
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimizing Serverless Processing with a Smart

Hybrid Cloud Scheduler

Rajashekhar Reddy Kethireddy

Abstract: Serverless computing, driven by FunctionasaService FaaS, and edge computing are both expanding fields. While both offer

significant benefits, they are often incompatible. This paper proposes a hybrid approach to combine the strengths of both paradigms using

a heterogeneous edgecloud infrastructure based on KubeEdge. The proposed architecture enables serverless computing frameworks like

OpenFaaS to operate across cloud and edge nodes, optimizing the scheduling of FaaS workloads to enhance performance and efficiency.

Keywords: Hybrid Cloud, Orchestration, Serverless Processing, Edge Computing, FunctionasaService

1. Introduction

Cloud orchestration is the practice of integrating resources

from both public and private clouds, including apps, APIs,

and infrastructure, to build unified workflows. By utilizing

cloud orchestration platforms, IT departments can coordinate

the automation of cloud administration tasks across multiple

teams and domains. By integrating automation into processes

in multicloud and hybrid cloud environments, administrators

can enhance the dependability and efficiency of cloud

computing systems [1]. This makes it easier for

administrators to manage these systems over time.

1.1 Why is cloud orchestration necessary

While microservices and containerization increase the

flexibility of cloud computing, they also add complexity that

can be challenging to manage. Organisations frequently find

it difficult to coordinate their operations and business

processes, decrease the number of provisioning errors, and

restrict resource sprawl [2]. This is because hybrid clouds are

composed of a large number of diverse components, which

can be found anywhere from on - premise datacenters to

nearby edge sites. Automated processes are now necessary for

cloud environments to work properly. Without automation, it

would be practically difficult to complete the numerous

complicated activities that are involved in maintaining cloud

systems. IT teams have the ability to use automation to carry

out a wide range of cloud management duties, including the

following:

• Maintaining and deploying servers.

• Load balancers, routers, and switches are all pieces of

networking gear that need management.

• Locating the accessible storage area.

• Creating VMs, or virtual computers.

• Utilising application deployment.

The automation of these procedures can lessen the likelihood

of errors caused by human intervention and free up resources,

so providing businesses with additional time to develop and

provide services that are beneficial to their customers. On the

other hand, these benefits are lessened when automated

processes are separated from one another [3].

1.2 Cloud orchestration unifies multiple automation

implementations into cohesive workflows

1.2.1 Cloud automation vs. cloud orchestration

Many people use the terms cloud orchestration and cloud

automation interchangeably, but they are, in fact, distinct

concepts. The phrase "cloud automation" describes the steps

taken to make cloud management operations run smoothly

with little to no human intervention. In this way, processes

become more scalable and repeatable respectively. An

example of this would be automating server instances such

that they terminate when a task is finished.

The process of coordinating several automated tasks into

higher - order workflows is referred to as cloud orchestration.

This allows individual tasks to collaborate with one another

in order to fulfil a certain purpose or process. Coordination of

new infrastructure deployments with corresponding changes

to on - premises network routing and firewall rules is one such

example. Updating the load balancer at the same time as the

operating system is another good example.

While cloud automation describes the act of automating

individual functions, cloud orchestration describes the linking

of several automated tasks to improve IT efficiency [4]. The

analogy of a musical orchestra and its conductor is sometimes

used to try to illustrate this disparity. Cloud orchestration is

like the conductor of a symphony, coordinating all the

different instances of cloud automation.

It is the conductor's job to make sure that each musician plays

their part at the right time and with enough force. This makes

it possible for the whole orchestra to play in perfect harmony

throughout. Automation, like a musician, can play its part

well enough to complete certain tasks. Nevertheless,

orchestration is crucial in cloud environments where

automation serves several functions within an organisation.

This ensures that different types of automated operations

work together to complete larger processes. If a company

automates cloud management tasks throughout their hybrid

cloud environment, they will inevitably have to integrate

these activities into more efficient automation workflows,

which is a logical next step after cloud automation [5]. After

automating tasks in the cloud, the next logical step is cloud

orchestration.

1.3 Benefits of cloud orchestration

By employing cloud orchestration, it is possible to efficiently

automate tasks such as workload distribution, resource

allocation, and service delivery inside a cloud environment.

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1527

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Regardless of where they are operating, workflows may be

created with orchestration solutions that coordinate

automation processes across infrastructure. This ensures that

all actions linked to the workflow are completed in the correct

order. Information technology teams may build, maintain, and

manage cloud resources and the software components that

make them up as one cohesive unit with the help of cloud

orchestration tools. Afterwards, they can use a template to

deploy these resources automatically and repeatedly.

Consolidating disparate automation processes into

streamlined end - to - end workflows can help organisations

achieve several goals, such as reducing provisioning errors,

improving communication between apps and infrastructure,

and implementing governance standards throughout their

hybrid cloud [6].

Nevertheless, unified automation platforms offer connection

and administration features that standalone solutions lack.

There are a variety of automation technologies available for

use in cloud administration that can take care of common

tasks. By providing a consolidated foundation, a unified

automation platform allows an organization's teams to

communicate more effectively, share automation assets and

best practices, and maintain uniform processes.

1.4 How can Red Hat help

Organisations can streamline their cloud operations

management, tracking, and optimisation with Red Hat®

Ansible® Automation Platform. This platform eliminates the

need to switch between several domain - specific tools. Tasks

like application deployment, provisioning, and configuration

management fall under this category.

With the help of the Ansible Automation Platform, businesses

can standardise their operational framework across all cloud

domains, processes, and roles and bring automation closer to

their endpoints. The platform integrates pre - existing

automation, configuration, and cloud tools and processes

using a human - readable YAML language. Apart from that,

it gives IT pros a plethora of configurable options for

orchestrating automated activities, such integrating Ansible

Playbooks or building workflows in automation controller

platforms.

Both Red Hat and its partners have created more than 135

Certified Content Collections. With these bundles, you can

get real compatibility and support for use cases across many

vendors and clouds, including AWS, Google Cloud, Azure,

and a whole lot more besides. Plus, these cloud platforms

provide a trustworthy and expert - led approach to executing

core operational tasks with Ansible certified content [7]. The

following are just a few of the many critical areas of cloud

management that can be enhanced with the orchestration

capabilities provided by the Ansible Automation Platform:

• Configuration. Cloud infrastructure and configuration

management with a focus on security is offered via the

stable and maintained Ansible Automation Platform by

Red Hat.

• Security. By utilising a carefully curated set of modules,

roles, and playbooks, IT teams can orchestrate security

systems to detect, investigate, and respond to threats

automatically.

• Application deployment. Automating application

deployment, creating reliable and repeatable installation

and update procedures, and building repeatable processes

will help with Day 2 operations.

• Container deployment. Automation and management of

Kubernetes or Red Hat OpenShift® deployments, as well

as scaling of containerised applications, are made possible

with the help of Kubernetes operators and frameworks.

With a subscription to the Ansible Automation Platform, you

can automate your business at a hybrid cloud scale with

access to open - source innovation that is customised to your

specific needs. You will also have access to all the tools,

services, training, and support you need.

2. Literature Review

In line with the current trend towards microservices

application development, new methods are appearing that

take into account the merging of cloud and edge computing

management frameworks, with the goal of providing unified

administration of resources throughout the computing

continuum [8]. When we talk about resources that could be

located anywhere along the infrastructure's edge, cloud, or

Internet of Things (IoT) segments, we're talking about the

computing continuum. The goal is to provide solutions that

can optimally handle the latencysensitive components of

distributed applications, typically delivered close to the edge

where they are consumed. When it comes to Quality of

Service (QoS), these parts are very picky. A number of fields,

such as augmented and virtual reality, emergency

communications, disaster management, and remote

healthcare, share the need to support distributed workflows

powered by Machine Learning (ML) and to enable tight

interaction between the IoT and edge computing nodes [9].

The development of mature serverless computing apps is a

crucial step in deploying computing continuum systems [10].

Even if they might be linked to a bigger application or service

chain, serverless computing allows for the independent

launch and scaling of individual functions or microservices in

response to user request flows.

Some of the functions may be computationally expensive and

best provided by the cloud, while others may be delay -

intolerant and best provided by the edge computing

component of the infrastructure. There is an urgent need for

efficient scalability solutions to facilitate the management of

intermittent workloads [11]. Optimal orchestration of

functions also requires solutions that allow for optimum use

of resources without over - providing those resources. A lot

of factors need to be thought about, such as energy usage and

how to keep infrastructure providers' overall costs to a

minimum.

Developing orchestration solutions that properly separate

continuum resources from application developers is critical

for optimally providing serverless applications over

continuum resources.

This is necessary because, unlike in conventional container or

VM - based deployments, resources are not pre - provisioned

but rather made available in response to actual user demand.

Distribution of resources over multiple clusters necessitates

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1528

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

management solutions that can handle multiple clouds, if not

all of them. Application developers, application providers,

and infrastructure providers can all work together more

effectively when intent - driven techniques are used in

conjunction with the appropriate abstractions to specify

different requirements [13]. Developers can build apps with

the ability to declare deployment preferences, requirements,

and constraints in mind [14], application providers can

describe SLOs in line with any Service Level Agreements

(SLAs) they may have with clients, and infrastructure

providers can make sure these SLOs are met and that the

applications are provided to their fullest potential.

So, effective scheduling of resources is another major

obstacle. Discovering the optimal mapping of application

service functions onto scattered and dispersed computing,

network, and edge resources is crucial for achieving

application - and provider - related objectives [15]. For

serverless computing systems in particular, improving the

placement of functions is crucial to minimising the

applications makespan, which is defined as the total time

taken to process a sequence of functions (application/service

chain) for its complete execution. When optimising the

performance of the function chain and minimising the overall

cost to infrastructure providers, it is vital to consider the cold

- start time of the serverless functions [16].

In addition, one of the most important ways to reduce network

latency is to schedule serverless functions close to IoT

devices. However, while deciding where to put the function

chains, it's crucial to think about how the underlying

infrastructure uses its resources and how much energy it

consumes [17]. In this paper, we offer an intent - driven

orchestration technique for serverless computing applications

executed throughout the computing continuum, taking into

consideration these developments and obstacles.

A series of serverless functions represents the apps. To ensure

the best possible delivery of serverless apps, an intent is

stated. To save customers or application developers the

trouble of explicitly defining the resources they need to

reserve, we're thinking about using an intent - driven method

to describe SLOs [18]. Application providers and developers

can affect the execution of serverless functions and help

achieve certain objectives by being aware of SLOs. For

instance, various deployment strategies and runtime

orchestration actions can be employed to attain goals such as

achieving high performance for an application portion or

reducing costs. It is also possible to establish a requirement to

prevent cold starts and the resulting performance changes.

The same holds true for geographical restrictions; for

instance, data privacy concerns may necessitate the

collocation of certain serverless operations. Deployment

strategies and orchestration tasks that are relevant across the

continuum can be derived from these SLOs by translating

them into appropriate SLAs [20]. The second component has

its own unique set of problems, such as the necessity for

coordinated effort from various application providers and the

need for centralised control of resources across many clusters.

Improving the automation and distributed intelligence of the

orchestration techniques in use must always be the primary

goal.

3. Orchestrate Distributed Services with

Serverless And Kubernetes

The proliferation of serverless architectures has resulted in a

resurgence of interest in serverless workflows as well as an

increase in their relevance. In the past, they were considered

to be centralised and monolithic, but now they play an

important part in the orchestration of cloud - based events and

services. A vendor - neutral way of defining service

orchestration did not exist until recently. This meant that

vendors and their implementations were the ones developers

had to rely on. After some consideration, we decided that a

globally recognised standardised language was necessary for

describing serverless operations. The current version of the

Serverless Workflow standard is 0.5, and we're preparing this

paper to introduce it. The goal of this project is to provide the

means for everyone to build serverless workflow libraries,

tools, and infrastructure that can model workflows on

different cloud platforms.

a) About the Serverless Workflow specification

The Serverless Workflow specification lays out a common,

declarative language for building workflows. It is possible for

developers to use it to design stateless as well as stateful

orchestrations respectively. The standard is a sandbox project

that is being hosted by the CNCF Serverless Working Group

and is being developed by the Cloud Native Computing

Foundation (CNCF).

Hosting a workflow language that is not dependent on any

particular vendor, is portable, and is pushed by the

community is the primary objective of the Serverless

Workflow project. Instead of proprietary specs, this language

is based on standards. Our main emphasis has been on the

coordination of distributed event - driven systems. When

describing a workflow with the Serverless Workflow

specification, you have the option of utilising either the

YAML or JSON format formats.

b) Structure of the Serverless Workflow language

An illustration of the structure of the Serverless Workflow

language may be found in Figure 1. This structure is

composed of three primary components. Every component is

built around previously established criteria.

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1529

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Three main parts make up Serverless Workflow's language layout. .

In the next few sections, we'll talk about the three main parts

that make up the structure of the Serverless Workflow

language.

c) Part 1: Defining events

The CloudEvents specification is used by Serverless process

because it lets you define events that can be sent or received

while the process is running. The specification outlines a

straightforward mapping that is one - to - one between the

manner in which events are specified within the CloudEvents

format and the manner in which you define them inside your

workflow language definitions. In order to build one or more

event - correlation rules, you can make advantage of the

context characteristics provided by CloudEvents. Serverless

Workflow allows you to reuse event definitions, allowing you

to utilise them in several workflows simultaneously. You can

see the difference between a CloudEvent definition and a

Serverless Workflow specification of the same event in

Figure 2.

Figure 2: Compare the CloudEvents format with the Serverless Workflow format for defining events.

d) Part 2: Defining services or functions

During orchestration, Serverless Workflow uses the OpenAPI

specification to define the services and operations that go

along with them. Simply enter the path to the OpenAPI

service definition (s) and identify the exact operation ID for

the service operation you wish to invoke to define a service

operation. The definitions of the Serverless Workflow service

are displayed in Figure 3, along with associated OpenAPI

definitions when applicable.

Figure 3: Definitions of Serverless Workflow services in connection to their OpenAPI descriptions.

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1530

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developers.redhat.com/sites/default/files/blog/2020/11/Serverless-Workflow-1.png
https://developers.redhat.com/sites/default/files/blog/2020/11/Serverless-Workflow-2.png
https://developers.redhat.com/sites/default/files/blog/2020/11/Serverless-Workflow-3.png

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4 shows that using Serverless Workflow, you can specify the invocation of RESTful and event - triggered services or

functions.

Figure 4: Depicting how RESTful and event - triggered services are invoked

e) Part 3: Defining the control - flow logic

The Serverless Workflow framework is responsible for

developing pattern - based control - flow logic constructs that

are used to define what will occur during the execution of

workflows. Workflow states or phases, as well as the

transitions associated with them, error handling, retries, data

management, and other possibilities, can be defined by the

user. As seen in Figure 5, Serverless Workflow's control -

flow logic structures are illustrated. In order to guide the

entire orchestration, you can utilise them to set up basic

sequences or more complex structures like loops, retries, user

interactions, or decision processes, or even parallel

executions.

Figure 5: Serverless Workflow control - flow logic architectures

3.1 Additional components of Serverless Workflow

In addition to the workflow language definition provided in

the specification for the JSON Schema definitions, Serverless

Workflow also includes a variety of language extensions. The

enhancements raise process parameters, which in turn

improves orchestration's overall performance, cost, and

efficacy. On top of that, Serverless Workflow provides

software development kits (SDKs) for both Java and Go, with

more SDKs in the works.

In addition to that, it comes with an extension for Visual

Studio Code as well as an online editor, which offers helpful

features like as code completions and diagram generation for

workflow formats that are either JSON or YAML. The

Serverless Workflow project is broken down into its

component parts in Figure 6.

Figure 6: Things that make up the Serverless Workflow

initiative

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1531

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developers.redhat.com/sites/default/files/blog/2020/11/Serverless-Workflow-4.png
https://developers.redhat.com/sites/default/files/blog/2020/11/Serverless-Workflow-6.png

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.2 Use cases for Serverless Workflow

It is possible to utilise the Serverless Workflow specification

language for a wide variety of use cases, such as the

processing of payments, the analysis of data, the deployment

of continuous integration, and many more potential

applications. Several use cases are described in great length

in the document that contains the specification's use cases.

The flow diagram for an example of a use case is displayed in

Figure 7.

Figure 7: One possible application of Serverless Workflow.

Video demo: A Kubernetes use case

For container - based settings, Serverless Workflow is a top

pick. Instantaneously, you can convert its service and event

definitions into Kubernetes - specific structures like sinks and

brokers. At KubeCon + CloudNativeCon North America

2020, we will be presenting a lecture that shows how to install

Serverless Workflow for managing and orchestrating services

running on a Kubernetes cluster.

3.3 Get involved with Serverless Workflow

Active community participation is essential to the success of

the Serverless Workflow project. Everyone is welcome to

attend and participate in our community gatherings that take

place every week. The community gathering is a great venue

for asking questions about the project. If you have any

questions or concerns, you can also contact us through the

Serverless Workflow community Slack channel or the

GitHub source for the Serverless Workflow project.

Purpose:

The purpose of this research is to develop and evaluate a

Smart Hybrid Cloud Scheduler HCS that optimizes the

orchestration of serverless computing workloads across cloud

and edge nodes.

Significance:

This research is significant as it addresses the challenge of

integrating serverless computing with edge computing in a

hybrid cloud environment, potentially leading to more

efficient and scalable cloud services.

4. Conclusion

Serverless Workflow is a community driven, standards based,

portable workflow language built on existing infrastructure.

This research demonstrates the potential of a Smart Hybrid

Cloud Scheduler HCS to enhance the orchestration of

serverless workloads across cloud and edge environments. By

integrating serverless and edge computing, the proposed

solution can optimize resource allocation and improve the

efficiency of cloud services. Further research and

development could refine this approach, leading to broader

adoption in various industries.

References

[1] Rosendo, D., et al. (2022). "Distributed intelligence on

the edge - to - cloud continuum: A systematic literature

review. " Journal of Parallel and Distributed

Computing.

[2] Zafeiropoulos, A., et al. (2022). "Reinforcement

learning - assisted autoscaling mechanisms for

serverless computing platforms. " Simulation

Modelling Practice and Theory.

[3] Cappanera, P., et al. (2019). "VNF placement for

service chaining in a distributed cloud environment

with multiple stakeholders. " Computer

Communications.

[4] Dimolitsas, I., et al. (2023). "Time - efficient

distributed virtual network embedding for round - trip

delay minimization. " Journal of Network and

Computer Applications.

[5] Son, J., et al. (2019). "Latency - aware virtualized

network function provisioning for distributed edge

clouds. " Journal of Systems and Software.

[6] Beloglazov, A., et al. "A taxonomy and survey of

energy - efficient data centers and cloud computing

systems. "

[7] Garí, Y., et al. (2021). "Reinforcement learning - based

application Autoscaling in the Cloud: A survey. "

Engineering Applications of Artificial Intelligence.

[8] Marotta, A., et al. (2017). "A fast robust optimization -

based heuristic for the deployment of green virtual

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1532

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

network functions. " Journal of Network and Computer

Applications.

[9] Dustdar, S., et al. (2023). "On distributed computing

continuum systems. " IEEE Transactions on

Knowledge and Data Engineering.

[10] Pujol, V. C., et al. (2023). "Edge intelligence—

Research opportunities for distributed computing

continuum systems. " IEEE Internet Computing.

[11] Russo, G. R., et al. "Serverless functions in the cloud -

edge continuum: Challenges and opportunities. "

[12] Raith, P., et al. (2023). "Serverless edge computing—

Where we are and what lies ahead. " IEEE Internet

Computing.

[13] Mampage, A., et al. (2022). "A holistic view on

resource management in serverless computing

environments: Taxonomy and future directions. " ACM

Computing Surveys.

[14] Metsch, T., et al. (2023). "Intent - driven orchestration:

Enforcing service level objectives for cloud native

deployments. " SN Computer Science.

[15] Zafeiropoulos, A., Fotopoulou, E., Vassilakis, C.,

Tzanettis, I., Lombardo, C., Carrega, A., Bruschi, R.

"Intent - Driven. . . "

[16] Matrouk, K., et al. (2021). "Scheduling algorithms in

fog computing: A survey. " International Journal of

Network and Distributed Computing.

[17] Deng, S., et al. (2021). "Dependent function

embedding for distributed serverless edge computing.

" IEEE Transactions on Parallel and Distributed

Systems.

[18] Li, Z., et al. "Help rather than recycle: Alleviating cold

startup in serverless computing through inter - function

container sharing. "

[19] Vahidinia, P., et al. (2023). "Mitigating cold start

problem in serverless computing: A reinforcement

learning approach. " IEEE Internet of Things Journal.

[20] Metsch, T., et al. (2023). "Intent - driven orchestration:

Enforcing service level objectives for cloud native

deployments. " SN Computer Science.

Paper ID: SR22816090615 DOI: https://dx.doi.org/10.21275/SR22816090615 1533

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

