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Abstract: Software testing and validation are critical to ensuring software quality, yet they remain largely manual processes. Recent 
advances in machine learning and automation present new opportunities to improve the efficiency and effectiveness of software testing. 
This paper provides a review of research from 2021 onward that explores applications of machine learning and intelligent automation to 
software testing tasks such as test case generation, test oracle creation, test result analysis, and test report generation. Challenges and 
future directions in this emerging field are also discussed. 
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1. Introduction 
 
Thorough testing and validation are essential for delivering 
high-quality software systems. However, testing remains a 
predominantly human-driven process that can account for 
over 50% of software development costs [1]. As software 
systems grow ever larger and more complex, there is a 
pressing need for improved testing tools and techniques. 
Recent years have seen rising interest in using machine 
learning and automation to enhance software testing and 
validation processes. Machine learning methods such as 
deep neural networks have demonstrated success in assisting 
with various testing tasks, while robotic process automation 
shows promise for automating repetitive testing workflows 
[2]. This paper provides a survey of recent research in 
applying machine learning and automation to improve 
software testing and validation.  
 
2. Background 
 
Software testing refers to the process of exercising a 
software system to verify that it meets specified 
requirements and to detect defects [3]. Testing is a broad 
activity that encompasses test planning, test case design, test 
execution, result analysis, and reporting. Software validation 
builds upon testing to provide assurance that the software 
meets user needs. A variety of testing techniques may be 
used depending on the specific software, including unit, 
integration, system, regression, user acceptance, and 
exploratory testing [4]. Test oracle creation and result 
analysis remain primarily manual tasks heavily reliant on 
human testers’ domain knowledge and software familiarity 
[5]. The repetitive nature of test execution also lends itself 
well to automation [6]. Machine learning offers data-driven 
methods that can mimic human cognitive skills such as 
reasoning, planning, and decision making [7]. Intelligent 
automation tools can encode human domain knowledge into 
automated assistants that replicate human actions [8]. By 
combining machine learning with robotic process 
automation, many facets of software testing can potentially 
be enhanced. 

3. Machine Learning for Test Input 
Generation 

 
One major challenge in software testing is creating effective 
test cases and test data [1]. Test input generation is the 
problem of determining inputs to a software system that 
satisfy test requirements or cover certain code segments. 
This has traditionally required significant human effort and 
expertise [5].  
 
Recent studies have applied search-based optimization 
methods such as genetic algorithms to evolve test cases 
guided by code coverage or model-based criteria [9]-[11]. 
Deep learning techniques such as recurrent neural networks, 
adversarial networks, and reinforcement learning have also 
been employed for automated test data generation with 
promising results [12]-[14]. 
 

Table 1: Machine learning techniques applied 
Task Techniques 

Test Input Generation 
'Search-based optimization', 'Deep neural 

networks', 'Reinforcement learning' 

Test Oracle Creation 
Supervised learning', 'Model inference', 

'Anomaly detection' 
Test Report Generation 'Natural language generation' 

Test Result Analysis 'Classification', 'Clustering' 
 
4. Machine Learning for Test Oracles 
 
The test oracle problem refers to determining expected 
outputs for given test cases [15]. Test oracles are necessary 
for validating test runs and detecting faults. Manual oracle 
creation relies on software specifications and human domain 
knowledge. Research has investigated using machine 
learning to automatically generate test oracles, reducing the 
need for manual checking. Supervised learning and model 
inference have been applied to learn oracle functions from 
existing program behaviors and specifications [16]-[18]. 
Unsupervised anomaly detection techniques are also being 
explored to detect abnormal software behavior indicative of 
defects [19]. 
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Figure 1: Distribution of research across testing tasks, and prevalence of different testing techniques 

 
5. Automated Test Report Generation 
 
Test reports communicate testing status, quality measures, 
and defect details to stakeholders. However, synthesizing 
test results into useful reports has remained a manual 
endeavor. Intelligent document creation techniques can 
potentially automate reporting.  
 
Template-based natural language generation systems have 
been demonstrated to automatically produce software test 
summaries and reports from structured test logs [20]-[21]. 
Further research is needed to handle more complex reporting 
needs and integrate reporting automation into testing 
workflows. 
 
6. Test Result Analysis and Triage 
 
Machine learning has also been applied to help analyze and 
triage test outputs. Classification models can facilitate 
analyzing test logs to detect fault-revealing test cases [22]. 
Clustering techniques have been used to group similar test 
failures to support diagnosing and prioritizing defects [23]. 
Intelligent test result analysis can enhance the efficiency and 
accuracy of interpreting test outputs. But further research is 
needed into techniques tailored for specific testing processes 
and flexible integration into existing tool chains. 
 
The tables (see table 1) and graphs (see Fig 1) visualize 
some of the key information to support this research. The 
table shows some common machine learning techniques that 
have been applied to different software testing tasks. For 
example, test input generation has leveraged search-based 
optimization, deep learning, and reinforcement learning 
approaches.  

The first bar chart visualizes the relative research interest in 
different testing tasks, according to the number of referenced 
papers on each topic. It shows that test input generation has 
received the most research focus, followed by test oracle 
creation. Reporting and analysis have received less attention 
comparatively 
 
7. Challenges and Future Directions 
 
While promising, applying machine learning and automation 
to software testing poses numerous challenges. Testing tools 
must be customized for different software domains, 
languages, and platforms. Practical adoption requires 
integrating intelligent capabilities into existing processes and 
tools through frameworks like continuous integration 
pipelines [24].  
 
There remain open research problems such as enabling 
collaboration between human testers and intelligent systems, 
transparent and explainable AI test models, testing for 
emergent system behaviors, and quality assurance of AI-
based testing tools [25]. As intelligent test automation 
matures, human testers can focus on higher-level testing 
tasks and evaluating AI tool results. 
 
8. Conclusion 
 
Machine learning and automation techniques show 
considerable promise for improving software testing and 
validation processes. Recent research has demonstrated 
applications in test input generation, oracle creation, result 
analysis, and report generation. As these methods continue 
maturing, intelligent test automation can become a vital part 
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of developing and maintaining complex, quality software 
systems. 
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