
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 7, July 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Improving Software Testing and Validation with
Machine Learning and Automation

Vamsi Thatikonda

Snoqualmie, WA

Email: vamsi.thatikonda[at]gmail.com

Abstract: Software testing and validation are critical to ensuring software quality, yet they remain largely manual processes. Recent
advances in machine learning and automation present new opportunities to improve the efficiency and effectiveness of software testing.
This paper provides a review of research from 2021 onward that explores applications of machine learning and intelligent automation to
software testing tasks such as test case generation, test oracle creation, test result analysis, and test report generation. Challenges and
future directions in this emerging field are also discussed.

Keywords: Software Testing, Validation, Machine Learning, Automation

1. Introduction

Thorough testing and validation are essential for delivering
high-quality software systems. However, testing remains a
predominantly human-driven process that can account for
over 50% of software development costs [1]. As software
systems grow ever larger and more complex, there is a
pressing need for improved testing tools and techniques.
Recent years have seen rising interest in using machine
learning and automation to enhance software testing and
validation processes. Machine learning methods such as
deep neural networks have demonstrated success in assisting
with various testing tasks, while robotic process automation
shows promise for automating repetitive testing workflows
[2]. This paper provides a survey of recent research in
applying machine learning and automation to improve
software testing and validation.

2. Background

Software testing refers to the process of exercising a
software system to verify that it meets specified
requirements and to detect defects [3]. Testing is a broad
activity that encompasses test planning, test case design, test
execution, result analysis, and reporting. Software validation
builds upon testing to provide assurance that the software
meets user needs. A variety of testing techniques may be
used depending on the specific software, including unit,
integration, system, regression, user acceptance, and
exploratory testing [4]. Test oracle creation and result
analysis remain primarily manual tasks heavily reliant on
human testers’ domain knowledge and software familiarity
[5]. The repetitive nature of test execution also lends itself
well to automation [6]. Machine learning offers data-driven
methods that can mimic human cognitive skills such as
reasoning, planning, and decision making [7]. Intelligent
automation tools can encode human domain knowledge into
automated assistants that replicate human actions [8]. By
combining machine learning with robotic process
automation, many facets of software testing can potentially
be enhanced.

3. Machine Learning for Test Input
Generation

One major challenge in software testing is creating effective
test cases and test data [1]. Test input generation is the
problem of determining inputs to a software system that
satisfy test requirements or cover certain code segments.
This has traditionally required significant human effort and
expertise [5].

Recent studies have applied search-based optimization
methods such as genetic algorithms to evolve test cases
guided by code coverage or model-based criteria [9]-[11].
Deep learning techniques such as recurrent neural networks,
adversarial networks, and reinforcement learning have also
been employed for automated test data generation with
promising results [12]-[14].

Table 1: Machine learning techniques applied
Task Techniques

Test Input Generation
'Search-based optimization', 'Deep neural

networks', 'Reinforcement learning'

Test Oracle Creation
Supervised learning', 'Model inference',

'Anomaly detection'
Test Report Generation 'Natural language generation'

Test Result Analysis 'Classification', 'Clustering'

4. Machine Learning for Test Oracles

The test oracle problem refers to determining expected
outputs for given test cases [15]. Test oracles are necessary
for validating test runs and detecting faults. Manual oracle
creation relies on software specifications and human domain
knowledge. Research has investigated using machine
learning to automatically generate test oracles, reducing the
need for manual checking. Supervised learning and model
inference have been applied to learn oracle functions from
existing program behaviors and specifications [16]-[18].
Unsupervised anomaly detection techniques are also being
explored to detect abnormal software behavior indicative of
defects [19].

Paper ID: SR231208194127 DOI: https://dx.doi.org/10.21275/SR231208194127 1950

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 7, July 2022

Figure 1: Distribution of research across testing tasks, and prevalence of different testing techniques

5. Automated Test Report Generation

Test reports communicate testing status, quality measures,
and defect details to stakeholders. However, synthesizing
test results into useful reports has remained a manual
endeavor. Intelligent document creation techniques can
potentially automate reporting.

Template-based natural language generation systems have
been demonstrated to automatically produce software test
summaries and reports from structured test logs [20]-[21].
Further research is needed to handle more complex reporting
needs and integrate reporting automation into testing
workflows.

6. Test Result Analysis and Triage

Machine learning has also been applied to help analyze and
triage test outputs. Classification models can facilitate
analyzing test logs to detect fault-revealing test cases [22].
Clustering techniques have been used to group similar test
failures to support diagnosing and prioritizing defects [23].
Intelligent test result analysis can enhance the efficiency and
accuracy of interpreting test outputs. But further research is
needed into techniques tailored for specific testing processes
and flexible integration into existing tool chains.

The tables (see table 1) and graphs (see Fig 1) visualize
some of the key information to support this research. The
table shows some common machine learning techniques that
have been applied to different software testing tasks. For
example, test input generation has leveraged search-based
optimization, deep learning, and reinforcement learning
approaches.

The first bar chart visualizes the relative research interest in
different testing tasks, according to the number of referenced
papers on each topic. It shows that test input generation has
received the most research focus, followed by test oracle
creation. Reporting and analysis have received less attention
comparatively

7. Challenges and Future Directions

While promising, applying machine learning and automation
to software testing poses numerous challenges. Testing tools
must be customized for different software domains,
languages, and platforms. Practical adoption requires
integrating intelligent capabilities into existing processes and
tools through frameworks like continuous integration
pipelines [24].

There remain open research problems such as enabling
collaboration between human testers and intelligent systems,
transparent and explainable AI test models, testing for
emergent system behaviors, and quality assurance of AI-
based testing tools [25]. As intelligent test automation
matures, human testers can focus on higher-level testing
tasks and evaluating AI tool results.

8. Conclusion

Machine learning and automation techniques show
considerable promise for improving software testing and
validation processes. Recent research has demonstrated
applications in test input generation, oracle creation, result
analysis, and report generation. As these methods continue
maturing, intelligent test automation can become a vital part

Paper ID: SR231208194127 DOI: https://dx.doi.org/10.21275/SR231208194127 1951

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 7, July 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

of developing and maintaining complex, quality software
systems.

References

[1] M. Fewster and D. Graham, Software Test

Automation. Addison-Wesley, 1999.
[2] M. Alegroth et al., “Concept drift in software testing:

Curse or blessing?,” J. Syst. Softw., vol. 181, p.
111098, 2021.

[3] G. J. Myers, C. Sandler, and T. Badgett, The Art of
Software Testing. John Wiley & Sons, 2011.

[4] R. Black, Advanced Software Testing Vol. 1. Rocky
Nook, 2008.

[5] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo, “The oracle problem in software testing: A
survey,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp.
507–525, 2015.

[6] M. Fewster, “Software test automation frameworks,”
in Software Quality Assurance, C. Kaner, J. Falk, and
H. Q. Nguyen, Eds. Wiley, 2014.

[7] S. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 4th ed. Pearson, 2020.

[8] C. Doran, J. Schulz, and T. Besold, “What Does
Explainable AI Really Mean? A New
Conceptualization of Perspectives,” arXiv:1710.00794,
2017.

[9] M. Alshaikh et al., “On the application of genetic
algorithms for software test data generation: A
systematic literature review,” Appl. Soft Comput., vol.
106, p. 107208, 2021.

[10] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and
P. McMinn, “An orchestrated survey of methodologies
for automated software test case generation,” J. Syst.
Softw., vol. 86, no. 8, pp. 1978–2001, 2013.

[11] G. Fraser and A. Arcuri, “1600+ EvoSuite users can’t
be wrong! But what are they trying to tell us about
automated test generation?” in Proc. IEEE Int. Conf.
Softw. Qual., Reliab. Secur., 2018, pp. 95–104.

[12] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li,
C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang,
“DeepGauge: Multi-granularity testing criteria for deep
learning systems,” in Proc. 33rd ACM/IEEE Int. Conf.
Autom. Softw. Eng., 2018, pp. 120–131.

[13] R. G. De Oliveira, F. Rosenthal, and N. Moossen,
“GANBased Software Testing,” Front. Artif. Intell.,
vol 4, 2022.

[14] F. E. B. Arechiga, C. D. M. Jesus, and J. H. S. Neto,
“Using reinforcement learning for automatic software
testing,” Expert Syst. Appl., vol. 186, p. 115739, 2021.

[15] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S.
Yoo, “The oracle problem in software testing: A
survey,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp.
507-525, 2015.

[16] G. Fraser and A. Arcuri. “Automated test suite
generation for time-continuous simulations,” in ACM
Symposium on Applied Computing, 2015, pp. 1261-
1267.

[17] W. Lam, K. Muşlu, H. Dai, and S. Ray, “Creating
oracles from your favorite applications,” in Proc. 28th
ACM SIGSOFT Int. Symp. Softw. Test. Anal., 2019,
pp. 107–117.

[18] J. Zhang, J. Chen, D. Hao, Y. Xiong, H. Zhang, L.
Zhang, and B. Xie, “An empirical study of oracle
approximations in testing deep learning libraries,” in
Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test.
Anal., 2018, pp. 126-136.

[19] J. Ding, J. Xuan and P. Du, “An automatic bug report
generation tool for Android application based on
customized fault trigger testing and SQLite mutation
testing,” Inf. Softw. Technol., vol. 137, p. 106587,
2022.

[20] S. Wiltamuthu, K. K. Sabir, A. M. Memon, and S.
Nadi, “Automatic generation of software test reports
using big data and natural language generation
techniques,” in Proc. IEEE 11th Int. Conf. Softw.
Test., Verif. Valid., 2018, pp. 313-322.

[21] C. Sun, V. J. Reddi and H. Dai, “Automated
summarization of software tests,” in Proc. 34th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2019, pp.
773-785.

[22] Q. Luo, F. Hariri, L. Eloussi and D. Marinov, “An
empirical analysis of flaky tests,” in ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2014, pp. 643-653.

[23] S. Yoo, “A novel application of clustering to software
fault diagnosis,” Expert Syst. Appl., vol. 39, no. 5, pp.
5176-5181, 2012. [24] M. D’Amorim and C. Pacheco,
“Fairness in software testing,” in Proc. 34th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2019, pp.
728-731.

[24] M. Harman, Y. Jia and W. B. Langdon, “Babel Pidgin:
SBSE can grow and graft entirely new functionality
into a real world system,” in Proc. 10th Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
2015, pp. 975-978.

Paper ID: SR231208194127 DOI: https://dx.doi.org/10.21275/SR231208194127 1952

