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1. Introduction 
 

In 1982, Hamilton [13] introduced the notion of Ricci flow 

to find a canonical metric on a smooth manifold. Then 

Ricci flow has become a powerful tool for the study of 

Riemannian manifolds, especially for those manifolds with 

positive curvature. Perelman ([15], [16]) used Ricci flow 

and its surgery to prove Poincare conjecture. The Ricci 

flow is an evolution equation for metrics on a Riemannian 

manifold (M, g)defined as follows: 

 

𝒈𝒊𝒋𝝏𝒕
𝝏 (𝒕) = −𝟐 𝑹𝒊𝒋 

where R is the Ricci tensor. 

 

A Ricci soliton emerges as the limit of the solutions of the 

Ricci flow. A solution to the Ricci flow is called Ricci 

soliton if it moves only by a one parameter group of 

diffeomorphism and scaling. A Ricci soliton (g, V, λ) on a 

Riemannian manifold (M,g) is a generalization of an 

Einstein metric such that [14] 

 

            £𝑽𝒈 + 𝟐𝑺 + 𝟐𝝀𝒈 = 𝟎                      (1.1) 

Where £𝑽 is the Lie derivative operator along the vector 

field V on M and λ is a real number. The Ricci soliton is 

said to be shrinking, steady and expanding according as λ is 

negative, zero and positive respectively. 

 

If λ∈C∞(M) then the metric satisfying (1.1) is called Ricci 

almost soliton. In this connection it is mentioned that 

Recently Hui and Patra studied Ricci al- most solution on 

Riemannian manifolds. 

 

During the last two decades, the geometry of Ricci solitons 

has been the focus of attention of many mathematicians. In 

particular, it has become more important after Perelman 

applied Ricci solitons to solve the longstanding Poincare 

conjecture posed in1904. There after Ricci solitons on 

Riemannian manifolds have been studied by various 

authors such as Bejanand Crasmareanu [1], Chen and 

Deshmukh [6], Deshmukh et al. [8], and many others. 

 

A vector field U on a Riemannian manifold (Mn,g) is called 

concircular vector field [12], if 

𝛁𝑿𝑼 = 𝝁𝑿 

 

For any vector field X tangent to M, where ∇ is the 

Riemannian connection and µ is a non-trivial function on 

M. Concircular vector fields also known as geodesic fields 

in literature since integral curves of such vector fields are 

geodesics. Recently Chen [5] studied Ricci solitons with 

concircular potential vector field. A vector field U on a 

Riemannian manifold (Mn,g) is called solenoidal vector 

field if 𝑑𝑖𝑣𝑈 = 0, where ‘div’ denotes the divergence. 

 

Motivated by the above studies, the present paper deals 

with the study of Ricci solitons on some classes of 

Riemannian manifolds (Mn,g) with concircular potential 

vector field and  solenoidal  vector field. The paper is 

organized as follows. Section 2 is concerned with some 

preliminaries. Section 3 is devoted to the study of Ricci 

solitons on flat and concircularly flat Riemannian 

manifolds (Mn,g)  with concircular potential vector field 

and solenoidal vector field. In section 4, we study Ricci 

solitons on super quasi-Einstein manifolds with concircular 

potential vector field and solenoidal vector field. 

 

2. Preliminaries 
 

This section deals with some preliminaries, which will be 

required in the sequel. Let (g, V, λ) be a Ricci soliton on a 

Riemannian manifold (Mn,g) with concircular potential 

vector field V. Then we have from (1.2) that  ∇𝑋𝑈 = 𝜇𝑋  
which implies that 

(£𝑉𝑔)(𝑌, 𝑍) = 2𝜇𝑔(𝑌, 𝑍)                  (2.1) 

 

For any vector fields Y, Z Using (2.1) in(1.1) we get (2.2)  

 

𝑆(𝑌, 𝑍) = −(𝜆 + 𝜇)𝑔(𝑌, 𝑍). 

 

In this case it is proved that [5] µ must be a non-zero 

constant say b. Thus, we have 

 

𝑆(𝑌, 𝑍) = −(𝜆 + 𝑏)𝑔(𝑌, 𝑍)                     (2.3) 

 

Let {𝑒𝑖 , i=1,2,··· ,n} be an orthonormal frame field at 

any point of the manifold (Mn, g). Then 

∑ £𝑉𝑔(𝑒𝑖 , 𝑒𝑖 )

𝑛

𝑖=1

= 2𝑑𝑖𝑣 𝑉 
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For any vector field V. 

3. Flat and Concircularly flat Riemannian 

manifolds 
 

This section deals with the study of Ricci solitons on 

Riemannian manifolds with concircular potential vector 

field. 

 

Let (Mn,g) be a Riemannian manifold, which is flat. Then R 

(X, Y) Z=0 and hence 

 

S (Y, Z) = 0                                       (3.1) 

 

where R and S are respectively the curvature tensor and 

Ricci tensor. From (2.3) and (3.1), we get λ= —b<0 or>0 

according as b>0 or<0. Also λ /=0 as b /=0. 

 

This leads to the following: 

 

Theorem 3.1. Let (g, V, λ) be a Ricci soliton with 

concircular potential vector field V on a flat Riemannian 

manifold (Mn, g). Then(g, V, λ) is never be steady and it is 

shrinking and expanding according as b > 0 or <0. 

 

Using (3.1) and (1.1), we get 
(£𝑉𝑔)(𝑌, 𝑍) + 2𝜆𝑔(𝑌, 𝑍) = 0                 (3.2) 

 

Putting Y=Z=ei in (3.2) and taking summation over 

i,1≤i≤n, we get (3.3) 

𝑑𝑖𝑣𝑉 +  𝑛𝜆 =  0.                            (3.3) 

 

If V is solenoidal then divV= 0 and hence from (3.3), we 

get λ = 0, i.e. the Ricci soliton is steady. 

 

This leads to the following: 

 

Theorem 3.2. Let (g, V, λ) be a Ricci soliton with 

solenoidal vector field V on a flat Riemannian manifold 

(Mn, g). Then (g, V, λ) is always steady. 

 

A concircular curvature tensor is an interesting invariant of 

a concircular transformation. A transformation of a 

Riemannian manifold M, which trans- forms every 

geodesic circle of M into a geodesic circle, is called a 

concircular transformation [17]. Here geodesic circle 

means a curve in M whose first curvature is constant and 

whose second curvature is identically zero. Thus, the 

geometry of concircular transformations, that is, the 

concircular geometry, is a generalization of inversive 

geometry in the sense that the change of metric is more 

general than that induced by a circle preserving 

diffeomorphism. The interesting invariant of a concircular 

transformation is the concircular curvature Tensor C˜, 

which is defined by [17] 

 

𝐶(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
𝑟

𝑛(𝑛 − 1)
[𝑔(𝑋, 𝑌)𝑍 − 𝑔(𝑋, 𝑍)𝑌] 

(3,4) 

 

Where R is the curvature tensor and r is the scalar 

curvature of the manifold. Also Riemannian manifolds 

with vanishing concircular curvature tensor are of constant 

curvature. Thus, the concircular curvature tensor is a 

measure of the failure of a Riemannian manifold to be of 

constant curvature. 

 

A Riemannian manifold (Mn,g) is said to be concircularly 

flat if C˜(X,Y)Z= 0, i.e. 

 

𝑅(𝑋, 𝑌)𝑍 −
𝑟

𝑛(𝑛−1)
[𝑔(𝑋, 𝑌)𝑍 − 𝑔(𝑋, 𝑍)𝑌] = 0  (3,5) 

 

Contracting above equation we get 

  S(Y, Z) =
r

n
g(Y, Z)                              (3,6) 

 

From (2.3) and (3.6), we get n λ= -r + bn 

   

-
𝑟

𝑛
+ 𝑏 < 0 = 0 > 0. 

 

Theorem 3.3.  Let (g,V,λ) be a Ricci soliton with 

concircular potential vector field V on  a concircularly flat 

Riemannian manifold (Mn,g). Then (g,V,λ) shrinking, 

steady and  expanding according as - 
𝑟

𝑛
+ 𝑏 < 0 = 0 𝑜𝑟 >

0. 
 

In view of (3.6), (1.1) yields  

(£𝑉𝑔)(𝑌, 𝑍) + 2 (𝜆 +
𝑟

𝑛
) 𝑔(𝑌, 𝑍) = 0      (3.7) 

 

Putting Y=Z=ei in (3.7) and taking summation overi, 

1≤i≤n, we get   

𝑑𝑖𝑣 𝑉 + 𝑛𝜆 + 𝑟 = 0                      (3.8) 

 

If V is solenoidal then divV=0 and hence from (3.8), we get  

𝜆 = −
𝑟

𝑛
 

 

Hence we can state the following: 

 

Theorem3.4. Let (g,V,λ) be a Ricci soliton with solenoidal 

vector field Von a concircularly flat Riemannian manifold 

(Mn,g). Then (g,V,λ) is shrinking, steady and expanding 

depending upon the sign of scalar curvature. 

 

4. Super quasi-Einstein manifolds 
 

Let (Mn,g) (n≥3) be a Riemannian manifold. Let 𝑈𝑠 =

{𝑥𝜖𝑀, 𝑆 ≠
𝑟

𝑛
𝑔 𝑎𝑡 𝑥} 

 

Then the manifold (Mn,g) is said to be quasi-Einstein 

manifold ([4],[7],[9], [10],[11]) if on US⊂M, we have 

 

𝑆 − 𝛼𝑔 = 𝛽 𝐴 ⊗ 𝐴                           (4.1) 

 

Where A is a unit 1-form on US and α, β are some functions 

on US. It is clear that the1-form A as well as the function β 

are non-zero at every point on US. From the above 

definition, it follows that every Einstein manifold is quasi-

Einstein. In particular, every Ricci-flat manifold (e.g. 

Schwarzschild spacetime) is quasi-Einstein. The scalars α, 

β are known as the associated scalars of the manifold. Also, 

the unit 1-form A is called the associated 1-form of the 

manifold defined by g (X, ρ)=A(X) for any vector field X; ρ 
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being a unit vector field, called the generator of the 

manifold. Such an n-dimensional quasi-Einstein manifold 

is denoted by (QE)n. 

 

As a generalization of quasi-Einstein manifold, Chaki [2] 

introduced the notion of generalized quasi-Einstein 

manifolds. A Riemannian manifold (Mn,g) (n>2) is said to 

be generalized quasi-Einstein manifold if its Ricci tensor 

Sof type (0, 2) is not identically zero and satisfies the 

following: 

 

S(X,Y)=αg(X,Y)+βA(X)A(Y)+γ[A(X)B(Y)+A(Y)B(X)], (4.2) 

 

Where α, β, γ are scalars of which β/=0, γ/=0, A, B are 

non-zero 1-forms such that g(X,ρ)=A(X), g(X,µ)=B(X) for 

all X and ρ, µ are two unit vector fields mutually 

orthogonal to each other. In such a case α, β and γ are 

called the associated scalars, A, B are called the associated 

1-forms and ρ, µ are the generators of the manifold. Such 

an n-dimensional manifold is denoted by G(QE)n. 

 

In [3], Chaki also introduced the notion of super quasi-

Einstein manifold. A Riemannian manifold (Mn,g), (n>2) is 

called super quasi-Einstein manifold if its Ricci tensor S of 

type (0,2) is not identically zero and satisfies the following: 

 

𝑆(𝑋, 𝑌) = 𝛼𝑔(𝑋, 𝑌) + 𝛽𝐴(𝑋)𝐴(𝑌) + 𝛾[𝐴(𝑋)𝐵(𝑌) +
𝐴(𝑌)𝐵(𝑋) + 𝛿𝐷(𝑋, 𝑌)      

(4.3)  

 

here α, β, γ, δ are non-zero scalars, A, B are two non-zero 

1forms such that g(X,ρ)=A(X), g(X,µ)=B(X) for all vector 

fields 

 

X and ρ, µ are unit vectors such that ρ is perpendicular to µ 

and D is a symmetric (0,2) tensor with zero trace, which 

satisfies the condition D(X,ρ)=0 for all vector Fields X 

.Here α, β, γ and δ are called the associated scalars, A,B are 

the associated 1-forms of the manifold. Such an n-

dimensional manifold is denoted by S(QE)n. 

 

Setting X=Y=ei in (4.3) and taking summation 

overi,1≤i≤n, we obtain 

𝑟 = 𝑛𝛼 + 𝛽 + 𝛾                        (4.4) 

 

where r is the scalar curvature of the manifold. From (2.3) 

and (4.3), we get 

    
(𝛾 + 𝑏 + 𝛼)𝑔(𝑋, 𝑌) + 𝛽𝐴(𝑋𝐴(𝑌) + 𝛾[𝐴(𝑋)𝐵(𝑌

+ 𝐴(𝑌)𝐵(𝑋) + 𝛿𝐷(𝑋, 𝑌) = 0 

(4.5) 

Putting X=Y=ei in (4.5) and taking summation over i, 

1≤i≤n, we obtain 

n (λ+ b+ α) + β= 0            (4.6) 

 

Which implies by virtue of (4.4) that λ=—(b+α), which is 

<0, =0 or>0 

 

b+α>0= or <0 

 

This leads to the following: 

 

Theorem 4.1. Let (g,V,λ) be a Ricci soliton with 

concircular potential vector field Von a super quasi-

Einstein manifold (respectively, generalized quasi- Einstein 

manifold, quasi-Einsteinmanifold) (Mn,g). Then (g,V,λ) is 

shrinking, steady and expanding according as    𝑏 + 𝛼 >
0, = 0 𝑜𝑟 < 0. 
 

For any vector field V. 

 

In view of (4.3), (1.1) yields 

  
(£𝑉𝑔)(𝑌, 𝑍) + 2(𝜆 + 𝛼)𝑔(𝑌, 𝑍) + 2𝛽𝐴(𝑌)𝐴(𝑍) +
2𝛾[𝐴(𝑌)𝐵(𝑍) + 𝐴(𝑍)𝐵(𝑌)]+2𝛿𝐷(𝑌, 𝑍) = 0 

(4.7) 

 

Putting Y= Z= ei in (4.7) and taking summation over i, 

1≤i≤n, we obtain  

 divV+ n(λ + α) 

+ β= 0             (4.8) 

 

Using (4.4) in (4.8) we get 

 divV + r + 

nλ =0               (4.9) 

 

If V is solenoidal then divV=0 and hence from (4.9), we get 

𝜆 = −
𝑟

𝑛
. 

 

Hence, we can state the following: 

 

Theorem4.2. Let (g,V,λ) be a Ricci soliton with solenoidal 

vector field Von a super quasi-Einstein manifold 

respectively, generalized quasi-Einstein manifold, quasi-

Einstein manifold) (Mn,g). Then (g,V,λ) is shrinking, steady 

and expanding depending upon the sign of scalar curvature 
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