices are even vastly better

thanks to Kafka’s distributed architecture and a loosely

coupled decomposition of microservices.

4.2. Challenges and Future Work

Despite the potential that these kinds of results present, there

are some remaining issues when adopting Kafka and

microservices for payment systems. Initiating and controlling

distributed transactions, maintaining data integrity across the

services, and following security protocols are some of the

areas that need more improvement.

• Distributed Transactions: A major problem when

implementing ACID compliance in a distributed system is

its difficulty. It is envisioned that next studies could

investigate the two - phase commit protocols, or

investigate the applicability of the models referred to as

the eventual consistency models.

• Security and Compliance: By virtue of high broad

integration, the necessary and sufficient regulation of high

- throughput payment systems, including, for example,

integration with the technical standard PCI DSS (Payment

Card Industry Data Security Standard). Further work can

be done to identify how KDA can match these safety

requirements, especially for data protection, access, and

logging.

5. Conclusion

In a world where information exchange is the new currency,

constructing extensive payment systems using Kafka and

microservices proves to be a fault - tolerant and effective

solution to today’s transactional processes. As an event

streaming system, Kafka benefits payment systems that need

to process countless transactions and respond instantly.

Flexible event processing allows payment systems to tailor

transaction handling to their event - based model, improving

their reactivity and carrying capacity at spike loads. This

architecture also enables the scalability of microservices on a

micro level, meaning that different components, such as

payment processing, fraud detection, and notification service,

can function independently. Not only does this decoupling

facilitate system maintenance, but it also allows for a fast rate

of innovation because developers can adjust or introduce

changes to a certain service without distorting the entire

application. Besides, the basic property of Kafka’s distributed

log is highly durable and reliable, which promises that the

transactions are performed safely and retrievable, which is

important for the data integrity of financial applications.

It should be noted, however, that this architecture has

limitations, and the following represents a number of

challenges associated with its use. Microservice architecture

also has certain challenges, such as the management of

distributed transactions to make them eventually consistent

when they are served by a number of microservices. Proactive

handling of concurrent data, that is, ensuring that all services

mimic the right state of a transaction without impacting

performance, is an area of concern among organizations.

Several problems can be encountered when implementing

distributed transactions, including the inability of clients to

communicate directly with multiple servers, issues with

failures and compensating actions, and the conversion of

atomic transactions into distributed ones – but these have

solutions in the form of high - performance algorithms for

achieving consensus while adding complexity and latency to

communication. Nevertheless, the case of Kafka and

microservices indicates enormous potential for changing

payment processing for the better. With the help of this

architecture, organizations can achieve better system

operation, faster completion of transactions, and improved

customer access to services. In the future, a synergy of Kafka

and microservices will serve as the driving force behind the

possibilities of payment systems development due to the

constant growth of financial technology. In conclusion, it can

be stated that this modern approach provides organizations

with a way to develop strong and resilient payment solutions

capable of meeting the contemporary needs of the digital

environment and serve the potential for further development

and success.

References

[1] Steurer, R. (2021). Kafka: Real - Time Streaming for

the Finance Industry. The Digital Journey of Banking

and Insurance, Volume III: Data Storage, Data

Processing and Data Analysis, 73 - 88.

[2] Wu, H., Shang, Z., & Wolter, K. (2019, August).

Performance prediction for the Apache Kafka

messaging system. In 2019 IEEE 21st International

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1664

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 3, March 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Conference on High - Performance Computing and

Communications; IEEE 17th International Conference

on Smart City; IEEE 5th International Conference on

Data Science and Systems (HPCC/SmartCity/DSS)

(pp.154 - 161). IEEE.

[3] Sudhakar Yadav, N., Eswara Reddy, B., & Srinivasa,

K. G. (2018). Cloud - based healthcare monitoring

system using Storm and Kafka. Towards extensible

and adaptable methods in computing, 99 - 106.

[4] Yussupov, V., Breitenbücher, U., Krieger, C.,

Leymann, F., Soldani, J., & Wurster, M. (2020,

October). Pattern - based modelling, integration, and

deployment of microservice architectures. In 2020

IEEE 24th International Enterprise Distributed Object

Computing Conference (EDOC) (pp.40 - 50). IEEE.

[5] Alaasam, A. B., Radchenko, G., & Tchernykh, A.

(2019, October). Stateful stream processing for digital

twins: Microservice - based Kafka stream dsl. In 2019

International Multi - Conference on Engineering,

Computer and Information Sciences (SIBIRCON)

(pp.0804 - 0809). IEEE.

[6] CORE, S. (2020). System integration hybrid SOA -

Microservices solution for heterogeneous systems.

[7] Solberg, E. (2022). The transition from monolithic

architecture to microservice architecture: A case study

of a large Scandinavian financial institution (Master’s

thesis).

[8] Moolchandani, S. Advancing Credit Risk

Management: Embracing Probabilistic Graphical

Models in Banking.

[9] Vangala, S. R., Kasimani, B., & Mallidi, R. K. (2022,

June). Microservices Event Driven and Streaming

Architectural Approach for Payments and Trade

Settlement Services. In 2022 2nd International

Conference on Intelligent Technologies (CONIT)

(pp.1 - 6). IEEE.

[10] Scott, D., Gamov, V., & Klein, D. (2022). Kafka in

Action. Simon and Schuster.

[11] McGovern, J., Sims, O., Jain, A., & Little, M. (2006).

Event - driven architecture. Enterprise Service

Oriented Architectures: Concepts, Challenges,

Recommendations, 317 - 355.

[12] Laliwala, Z., & Chaudhary, S. (2008, June). Event -

driven service - oriented architecture. In 2008

International Conference on Service Systems and

Service Management (pp.1 - 6). IEEE.

[13] Sriraman, B., & Radhakrishnan, R. (2005). Event

driven architecture augmenting service oriented

architectures. Report of Unisys and Sun Microsystems.

[14] AVKSENTIEVA, Y., & BRYUKHANOV, V. (2021).

Current issues and methods of event processing in

systems with event - driven architecture. Journal of

Theoretical and Applied Information Technology, 99

(9).

[15] Vyas, S., Tyagi, R. K., Jain, C., & Sahu, S. (2022,

February). Performance evaluation of Apache Kafka–

a modern platform for real time data streaming. In

2022 2nd International Conference on Innovative

Practices in Technology and Management (ICIPTM)

(Vol.2, pp.465 - 470). IEEE.

[16] Kreps, J., Narkhede, N., & Rao, J. (2011, June). Kafka:

A distributed messaging system for log processing. In

Proceedings of the NetDB (Vol.11, No.2011, pp.1 - 7).

[17] Narkhede, N., Shapira, G., & Palino, T. (2017). Kafka.

The definitive guide: Real - time data and stream

processing at scale. O’Reilley, Sebastopol, CA.

[18] Wiatr, R., Słota, R., & Kitowski, J. (2018). Optimizing

Kafka for stream processing in latency sensitive

systems. Procedia Computer Science, 136, 99 - 108.

[19] Tapia, F., Mora, M. Á., Fuertes, W., Aules, H., Flores,

E., & Toulkeridis, T. (2020). From monolithic systems

to microservices: A comparative study of performance.

Applied sciences, 10 (17), 5797.

[20] Hassan, S., Bahsoon, R., & Buyya, R. (2022).

Systematic scalability analysis for microservices

granularity adaptation design decisions. Software:

Practice and Experience, 52 (6), 1378 - 1401.

[21] Xu, J., Yin, J., Zhu, H., & Xiao, L. (2021, May).

Modeling and verifying producer - consumer

communication in Kafka using CSP. In 7th Conference

on the Engineering of Computer Based Systems (pp.1

- 10).

[22] Shapira, G., Palino, T., Sivaram, R., & Petty, K.

(2021). Kafka: the definitive guide. “O’Reilly Media,

Inc.”.

Paper ID: SR22032110641 DOI: https://dx.doi.org/10.21275/SR22032110641 1665

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

