
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 6, June 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Enhancing Systems Engineering and Control 

Development: The Power of Model-Based Approaches 

in Early State of Product Development 
 

Roopak Ingole 
 

Manager – Advanced Embedded Software Corporate Research & Technology Cummins Inc. Columbus IN, USA 

Email: roopak.ingole[at]cummins.com 

 

 

Abstract: Model-Based Systems Engineering (MBSE) and Model-Based Rapid Control Prototyping are methodologies that 

significantly enhance the design, development, simulation, and testing of complex systems and control strategies. This paper explores 

the integration of MBSE with Simulink, a platform widely recognized for its robust simulation and model-based design capabilities. We 

discuss the principles of MBSE, the methodology of rapid control prototyping, and the application of Simulink in these contexts. 

Additionally, we analyze the benefits, challenges, and potential future developments in the field. The adoption of Simulink in MBSE 

and control development accelerates the engineering process, reduces costs, and improves product quality through early validation of 

system designs and behavior during the early phases of product development. 

 

Keywords: Model-Based Systems Engineering, Rapid Control Prototyping, Simulink, complex systems, product development 
 

1. Introduction 
 

Model-Based Systems Engineering (MBSE) is an approach 

to systems engineering that focuses on creating and 

exploiting domain models as the primary means of 

information exchange between engineers, rather than on 

traditional document-based information exchange [1]. It 

involves the use of visual modeling techniques to articulate 

system requirements, design, analysis, verification, and 

validation activities beginning in the conceptual design 

phase and continuing throughout development and later life 

cycle phases [1]. 

 

Model-Based Rapid Control Prototyping refers to the use of 

models to speed up the process of developing control 

systems. This approach uses simulations to test and refine 

controls before they are implemented in prototype hardware. 

It reduces development time and increases the ability to 

diagnose system behaviors in response to changes in control 

strategies [2]. 

 

Simulink, The MathWorks tool, is extensively used for 

dynamic system modeling and simulation. It supports 

system- level design, simulation, automatic code 

generation, and continuous test and verification of 

embedded systems. The MathWorks recently integrated 

System Composer toolbox in their Simulink product make 

it an ideal tool for implementing MBSE and rapid control 

prototyping. 

 

MBSE with SIMULINK 

 

Model-Based Systems Engineering (MBSE) promotes the 

use of models rather than traditional document-based 

approaches for information exchange among engineers 

throughout the system lifecycle [1]. Simulink, with its 

powerful simulation and modeling capabilities, has launched 

System Composer [3] toolbox supporting MBSE. System 

Composer enables the specification and analysis of 

architectures for model-based systems engineering and 

software architecture modeling. With System Composer, 

we can allocate the requirements while refining an 

architecture model that can then be designed and simulated 

in Simulink. This section elaborates on how Simulink’s 

System Composer enhances MBSE by facilitating system 

design, requirements engineering, and validation processes. 

 

a) System Design and Architecture 

The foundational stage of MBSE involves creating a robust 

system design and architecture that aligns with the project 

requirements. System Composer supports this stage by 

providing an intuitive graphical environment where systems 

engineers can construct detailed, functional models of the 

system’s architecture. These models represent various 

system components, their interactions and stereotypes and 

can optimize them in real-time [4]. 

 

b) Visual Modeling 

System Composer is developed on Simulink engine that 

supports graphical design for building system models, 

which can include continuous-time, discrete-time, and 

hybrid systems. This capability allows engineers to visualize 

complex interactions and data flows within the system, 

enhancing the clarity and accuracy of the design. Engineers 

can simulate different configurations of system architecture 

to identify the most efficient design before any physical 

prototypes are developed. 

 

c) Requirements Engineering 

An essential aspect of MBSE is the accurate capture and 

management of system requirements. Both Simulink and 

System Composer integrates seamlessly with requirements 

management tools, like PTC RV&S, utilizing standardized 

ReqIF™ [5] specification, enabling a bidirectional 

traceability that ensures every design step is aligned with 

the specified requirements [4]. 

 

d) Requirements Traceability 

Like Simulink, System Composer allows for linking system 

models directly to requirements documents. This linkage is 

Paper ID: SR24522144200 DOI: https://dx.doi.org/10.21275/SR24522144200 2015 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:roopak.ingole@cummins.com


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 6, June 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

crucial for verifying that all system requirements are met 

and provides a clear trace from the model back to the 

individual requirements. This traceability helps in 

maintaining the consistency of the system design with the 

stakeholders’ expectations and regulatory standards [4]. 

e) Verification and Validation 

Each component and subsystem modeled in System 

Composer can be subjected to a series of tests to verify that 

they meet the required specifications at the system level. 

System Composer facilitates the simulation of models under 

various operational conditions to validate the system against 

its requirements. This process helps in identifying and 

rectifying potential issues early in the development phase, 

reducing the risk of costly changes during later stages [6]. 

 

f) System-Level Analysis 

With System Composer, engineers can perform system-level 

analysis to assess the overall performance of the system. 

This includes analyzing the interaction between subsystems 

and their impact on the system’s efficiency and 

effectiveness. System- level simulations help in optimizing 

the system architecture by identifying bottlenecks and 

redundancies [6]. 

 

Incorporating System Composer into Model-Based Systems 

Engineering transforms the approach to system design and 

development. It allows for a more structured, efficient, and 

accurate design process, from initial concept through to 

detailed design and verification. The visual and modular 

nature of System Composer models enhances both 

understanding and communication among project 

stakeholders, facilitating a collaborative and iterative design 

environment. By leveraging System Composer within 

MBSE, organizations can achieve faster development times, 

reduce costs, and improve overall system quality and 

reliability. 

 

2. Model-Based Rapid Control Prototyping 

using SIMULINK 
 

As authors described in their paper “Hardware Prototyping 

using FreeRTOS while developing AutoSAR compliant 

application software using Simulink” [7], Model-Based 

Rapid Control Prototyping (MB-RCP) utilizes models to 

accelerate the design and deployment of control systems, 

enhancing the ability to test and refine these systems before 

their physical implementation. Simulink, a pivotal tool in 

this domain, offers a comprehensive environment for 

designing, testing, and deploying control algorithms 

efficiently. This section delves into how Simulink facilitates 

rapid control prototyping through its simulation capabilities, 

automatic code generation, and support for Hardware-in-

the-Loop (HIL) testing. 

 

1) Development of Control Algorithms 

Control systems are crucial for managing the behavior of 

dynamic systems in engineering applications like Engines 

& Powertrains. Developing robust control algorithms is 

essential for ensuring system stability, performance, and 

efficiency. Simulink provides a robust platform for 

developing these control algorithms through a visual 

programming environment. 

 

2) Visual Environment and Block Libraries 

Simulink’s graphical interface allows engineers to drag and 

drop blocks to build control systems, making it accessible 

even for those with limited programming expertise. It offers 

an extensive library of predefined blocks that represent 

various mathematical and engineering functions, enabling 

the rapid construction and modification of complex control 

algorithms. 

 

3) Simulation and Model Testing 

One of the core advantages of using Simulink for control 

development is its simulation capability. Engineers can 

simulate the control model under various scenarios and input 

conditions to observe how it responds. This immediate 

feedback is vital for refining control strategies and ensuring 

that the controller performs as expected under different 

conditions. 

 

4) Automatic Code Generation 

A significant feature of Simulink that enhances the speed of 

control development is its ability to automatically generate 

code from the models. This feature bridges the gap between 

the design and implementation stages of control system 

development. Simulink’s support for various languages and 

compliance with different standards like, A-SPICE, 

AutoSAR, MISRA, etc. makes it go-to tool for controls 

engineering community. Simulink can generate C, C++, and 

HDL code from the control models that can run on real 

hardware. This capability allows for rapid prototyping and 

testing, as the code generated is optimized for performance 

and is directly deployable to microcontrollers, FPGA and 

DSPs. 

 

5) Hardware-in-the-Loop (HIL) Testing 

HIL testing is crucial for validating control algorithms in a 

real-time scenario without the risk and cost associated with 

deploying them directly into live operational systems. In 

HIL setups, the control algorithm (running on a processor or 

an FPGA) interacts with a simulated model of the physical 

system implemented in Simulink. This setup tests the 

control algorithm’s real-time performance and robustness 

against hardware failures or unexpected physical 

interactions. HIL testing provides critical feedback that can 

be used to iteratively refine the control model. It allows 

engineers to adjust and optimize control parameters and 

strategies based on real data, ensuring the control system is 

both effective and efficient before final deployment. 

 

Model-Based Rapid Control Prototyping using Simulink 

streamlines the process of designing and implementing 

control systems during early phases of product design and 

development. By leveraging Simulink’s capabilities in 

visual modeling, simulation, automatic code generation, and 

HIL testing, engineers can develop sophisticated control 

strategies that are both robust and adaptable to changing 

system requirements. This integrated approach not only 

accelerates the development cycle but also enhances the 

reliability and performance of control systems, making it a 

preferred choice in industries where control systems play a 

critical role. 

 

 

 

Paper ID: SR24522144200 DOI: https://dx.doi.org/10.21275/SR24522144200 2016 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 6, June 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

3. Evaluation of MBSE along with RCP with 

SIMULINK 
 

Building upon the foundational use of Mathworks' webinar, 

"Bridging Model-Based Systems Engineering and Model-

Based Design" [8] our team embarked on a venture to 

explore and harness the potential of System Composer for 

enhancing our Rapid Control Prototyping (RCP) processes. 

This endeavor was aimed at refining our development 

strategy during the crucial research and early product 

development phases, where preliminary design decisions 

greatly influence the final product quality and efficacy. 

 

A. Integration of System Composer into the Development 

Workflow 

Our existing workflow heavily relied on Simulink for 

developing control systems, particularly with our recent 

move towards adopting AutoSAR for engine control 

development. Simulink was pivotal in crafting a robust 

software development workflow that aligned with research 

objectives while ensuring that our production tools and 

processes remained undisturbed. This dual focus was 

critical in maintaining continuity and efficiency across 

project phases. 

 

1) Enhancing Rapid Control Prototyping 

Previously, as outlined in specific research papers, we 

utilized AutoSAR Composer for the architectural design 

and implementation of control systems (Figure 1). This tool 

was instrumental in allowing us to quickly devise new 

control strategies and validate them on actual hardware with 

minimal delays. This phase of rapid prototyping is vital for 

iterating design enhancements and addressing potential 

functional issues early in the development cycle. 

 
 

 
Figure 1: Rapid Control Prototyping workflow with 

AutoSAR 
 

In our model-based rapid control prototyping workflow, 

system requirements were meticulously captured using PTC 

Integrity (RV&S), then exported in ReqIF [5] format and 

imported into Simulink Requirements. This process enabled 

precise requirement tracing at the algorithmic level. 

However, we recognized the need for a more integrated 

approach that could encompass comprehensive system 

analysis and multi- domain analysis, capabilities that were 

initially lacking. 

 

2) System Composer's Role in Advancing MBSE and 

RCP 

The introduction of System Composer sparked a shift in our 

approach. This tool promised to bridge the gaps we 

experienced, particularly in system analysis and integration. 

Our evaluation project centered on developing a Battery 

Management System (BMS), which served as an ideal 

platform to test the effectiveness of System Composer 

in a complex, multi- dimensional engineering environment. 

 

3) Architectural and Component-Level Design 

Using System Composer, we began by constructing a high- 

level model of the BMS architecture. We applied various 

parameterized stereotypes to components, such as CAN 

network latency and baud rate, and the number of cells per 

pack. These parameters were crucial for running detailed 

system analyses, which helped us understand the system's 

robustness against parameter variations and assisted in 

refining system requirements (Figure 2). 

 

At a more granular level, we further designed the BMS's 

component architecture within System Composer. This 

involved utilizing Simulink and AutoSAR Composer to 

flesh out the detailed behavior of each component. The 

integration of Simulink allowed for in-depth simulation and 

verification of critical requirements, ensuring each 

component functioned within the defined parameters. 
 

 
Figure 2: Enhanced Workflow with MBSE 

 

4) Simulation, Testing, and Validation 

Following the architectural design, we integrated 

Mathworks’ Simscape [9] based Battery plant model to 

conduct rigorous closed-loop simulations. These simulations 

were instrumental in verifying the majority of the BMS 

functionalities under various operational scenarios, 

mimicking real-world conditions as closely as possible. 

Leveraging the powerful features of Simulink Requirements 

and Test Manager, we generated comprehensive test 

coverage and requirements traceability reports. These 

documents were essential for validating the simulation 

results and ensuring all system requirements were met. 

Satisfied with the outcomes from the simulation-based tests, 

we proceeded to utilize Simulink’s automatic code 

generation capabilities. The code generated was then 

seamlessly integrated into our hardware prototyping 

platform, replicating the processes described in previous 

research papers [7]. 

 

The integration of System Composer into our Simulink- 

Paper ID: SR24522144200 DOI: https://dx.doi.org/10.21275/SR24522144200 2017 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 6, June 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

based RCP workflow marked a significant advancement in 

our approach to system engineering. By enabling a more 

interconnected and analytically robust development process, 

we were able to address the multifaceted challenges of 

modern control systems more effectively. This strategic 

enhancement not only emphasized Agile development in 

our prototyping phase but also increased the accuracy and 

reliability of our system designs, paving the way for more 

innovative and robust product developments. 

 

4. Challenges and Future Directions 
 

As the implementation of Model-Based Systems 

Engineering (MBSE) and Rapid Control Prototyping (RCP) 

using Simulink/System Composer progresses, several 

challenges have surfaced that necessitate ongoing attention 

and resolution. Additionally, the rapid evolution of 

technology and growing system complexity forecast an 

array of future directions worth exploring to enhance these 

methodologies. This section discusses the current 

challenges and outlines potential future directions to 

improve MBSE and MBRCD. 

 

4.1 Challenges 

 

1) Integration with Legacy Systems 

• One of the most significant challenges in the adoption of 

MBSE and RCP using Simulink/System Composer is 

the integration with existing legacy systems. Many 

organizations operate on older platforms and systems 

that are not readily compatible with newer model-based 

approaches. Bridging this gap requires: 
• Development of intermediary tools that can translate 

between legacy workflow and new model-based 

workflow. 

• Customization and extension of existing Simulink 

capabilities to better mesh with older technologies. 
• Training and transition strategies to help teams adapt to 

new 
• workflows without disrupting ongoing projects. 

• MATLAB version upgrade strategy that supports 

seamless migration to newer versions of MATLAB. 

 

2) Scalability and Complexity Management 

• As systems grow in complexity, scaling MBSE and RCP 

methodologies to manage and analyze these large-scale 

systems becomes increasingly difficult. Issues include: 

• Handling high-volume data from simulations, which can 

be intensive in terms of computational resources and data 

management. 

• Maintaining model integrity and performance in the face 

of 

• increasing complexity and interdependencies among 

system components. 

• Developing more robust tool that can efficiently handle 

the complexity without compromising on speed or 

accuracy. 

• Dynamic adjustments and optimizations in control 

strategies based on real-time operational data. 
• Integration of field data to refine models and 

simulations. 
 

 

4.2 Future Directions 

 

1) Advanced Simulation Techniques 

• To address the limitations in current simulation 

capabilities, future developments should focus on: 

• Hybrid simulation environments that blend physical 

testing 

• with virtual simulations to provide more accurate and 

comprehensive analyses. 
 

2) Utilization of AI and machine learning to enhance 

simulation processes, enabling predictive modeling 

and anomaly detection within complex systems. 

 

3) Enhanced Collaborative Tools 

• Enhancing collaboration across different teams and 

disciplines is crucial for the successful implementation 

of MBSE and RCP. Future tools should: 

• Facilitate better integration across various engineering 

domains (mechanical, electrical, software) to ensure 

seamless interaction and data exchange. 

• Support collaboration capabilities, allowing teams to 

work effectively on the same projects. 

 

4) Adoption of Standards and Frameworks 

• The development and adoption of universal standards 

and frameworks for MBSE, like SysML [10] can: 
• Ensure consistency and interoperability between tools 

and methodologies used by different organizations. 

• Accelerate the adoption of best practices across 

industries, leading to more efficient system 

development processes. 

 

5. Conclusion 
 

Model-Based Systems Engineering and Model-Based Rapid 

Control Prototyping represent transformative methodologies 

in systems engineering. With tools like Simulink and 

System Composer, engineers can design, simulate, and 

validate complex systems and control strategies more 

efficiently and effectively. While challenges remain, 

particularly in integrating with legacy systems and 

managing complex, large-scale projects, the potential for 

further advancements and broader adoption continues to 

grow. Future efforts should focus on overcoming these 

challenges to fully leverage the benefits of MBSE and rapid 

control development. 

 

References 
 

[1] J. Estefan, "Survey of model-based systems 

engineering (MBSE) methodologies.," INCOSE MBSE 

Initiative, 2008. 

[2] The Mathworks, Inc., "Rapid Control Prototyping with 

Simulink Real-Time," [Online]. Available: 

https://www.mathworks.com/videos/rapid-control- 

prototyping-with-simulink-real-time- 

1623834749134.html?s_tid=srchtitle_videos_main_1_rapi

d%2520control%2520p rototyping. 

[3] The Mathworks, Inc., "System Composer: Design and 

analyze system and software architectures," The 

Mathworks, Inc., [Online]. Available: 

https://www.mathworks.com/solutions/model-based-

Paper ID: SR24522144200 DOI: https://dx.doi.org/10.21275/SR24522144200 2018 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.mathworks.com/videos/rapid-control-
http://www.mathworks.com/solutions/model-based-systems-engineering.html


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 6, June 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

systems-engineering.html. 

[4] The Mathworks, Inc., "System Engineering: From 

Requirements to Architecture to Simulation," The 

Mathworks, Inc., [Online]. Available: 

https://www.mathworks.com/campaigns/offers/model-

based-system- engineering.html. 

[5] Object Management Group®, "REQUIREMENTS 

INTERCHANGE FORMAT™ (REQIF™)," [Online]. 

Available: https://www.omg.org/reqif/. 

[6] The Mathworks, Inc., "MATLAB, Simulink, and 

System Composer for Model- Based Systems 

Engineering," The Mathworks, Inc., [Online]. 

Available: 

https://www.mathworks.com/solutions/model-based-

systems-engineering.html. 

[7] R. Ingole and B. Eckhart, "Hardware Prototyping using 

FreeRTOS while developing AutoSAR compliant 

application software using Simulink™," 2022. 

[8] The Mathworks, Inc., "Bridging Model-Based Systems 

Engineering and Model- Based Design," The 

Mathworks, Inc., [Online]. Available: 

https://www.mathworks.com/videos/bridging-model-

based-systems-engineering- and-model-based-design-

1634884070332.html. 

[9] The Mathworks, Inc., "Simscape," [Online]. Available: 

https://www.mathworks.com/products/simscape.html. 

[10] Object Management Group®, "SYSML V2," [Online]. 

Available: https://www.omgsysml.org/SysML-2.htm. 

Paper ID: SR24522144200 DOI: https://dx.doi.org/10.21275/SR24522144200 2019 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.mathworks.com/solutions/model-based-systems-engineering.html
http://www.mathworks.com/campaigns/offers/model-based-system-
http://www.mathworks.com/campaigns/offers/model-based-system-
http://www.omg.org/reqif/
http://www.mathworks.com/solutions/model-based-systems-engineering.html
http://www.mathworks.com/solutions/model-based-systems-engineering.html
http://www.mathworks.com/videos/bridging-model-based-systems-engineering-
http://www.mathworks.com/videos/bridging-model-based-systems-engineering-
http://www.mathworks.com/products/simscape.html
http://www.omgsysml.org/SysML-2.htm



