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1. Introduction 
 

A mathematical model is used to simulate the behaviour of a 

vehicle and in order to facilitate the design of controllers and 

system guidance. 

 

In previous works such as [1] [2], non-linear control theory 

based on feedback linearization for single-input-single-

output systems are designed for self-steering an unmanned 

wheeled vehicle. 

 

In [3] [4], authors discuss feedback linearization for multi-

input multi-output systems 

 

In addition. Fossen [5] goes in depth on the theory of motion 

control systems. 

 

In [6, 7, 8, 9], authors provide a complete description on 

vehicle dynamic models. More than that, papers [10,11] deal 

with the measurement and the estimation of a vehicle 

sideslip angle. 

 

There are several ways to develop a dynamic model for a 

ground vehicle such as Newton Euler formula [12]: 

 

“The direction of the acceleration of an object is in the 

direction of the net external force acting on it. The 

acceleration of an object is proportional to the net external 

force 𝐹𝑛𝑒𝑡         , in accordance with  𝐹𝑛𝑒𝑡        = 𝑚 𝑎   . The net force 

acting on an object is the vector sum of all forces acting on 

it: 𝐹𝑛𝑒𝑡        =  𝐹 . Thus, 

 𝐹 = 𝑚 𝑎   “ 

 

For rotational motion the same principals apply, but with 

inertia and momentsinstead of mass and force. Newton's 

second law for translational motion and rotational motion 

can be presented as : 

 𝐹 =
𝑑

𝑑𝑡
𝑚𝑉   

 𝑀   =
𝑑

𝑑𝑡
𝐽𝛺   

where 𝐹  is the coordinate free force vector acting on the 

center of gravity and 𝑉   isthe velocity of the center of gravity 

with respect to the inertial frame. 

 

The remainder of the paper is structured as follows: 

 

The second section deals with the development of a 

mathematical model with 2DOF to simulate the behavior of 

the vehicle. The modeling parameters were calculated 

experimentally during the third section. The proposed 

approach for damping model identifying represents a 

contribution in this paper. 
 

 
Figure 1: The considered wheeled vehicle 

 

2. Dynamic model of the vehicle 
 

2.1. Reference systems 

 

Let define two coordinate systems as follows: (𝑂,𝑋0 ,𝑌0 ,𝑍0) 

the inertial reference frame 𝑅0.(𝐺,𝑋,𝑌,𝑍) the body frame R 

as shown in figure 2. 

 

The origin of the body frame is chosen atthe vehicle center 

of gravity G. The  𝐺𝑋  axis is pointed towards the front of 

the vehicle, the (𝐺𝑌) one is pointed towards the left side of 

the vehicle and the (𝐺𝑍) one is chosen oriented towards the 

high. 

 

Let (𝑖 , 𝑗 , 𝑘  ) be the unit vectors of the (𝐺𝑋), (𝐺𝑌) and (𝐺𝑍) 

axis respectively. 

 

Let (𝑖0    , 𝑗0   , 𝑘0
     ) be the unit vectors of the (𝑂𝑋0), (𝑂𝑌0) and 

(𝑂𝑍0) axis respectively as shown in figure 2: 
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Figure 2: Geometry model of the considered vehicle 

 
The considered vehicle is equipped with four identical 

wheels. They are driven by four identical electric motors. 

The two rear wheels create a pushing force  𝐹2
     applied at 

point B. The two front wheels create a thrust force 𝐹1
     

applied at point A. The vehicle orientation 𝜓 (heading)is 

controlled using the steering angle of the front wheels 

𝛿𝑟 ∈  −𝛿𝑟𝑚𝑎𝑥  , 𝛿𝑟𝑚𝑎𝑥  . 

 

2.2. Assumptions 

 

Assumptions used in this paper are : 

 The vehicle is considered as a rigid body moving on a 

flat surface. 

 The vehicle body frame is defined with the origin located 

at the center of mass of the vehicle. 

 The speed of the considered vehicle is very low (less 

than 1.6 m/s), therefore, the slip angles 𝛽 and 𝜑 (see 

figure 2) are small. The sideways wheel forces acting in 

the contact point between the tire and the ground is also 

neglected. Only the longitudinal wheel forces are 

considered. 

 The aerodynamic drag is defined along the longitudinal 

axis of the vehicle. 

 The frictional force toward the longitudinal movement 

and the frictional force around the yaw axis are supposed 

decoupled. 

 

2.3. System modeling 

 

The notations used in this paper are described in Table 1. 

 

Table 1: Used notation and description 
Notation Description 

𝒙 ,𝒚 Horizontal coordinates of G in 𝑅0 

𝝍 Heading angle 

𝒖 Velocity in surge motion 

𝒗 Velocity in sway motion 

𝒓 Yaw rate 

𝜹𝒓 Steering angle 

𝑭𝟏      Forward propulsion force 

𝑭𝟐      Rear propulsion force 

𝑵    Moment due to 𝐹1
     around (𝐺𝑍) axis  

𝒇   Linear damping 

𝑹    Turn damping 

𝒎 Mass of the vehicle 

𝑰𝒛 Moment of inertia around (𝐺𝑍) axis 

𝑱 The inertia matrix 

𝒅 Distance between G and point A 

 

The velocity of the vehicle 𝑉   is given by: 

𝑉  =  
𝑢
𝑣
0
 

𝑅

=   
𝑥 
𝑦 
0
 

𝑅0

                                (1) 

The resultant force expressed in 𝑅 and 𝑅0 are: 

𝑭   =  
𝑭𝒙
𝑭𝒚
𝟎

 

𝑹

=  

𝑭𝒙𝟎
𝑭𝒚𝟎
𝟎

 

𝑹𝟎

                             (2) 

 

The resultant moment expressed in 𝑅0 is: 

M    =   
0
0
𝑁
 

𝑅0

                                      (3) 

By applying the Newton second law of motion, we obtain: 

 

 𝐹
 

M    
 =  

𝑚 .𝑎    

𝛿   
                                       (4) 

 

With 

𝑎  = 
𝑑𝑉   

𝑑𝑡
 : Linear acceleration. 

𝛿 =  
𝑑𝜎   

𝑑𝑡
  : Dynamic moment.  

𝜎 = 𝐽𝛺  : Kinetic moment 

𝐽 : inertia matrix of the vehicle  

𝛺   : angular velocity of the center of gravity G in the inertial 

frame. 

 

The linear acceleration 𝑎  is thus written as follows: 

𝑎 = 𝑥 . 𝑖0    + 𝑦 . 𝑗0                                      (5) 

and the angular acceleration is noted 𝜓  
 

Consequently, equation (4) becomes: 

 

𝐹𝑥0
= 𝑚.𝑥 

𝐹𝑦0
= 𝑚. 𝑦 

𝑁 = 𝐼𝑧 .𝜓 

                                       (6) 

 

With 𝐼𝑧  the moment of inertia around the (𝐺𝑍) axis. 

 

The damping force𝑓  in surge motion and the angular 

damping force 𝑁𝑓      are given by: 

𝑓 = −𝑔 𝑢 𝑖                                   (7) 

𝑁𝑓     =  − 𝑟 𝑘                                  (8) 

With 

𝑔 𝑢 : damping model in surge motion 

 𝑟 : damping model in yaw motion 

We obtain thus: 

 

𝑚𝑥 =  𝑓𝑖0    + 𝐹1𝑖0    
+ 𝐹2𝑖0    

𝑚𝑦 =  𝑓𝑗0     
+ 𝐹1𝑗0     

+ 𝐹2𝑗0     

𝐼𝑧𝜓 =  𝑁𝑓𝑘0      
+ 𝑁1𝑘0      

                       (9) 
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Where 

 𝐹1𝑖0    
,𝐹2𝑖0    

 are the components of 𝐹1
     and 𝐹2

      respectively 

along (𝑂𝑋0) axis. 

 𝐹1𝑗0     
,𝐹2𝑗0     

 are the components of 𝐹1
     and 𝐹2

     respectively 

along (𝑂𝑌0) axis. 

 𝑓𝑖0     , 𝑓𝑗0      are the components of the damping force 𝑓  along 

(𝑂𝑋0) and (𝑂𝑌0) axis respectively. 

 𝑁1𝑘0      
 is the moment created by the force 𝐹1

     around the 

(𝑂𝑍0)axis. 

 𝑁𝑓𝑘0      
is the component of the moment 𝑁𝑓     around the (𝑂𝑍0) 

axis. 

 

In the body frame we have: 

𝐹1
    =  

𝐹 𝑐𝑜𝑠 𝛿𝑟 

𝐹 𝑠𝑖𝑛 𝛿𝑟 
0

 

𝑅

                               (10) 

𝐹2
    =  

𝐹
0
0
 

𝑅

                                            (11) 

𝑓 =  
−𝑔 𝑢 

0
0

 

𝑅

                                    (12) 

By using the following transformation matrix 

𝑃𝑅0→𝑅 =  
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛 𝜓 0
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

                  (13) 

We get 

𝐹1
    =  

𝐹 𝑐𝑜𝑠 𝛿𝑟 + 𝜓 

𝐹 𝑠𝑖𝑛 𝛿𝑟 + 𝜓 
0

 

𝑅0

                     (14) 

𝐹2
    =   

𝐹 cos 𝜓 

𝐹 sin 𝜓 
0

 

𝑅0

                            (15) 

𝑓 =  
−𝑔 𝑢 cos(𝜓)

−𝑔 𝑢 sin(𝜓)
0

 

𝑅0

                    (16) 

Moment 𝑁1
      is calculated as follows: 

𝑁1
     = 𝐹1

     ˄ 𝐴𝐺                                       (17) 

With 

𝐴𝐺           =   −𝑑   0   0  𝑅                            (18) 

    =  (−𝑑 cos 𝜓 −𝑑 sin(𝜓)      0 )𝑅0
 

Moment 𝑁1
      becomes: 

𝑁1
     =   

𝐹 𝑐𝑜𝑠 𝛿𝑟 + 𝜓 

𝐹 𝑠𝑖𝑛 𝛿𝑟 + 𝜓 
0

 ˄  
−𝑑 𝑐𝑜𝑠(𝜓)

−𝑑 𝑠𝑖𝑛(𝜓)
0

             (19) 

        = 𝑑𝐹 sin 𝛿𝑟 𝑘0
      

Consequently we get : 

 

𝑚𝑥 = 𝐹 𝑐𝑜𝑠 𝛿𝑟 + 𝜓 +  𝐹 cos 𝜓 − 𝑔 𝑢 cos(𝜓)

𝑚𝑦 = 𝐹 𝑠𝑖𝑛 𝛿𝑟 + 𝜓 + 𝐹 sin 𝜓 − 𝑔 𝑢 sin 𝜓 

𝐼𝑧 .𝜓 = 𝑑𝐹 sin 𝛿𝑟 −  𝑟 

       (20) 

With :𝑟 = 𝜓  
 

By dividing by the maximum applied force 𝐹𝑚𝑎𝑥 we get : 

 

 
 
 

 
 

𝑚𝑥 

𝐹𝑚𝑎𝑥
=  

𝐹 𝑐𝑜𝑠  𝛿𝑟+𝜓 + 𝐹 cos  𝜓 −𝑔 𝑢 cos (𝜓)

𝐹𝑚𝑎𝑥
𝑚𝑦 

𝐹𝑚𝑎𝑥
=

𝐹 𝑠𝑖𝑛  𝛿𝑟+𝜓 +𝐹 sin  𝜓 −𝑔 𝑢 sin  𝜓 

𝐹𝑚𝑎𝑥

𝐼𝑧 .𝜓 

𝐹𝑚𝑎𝑥
=

𝑑𝐹 sin  𝛿𝑟 − 𝑟 

𝐹𝑚𝑎𝑥

       (21) 

Let us pose: 

 𝑚′ =
𝑚

𝐹𝑚𝑎𝑥
 

 𝐼𝑧
′ =

𝐼𝑧

𝐹𝑚𝑎𝑥
 

 𝐹′ =
𝐹

𝐹𝑚𝑎𝑥
 

We get 

 

𝑚′𝑥 =  𝐹′ 𝑐𝑜𝑠 𝛿𝑟 + 𝜓 + 𝐹′ 𝑐𝑜𝑠 𝜓 − 𝑔 𝑢 𝑐𝑜𝑠(𝜓)

𝑚′𝑦 = 𝐹′ 𝑠𝑖𝑛 𝛿𝑟 + 𝜓 + 𝐹′ 𝑠𝑖𝑛 𝜓 − 𝑔 𝑢 𝑠𝑖𝑛(𝜓)

𝐼𝑧
′𝜓 = 𝑑𝐹 𝑠𝑖𝑛(𝛿𝑟) −  𝑟 

                        

(22) 

and since we have 

𝑉  = 𝑥 . 𝑖0    + 𝑦 . 𝑗0   =  𝑢. 𝑖 + 𝑣. 𝑗                         (23) 

and 

 
𝑖0    =  𝑐𝑜𝑠 𝜓 . 𝑖 −  𝑠𝑖𝑛 𝜓 . 𝑗 

𝑗0   =   𝑠𝑖𝑛 𝜓 . 𝑖 + 𝑐𝑜𝑠 𝜓 . 𝑗 
                           (24) 

We get  

 
𝑢 =  𝑥  𝑐𝑜𝑠 𝜓 +  𝑦 𝑠𝑖𝑛 𝜓
𝑣 =  −𝑥 𝑠𝑖𝑛 𝜓 +  𝑦 𝑐𝑜𝑠 𝜓

                         (25) 

Time derivative of equations (25) gives: 

 

 
𝑢 =  𝑥 𝑐𝑜𝑠 𝜓 − 𝑥 .𝜓 . 𝑠𝑖𝑛𝜓 + 𝑦 . 𝑠𝑖𝑛𝜓 + 𝜓 .𝑦 . 𝑐𝑜𝑠𝜓

𝑣 =  −𝑥 𝑠𝑖𝑛𝜓 −  𝑥 .𝜓 . 𝑐𝑜𝑠𝜓 + 𝑦 . 𝑐𝑜𝑠𝜓 − 𝜓 . 𝑦 . 𝑠𝑖𝑛𝜓
 (26) 

It is equivalent to 

 

 
𝑚′ .𝑢 =  𝑚′𝑥 𝑐𝑜𝑠𝜓 −𝑚′𝑥 .𝜓 . 𝑠𝑖𝑛 𝜓 + 𝑚′𝑦 . 𝑠𝑖𝑛 𝜓 + 𝑚′𝜓 .𝑦 . 𝑐𝑜𝑠 𝜓

𝑚′ . 𝑣 = − 𝑚′ . 𝑥 𝑠𝑖𝑛 𝜓 −𝑚′ . 𝑥 .𝜓 . 𝑐𝑜𝑠𝜓 + 𝑚′ . 𝑦 . 𝑐𝑜𝑠𝜓 −𝑚′𝜓 .𝑦 . 𝑠𝑖𝑛 𝜓
  

(27) 

So, we get: 

 

𝑢 =
𝐹′ (1+𝑐𝑜𝑠 (𝛿𝑟))+𝑚 ′ .𝑟 .𝑣−𝑔 𝑢 

𝑚 ′                        (28) 

The dynamic model of the vehicle is thus given by the 

following differential equations: 

 
  
 

  
 
𝑥 = 𝑢 cos𝜓
𝑦  = 𝑢 sin𝜓

𝜓 = 𝑟

𝑢 =
𝜏1−𝑔 𝑢 

𝑚 ′

𝑟 =
𝜏2−(𝑟)

𝐼𝑧
′

                                    (29) 

With 

 
𝜏1 = 𝐹′(1 + 𝑐𝑜𝑠(𝛿𝑟))

𝜏2 =  𝑑𝐹′ 𝑠𝑖𝑛(𝛿𝑟)
                          (30) 

The developed model is nonlinear. It has the form:𝑋 =
𝑓 𝑋,𝑈 . 
 

Where 𝑋 = (𝑥𝑦𝜓𝑢𝑟) 𝑇  is the state vector and 𝑈 =
(𝐹′ 𝛿𝑟) 𝑇  is the input vector. 

 

In the following section, we propose an approach for 

damping identification 𝑔 𝑢  and (𝑟) . 

 

3. Parameter identification 
 

3.1 Determination of the damping model 𝒈 𝒖  
 

The damping model 𝑔 𝑢  in surge motion can be 

determined using linear uniform motion: This motion is 

obtained by applying each time a thrust force while keeping 

the steering angle 𝛿𝑟 = 0. It leads to a steady state 

characterized by a constant speed in surge 𝑢 = 0 . 
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In this trial, the elapsed time ∆𝑡, taking by the vehicle to 

travel a known distance 𝐷 during the steady state, is 

determined. 

So we have: 

𝑢 =
𝜏1−𝑔 𝑢 

𝑚 ′ = 0                            (31) 

Meaning that  

𝜏1 = 𝑔 𝑢                                   (32) 

All data corresponding to this trial is presented in Table 2. 

 

 

 

 

 

 

Table 2: Experimental data corresponding to turning trial 

𝑫 = 𝟏𝟎 𝒎 

𝝉𝟏 
Trial 1 Trial 2 Trial3 Trial4 Trial5 Trial6 Trial7 Trial8 Trial9 Trial 10 Trial11 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

∆𝒕 (𝒔) 0 79.16 35.3 25.5 18 13.9 11.3 9.26 7.9 6.7 6 

𝒖 (𝒎. 𝒔−𝟏) 0 0.12 0.28 0.39 0.55 0.72 0.88 1.03 1.26 1.49 𝑢𝑚𝑎𝑥 = 1.66 

 

By plotting 𝜏1 = 𝑔 𝑢  ,we get the red points shown on 

figure 4. 

 
Figure 3: Damping model of the linear motion 

 

The damping model of the linear motion can be thus 

approximated by 𝑔 𝑢 =  𝛼1𝑢
𝛽1  (the curve presented with 

blue color on figure 4). With𝛼1 > 0  and  𝛽1 ∈ [0,1] that 

were calculated using the Least mean squares (LMS) method 

[13][14]. 

 

3.3 Determination of the yaw damping model 𝒉 𝒓  
 

This trial consists on making the vehicle to turn with a 

uniform yaw motion (the thrust force is chosen to be 

constant𝐹′ = 0.7 during this trial). The turn motion is 

obtained by setting a constant steering angle𝛿𝑟 letting the 

vehicle turn with a constant yaw rate 𝑟. The yaw rate𝑟is 

measured by counting the elapsed time needed to 

accomplish a complete turn (360°). 

 

The angular acceleration𝑟  is given by : 

𝑟 =
𝑑𝐹 ′ sin (𝛿𝑟)− 𝑟 

𝐼𝑧
′                       (33) 

However, when the vehicle is turning, its yaw rate 𝑟 is 

constant meaning that 𝑟 = 0. 

So, 

𝜏2 = 𝑑𝐹′ sin(𝛿𝑟) = (𝑟)               (34) 

 

All data corresponding to this trial is presented in Table 3. 

 

Table 3 : Experimental data corresponding to turning trial 
 𝐹′ = 0.7 

𝜹𝒓 (º) 5 10 15 20 25 

Elapsed time ∆𝒕 (s) 83.34 71 41.54 29.37 23.9 

𝒓 (rad/s) 0.038 0.088 0.15 0.22 0.265 

𝝉𝟐 0.02 0.042 0.064 0.086 0.1 

The curve shown on figure 4, represents the yaw moment 

𝜏2as a function of the angular speed 𝑟. Points in green color 

are the result of the experimental tests presented in Table 3. 

The curve in pink color represents an approximation of the 

yaw damping  model. 

 
Figure 4: Turndamping at 70 % of the total thrust forse 

 

 𝑟  can be therefore approximated by : 

 𝑟 = 𝛼2𝑟
𝛽2                                    (35) 

Where 𝛼2 and 𝛽2 are calculated using the same method as 

the previous section. 

 

3.4 Calculation of the inertia moment 𝑰𝒛
′  

 

The vehicle is assumed to be assimilated to a homogeneous 

rectangular parallelepiped as shown in figure 6 with the 

following dimensions: 

Length 𝑏 =  1.32 𝑚 

Width 𝑎 = 0.78 𝑚 

Height 𝑐 = 0.53 𝑚 

Masse 𝑚 = 37 𝐾𝑔 
 

The inertia moment𝐼𝑧  of the vehicle around the the vertical 

axis is calculated using a numerical simulator. It is equal to : 

 

𝐼𝑧 = 6.06 Kg .𝑚3                    (37) 

 

3.5 Model validation 

 

3.5.1 First, trial : Linear motion 

This Trial consists of applying the maximum thrust force 

𝜏1 = 2 without making a steering angle 𝛿𝑟 = 0. When the 

linear uniform motion is obtained, the speed of the vehicle 

stabilizes at the maximum value 𝑢𝑚𝑎𝑥 , as shown in figure 5. 
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Figure 5: Time evolution of the vehicle Speed 

 
3.5.2 Second trial: turning motion 

This test consists on applying to the vehicle a constant thrust 

force 𝐹′ = 0,7and a steering angle 𝛿𝑟 = 10°. The vehicle 

will have to turn, so its trajectory will be a circle (figure 6), 

its speed will stabilize at a limit speed called turning speed 

(figure 8) and its yaw rate 𝑟 (figure 7) will converge towards 

a constant value. 

 

The simulation results obtained are presented below, they 

confirm the real behavior of the vehicle: 

 

 
Figure 6: Trajectory traveled by the vehicle 

 
Figure 7: Time evolution of the yaw rate 

 
Figure 8: Time evolution of the vehicle speed 

 

4. Conclusion 
 

In this paper, we have identified the damping model for 

linear and turning motions of the wheeled vehicle designed 

model. Then a simulator was developed to validate the 

mathematical model of the vehicle. As afuture work,control 

and guidance systems will be designed for self-steering the 

considered vehicle 

Acknowledgment  

The authors would like to thank the Ministry of defense, the 

Naval Academy of Tunisia and the Tunisian Ministry of 

Higher Education and Scientific Research for supporting this 

work. 

 

References 
 

[1] Khalil, H. K. (2002). Nonlinear Systems, third edn, 

Prentice Hall. 

[2] Marino, R. and Tomei, P. (1995). Nonlinear Control 

Design, Prentice Hall International. 

[3] Isidori, A. (1995). Nonlinear Control Systems, third 

edn, Springer-Verlag London. 

[4] Slotine, J. E. and Li, W. (1991). Applied Nonlinear 

Control, Prentice Hall. 

[5] Fossen, T. I. (2011). Handbook of Marine Craft 

Hydrodynamics and Motion Control, John Wiley & 

Sons. 

[6] Egeland, O. and Gravdahl, J. T. (2002). Modeling and 

Simulation for Automatic Control, Marine 

Cybernetics. 

[7] Kiencke, U. and Nielsen, L. (2005). Automotive 

Control Systems: For Engine, Driveline and Vehicle, 

Springer-Verlag Berlin Heidelberg. 

[8] Rajamani, R. (2006). Vehicle Dynamics and Control, 

Springer. 

[9] Wong, J. Y. (2001). Theory of Ground Vehicles, John 

Wiley & Sons. 

[10] Grip, H. F. (2010). Topics in State and Parameter 

Estimation for Nonlinear and Uncertain Systems, PhD 

thesis, Norwegian University of Science and 

Technology. 

[11] Croft-White, M. (2006). Measurement and Analysis of 

Rally Car Dynamics at High Attitude Angles, PhD 

thesis, Cran_eld University. 

Paper ID: SR22619100213 DOI: 10.21275/SR22619100213 1920 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 6, June 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

[12] Tipler, P. A. and G. Mosca (2004). Physics for 

Scientists and Engineers. W. H.Freeman and 

Company. 

[13] FENG, Da-Zheng, BAO, Zheng, et JIAO, Li-Cheng. 

Total least mean squares algorithm. IEEE Transactions 

on Signal Processing, 1998, vol. 46, no 8, p. 2122-

2130. 

[14] XU, Ling, DING, Feng, et ZHU, Quanmin. 

Decomposition strategy-based hierarchical least mean 

square algorithm for control systems from the impulse 

responses. International Journal of Systems Science, 

2021, vol. 52, no 9, p. 1806-1821. 

 

Paper ID: SR22619100213 DOI: 10.21275/SR22619100213 1921 




