
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 8, August 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Virtual Memory to Memory Scaler Hardware 

Device Using QEMU 
 

Karthik Poduval 
 

 

Abstract: This paper describes the methods to build a virtual memory to memory device attached to QEMU’s ARM virt generic 

hardware device. This virtual hardware device could be used as a development platform to demonstrate Linux device driver 

development for Video4Linux2 M2M (Memory to Mem- ory) drivers. 

 

Keywords: QEMU, Scaler, Virtual, Hardware Emulation, M2M, V4L2 M2M 

 

1. Introduction 
 

Virtual hardware (that interface function like the real one) 

are extremely helpful as an educational tool while trying to 

learn how to develop device driver without having the need 

to use real hardware. It is also helpful tool for architecture 

exploration or exploring hardware software co-design 

without having to build the hardware. QEMU [1] is an open 

source machine emulator. QEMU is used widely as 

machine emulator and is the default emulator for Android 

build system and Yocto. This allows to run code for any 

machine/SoC archi- tecture on a given host machine that 

maybe of a different architecture. For example: qemuarm64 

machine on yocto is a virtual QEMU ARM64 bit machine. 

Once can build image for this machine using Yocto and 

even boot up this machine on a X86 64 host computer using 

QEMU. The qemuarm64 machine of Yocto maps to 

QEMU’s ARM System Emulator [2]. 

 
QEMU Device Model 

QEMU Device Model is a method to add a device 

emulation to QEMU. An example of adding a QEMU 

Device Model can be seen in [3] and [4] example from 

Xilinx. Just like how a hardware device has an internal 

state, the QEMU Device Model also has a state object. The 

object may also include other resources like memory region 

(for MMIO access), in- terrupt lines and DMA capabilities. 

QEMU provides APIs to connect Device Model resources 

to the QEMU machine. 

 
M2M Virtual Scaler 

The M2M scaler virtual device has been added to QEMU 

virt ARM64 generic machine. The memory map of the virt 

device was modified to create a 0x1000 sized entry for 

the virtual M2M Scaler. A device tree entry was also 

created programaticly for the Virtual M2M Scaler for the 

device as shwon in Figure 1 The virt machine was also 

modified to add an IRQ line for the M2M Scaler Device. 

Next a device model was created for the M2M Scaler 

Device with following resources. 

• MMIO Region 

 

 

Figure 1: Device Tree Entry 

• IRQ Line 

• DMA Read and Write Capability 

 

The M2M Scaler device would be registered through the 

virt device using the allocated MMIO space and IRQ 

resource. Once registered the M2M Scaler device would 

then use the MMIO space tp install register read and write 

callbacks. These callbacks will be invoked in the M2M 

Scaler Device Model once a guest OS software starts 

communicating with the MMIO space. The read and write 

calls will cause the state of the device to be modified. For 

the actual scaler logic and open source project called STB 

[5] was used which is a header only implementation so its 

easy to incorporate into the M2M Scaler Device QEMU 

implementation. The register map of the device is shown in 

Figure 2. 

 

The programming model is shown below: 

• Program input width and height register 0x0 

• Program input stride register 0x4 

• Program output width and height register 0x8 

• Program output stride register 0xC 

• Program input DMA Address register 0x10 

• Program output DMA Address register 0x14 

• Write the start bit (bit 0) register 0x18 

• Either poll or wait for interrupt (if interrupt enabled 

register 0x14 bit 1) 

 

After all parameters for scaler are programmed and guest 

OS driver intends to begin the scaling operation using the 

start bit, the M2M Scaler device code in QEMU will signal 

an internal thread using a condition variable. The thread is 

used to emulate the asynchronous behavior of the virtual 

hardware. The thread will consume the programmed 

parameters through the device state object and start doing 

the scaling operation using the STB scaling function. For 

simplicity the M2M Scaler device only supports a single 

RGB888 color format. The DMA read is used to transfer 

the contents from Guest OS DDR address for input scaling 

image into an internal device state memory. The STB 

scaling function is invoked with input and output memories 

from device state object. If scaling was successful, the 

contents of scaling output are transferred to 

Paper ID: SR24506180220 DOI: https://dx.doi.org/10.21275/SR24506180220 1507 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 8, August 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 2: Virtual M2M Scaler Register Map 

 

the Guest OS DDR memory using a DMA operation API. 

After this the interrupt is raised using QEMU’s API 

which will cause the Guest OS’s interrupt service routing 

to get invoked. If scaling wasn’t sucessful, then 

approprate error status bits and updated in the device state 

before invoking an IRQ. The overall system design can 

be seen in Figure 3. This work was inspired by [3] PCI 

device but implemented it as an MMIO device. The full 

source code of the implementation can be found in [6] 

and [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: M2M Scaler Design 

Paper ID: SR24506180220 DOI: https://dx.doi.org/10.21275/SR24506180220 1508 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 8, August 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

2. 

3. Conclusions 
 

This work done as a part of this paper was used to 

develop a virtual M2M scaler device on QEMU that was 

used to implement a V4L2 M2M Guest OS device driver. 

Such techniques to build virtual MMIO devices could be 

used to develop virtual hardware devices for use cases 

such as. 

• Easy to understand devices for device driver 

development as an educational tool 

• A platform to prototype new hardware ideas for 

architec- tural exploration 

 

V4L2 M2M [8] is a very good Linux kernel framework 

that can be used to develop device drivers for M2M 

devices and such a virtual hardware forms a great 

example of usable virtual hardware for software design. 

 

References 
 

[1] F. Bellard, “Qemu, a fast and portable dynamic 

translator.” in USENIX annual technical conference, 

FREENIX Track, vol. 41. Califor-nia, USA, 2005, p. 

46. 

[2] “Qemu system arm.” [Online]. Available: 

https://www.qemu.org/docs/ master/system/target-

arm.html 

[3] “Educational pci device.” [Online]. Available: 

https://github.com/ karthikpoduval/qemu/blob/elc-

2022/hw/misc/edu.c 

[4] “Qemu       device        model.”        [Online].        

Available:        https: //xilinx-

wiki.atlassian.net/wiki/spaces/A/pages/861569267/Q

EMU+ Device+Model+Development 

[5] “Stb.” [Online]. Available: 

https://github.com/nothings/stb 

[6] “virt.” [Online]. Available: 

https://github.com/karthikpoduval/qemu/blob/ elc-

2022/hw/arm/virt.c 

[7] “M2m scaler device.” [Online]. Available:

 https://github.com/ karthikpoduval/qemu/blob/elc-

2022/hw/misc/m2m scaler.c 

[8] “Linux kernel v4l2 documentaion.” [Online]. 

Available: https://www. 

kernel.org/doc/html/v4.19/media/uapi/v4l/v4l2.html 

Paper ID: SR24506180220 DOI: https://dx.doi.org/10.21275/SR24506180220 1509 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.qemu.org/docs/
http://www.qemu.org/docs/
http://www/



