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Abstract: V4L2 M2M or mem2mem is a kernel framework that enables the use of V4L2 API for drivers of IP devices that classify 

themselves as memory-to-memory. This is different from the usual V4L2 output and capture devices which are memory-to-hardware or 

hardware-to-memory. This paper aims to explain the fundamentals of V4L2 M2M using a QEMU based virtual scaler example.  
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1. Introduction 
 

V4L2 [1] mem2mem [2] or M2M is a driver framework in 

the Linux kernel specially designed for memory to memory 

devices. The framework is a subset of the traditional V4L2 

framework that applies to either capture or output devices. 

Capture devices refer to those which generate video Figure 1 

and the video content is captured by the device driver and 

transferred by the V4L2 framework to the application. An 

output device does the opposite where video content is 

delivered from the application to V4L2 framework and via 

driver to external video devices Figure 2. For M2M devices 

the capture and output paths are to and from memory Figure 

3.  

 

 
Figure 1: Capture Device 

 

 
Figure 2: Output Device 

 
Figure 3: M2M Device 

 

A typical V4L2 Application is typically done for either a 

capture or output device. For both cases the application flow 

is as shown in Figure 4 where application allocates a set of 

buffer using V4L2 API and queues them over and dequeues 

them from the V4L2 framework. The V4L2 framework uses 

a buffer manager called VB2 that handles buffers and 

interacts with the driver which passes the buffers to 

hardware and back. For capture applications the buffers 

returned by the hardware are used by the application while 

for output devices the application fills the buffers before 

queuing them in.  

 

 
Figure 4: Typical V4L2 Application 

 

In the case of V4L2 M2M devices, the application needs to 

have 2 sets of buffer pools for the output and capture parts of 

the M2M device as shown in Figure 5. Another interesting 

 

 
Figure 5: Typical V4L2 M2M Application 

 

feature of the V4L2 M2M framework is that it supports 

multi context. Each time the video device node is opened, a 

context gets created and multiple applications could share a 

common hardware using the V4L2 M2M framework using 

the multiple contexts i. e. each time the application opened 

the device node and received a file descriptor, it can be used 

to operate on the context associated with the file descriptor. 

To explain this further, let us examine Figure 6. The light 

green boxes represent individual contexts. Each contexts 

contain a output and capture buffer pool. Application queues 

buffers to output and capture VB2 queues using V4L2 API. 

From the VB2 queue the buffers make it to V4L2 M2M 

queue. Note that each context has its own VB2 and V4L2 

M2M queues. Each hardware instance however has a single 

V4L2 M2M job queue, so contexts themselves get queued to 

the job queue. From this queue the contexts are picked up 

one at a time and driver’s device run callback is invoked. 
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The device run function pulls out the latest buffers from the 

context and passes it to hardware. Once the hardware 

finishes processing of the job i. e. reading from output 

buffer, processing and writing to capture buffer, it may 

trigger an interrupt and in the handler of that interrupt, the 

driver can return the buffers back to VB2 and V4L2 M2M 

queues. This is in a nutshell how the V4L2 M2M framework 

functions. To better the understanding, let us study an 

example scaler hardware in next section.  

 

 
Figure 6: V4L2 M2M Architecture 

 

I. Scaler Hardware 

In this section we introduce a virtual M2M scaler hardware 

that can both upscale and downscale an image. The 

hardware itself is virtual but interfaces like a real hardware 

to a guest Linux OS in QEMU [3]. Let us examine the data 

sheet for this hardware in Figure 7.  

 

We can also examine the programming sequence from 

Figure 7 where to use the scaler the input/output width, 

height and stride need to be programmed. Following it, the 

DMA address registers need to be programmed. To start 

operation, the start bit needs to be written. The virtual 

hardware will trigger an interrupt to inform the driver when 

the scaling has been completed.  

 

II. V4L2 M2M LINUX DRIVER 

Now we will attempt to write a device driver for this virtual 

scaler hardware. We will write a Linux platform device 

driver  

 

 
Figure 7: Virtual M2M Scaler Data Sheet 

 

for this hardware as it’s been connected to QEMU’s virt 

hard-ware’s MMIO (Memory Mapped IO) at address 

0x09010000. The QEMU machine already creates a device 

tree entry for this and passes it to Linux guest OS as shown 

in Figure 8.  

 

 
Figure 8: Device Tree Entry 

 

The platform driver entry point should look like the 

following Figure 9. We can see that the same compatible 

string as the device tree is placed which will make the Linux 

platform driver framework find and match this driver to the 

platform device.  

 

 
Figure 9: Platform Driver Entry 

 

Once Linux boots, the platform device framework of Linux 

should now call the probe method after matching the 

compatible string. Let us examine the probe method and its 

key functionalities.  

• grab resources like MMIO, IRQ 

• use regmap library to do register manipulation 

• register a threaded IRQ handler so that frame completion 

can be signalled from the interrupt handler 

• In the other parts of probe function Figure 11 the 

following steps are taken.  

• register V4L2 device 

• initialize V4L2 M2M ops 

• register video device 

• write a register to enable the interrupt 

 

An optional media controller registration is done in the final 

parts of probe Figure 12. This registration is useful for using 

media controller features such as discovery and media 

request API. A media device graph for this 

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1511 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 8, August 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 10: Platform Driver Probe 

 

 
Figure 11: Platform Driver Probe contd. 

 

device may look like Figure 13, generated with command 

media-ctl-- print-dot-d <media device>. Now let us examine 

the driver ops as shwon in Figure 14.  

• m2m_media_ops: These ops are there to support media 

request API 

• m2m_ops: The V4L2 M2M driver ops, this driver im-

plement a device run which actually runs an M2M job on 

the device 

• m2m_scaler_fops: The File operations for this driver 

needed for context creation.  

• m2m_scaler_ioctl_ops: The File operations for the V4L2 

APIs.  

 

The driver file open Figure 15 m2m_scaler_open func- 

 
Figure 12: Platform Driver Probe contd. 

 

 
Figure 13: Media Graph 

 

tion is where a new M2M context (Figure 16) gets created 

and initialized and added to the V4L2 file handle (which will 

be used by the other API to retrieve the context). This is the 

mechanism used by V4L2 M2M framework to support multi 

context, each time application opens the video device and 

gets a file descriptor, a new context gets created and added 

to the file handle.  

 

The driver also initializes its own context variables as shown 

in Figure 17. The driver it sets up default width, height and 

pixel format for output and capture sides of V4L2 M2M.  

 

When the application closes the file descriptor the driver’s 

release function pointer gets invokes Figure 18. Here the 

context is being released and freed.  

 

As a part of context initialization in Figure 15 aqueue_init 

method is passed, let us look into this Figure 19. In this 

function driver initializes the output and capture queues for 

V4L2 M2M. It also deices on what all types of io_modes 

must be supported by the driver, most modern drivers would 

support MMAP and DMABUF io_modes. The vb2_ops can 

be seen in Figure 20. Let us examine the 

m2m_scaler_queue_setup Figure 21. This is a callback to 

VB2 layer as the driver needs to inform VB2 about the 

number of planes in the format and the actual size of each 

plane based on which VB2 will allocate memory for the 

buffer. As this driver only supports an RGB888 format its a 

single plane and size image is computer from the default or 

changes made while trying to set the format. A driver helper 

function names m2m_scaler_get_format is used to get the 

format for output or capture side so that the same 

m2m_scaler_buf_prepare can be used for output and capture 

queue. The next interesting VB2 callback is buf_prepare 

Figure 21. 
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Figure 14: Driver Ops 

 

 
Figure 15: Driver File Open 

 

This callback is used to prepare the buffer before queuing it 

to this VB2 queue. The driver sets the plane payload size. 

Some other important callbacks can be seen in Figure 23. 

m2m_scaler_buf_queue is a driver wrapper that simply calls 

v4l2_m2m_buf_queue after extracting the context data 

structure. The m2m_scaler_start_streaming API initializes a 

sequence number that the driver will populate for each 

buffer returned after processing is complete by the hardware. 

The m2m_scaler_stop_streaming performs cleanup and 

returns all the queued buffers back to the frame-work as 

error buffers as the intent to stream has ended and those 

buffers aren’t actually processed by hardware and hence 

must be marked as errors.  

 

Figure 24 shows the V4L2 IOCTL callbacks. Most of them 

point to V4L2 M2M framework’s APIs but some of them 

driver overrides to local methods to set, get and enumerate 

 

 
Figure 16: Context Data Structure 

 

 
Figure 17: Driver Context Initialization 

 

formats. The driver uses same callbacks between output and 

capture sides.  

 

Referring to Figures 25 and 26, the m2m_scaler_try_fmt 

API checks to see if format can be supported and 

accordingly corrects it to something supported if set wrongly 

by the application. The m2m_sclaer_enum_fmt API 

enumerates all the supported format which is only a 1 format 

enumeration for this driver. The m2m_scaler_s_fmt API 

actually sets the format and stores it into the context which 

will be used later by the m2m_scaler_queue_setup and 

m2m_scaler_buf_prepare VB2 callback API’s from Figures 

21 and 22. The m2m_scaler_g_fmt API returns the current 

set format to the application, it would return the default 

value (if not set previously) that was initialled in the context 

by the m2m_scaler_open Figure 17.  

 

Figure 27 shows the function m2m_scaler_device_run 

function where the actual hardware programming is 

performed. The source and destination buffers are fetched 

from the output and captures queue. By the time these 

v4l2_m2m_next_src_buf and v4l2_m2m_next_dst_buf 

methods are called, the V4L2 M2M framework has already 

done enough validation to ensure that the driver device_run 

callback is only invoked when there is at least one buffer 

queued into the output and capture queues. Certain V4L2 

M2M drives like video encoders can also decide to encode 

several buffers into a single encoded buffer and in such 

cases another device_ready optional callback can be used to 

let V4L2 M2M framework know about any deviation from 

default assumption of one output and one capture buffer to 

be queued before invoking the device_run callback. The 

next thing is to reset the hardware as different contexts 

might use hardware very differently and it is important to 

reset the hardware before device_run to be truly stateless. 

From the context the input and output parameters like width, 

height and stride are fetched and hardware is programmed 

with such information. Next thing is to get the DMA 

addresses using some VB2 API and program the hardware’s 

DMA pointer registers. Finally the processing is started by 

writing to the start_processing bit of the hardware. V4L2 

M2M framework ensures that while device_run callback 
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Figure 18: Driver File Release 

 

 
Figure 19: Queue Init 

 

is invoked, a second invocation wouldn’t happen until the 

v4m2_m2m_job_finish API is called for that context job. 

We has configured the driver to register a threaded ISR. As 

shown in Figure 28, the ISR would determine if hardware 

successfully completed the scaling operation and call VB2 

and V4L2 M2M to complete the job and return the buffers 

back to VB2 and hence back to the application. As you can 

notice the actual buffers are removed from the queues only 

in the ISR as device_ run needn’t do that as it only needs to 

get the addresses at that stage and the actual buffers can be 

removed from queues at the time of buffer completion in the 

ISR. The call to v4m2_m2m_job_finish signals V4L2 M2M 

framework to now schedule another context to the same 

driver.  

 
Figure 20:VB2 Ops 

 

 
Figure 21: VB2 Queue Setup 

 

2. Test Application 
 

In order to test the driver, we need an application that can 

interact with the M2M scaler using V4L2 API. It needs to 

open a output and capture sides, setup formats, queue 

buffers and start streaming all using the opened file 

descriptor (context). To abstract the V4L2, let us use 

libcamera’s powerful abstraction of V4L2 in C++. The basic 

application C++ class is shown in Figure 29. The 

enumerator_ is used to find the scaler using media controller 

discovery API via the libcamera class Device Enumerator. 

m2mScaler_ class handles the V4L2 M2M device APIs. 

Capture and output buffers are handled in vectors capture 

Buffers_ and output Buffers. The input Size_ and output 

Size_ are the scaling parameters. Input MappedBuffer_and 

output Mapped Buffer help to memory map the buffers. The 

buffers themselves are DMABUF file descriptors as V4L2 is 

configured to export its memory as DMABUF file 

descriptors that are memory mapped for use.  

 

The application main should look as shown in Figure 30 

which demonstrates a 640x480 to 320x240 downscale 

operation. The application enumeration can be seen as 

shown in Figure 31 and this uses the media controller name 

set by the driver.  Now let us look at the run method of the 

M2MScaler test class Figure 33. We first find the media 

entity and grab pointers to output and captures sides of the 

M2M Scaler. We then use the input and output size 

parameters and set them to input and output side formats. 

Next, we connect callbacks to handle output buffer 

completion and receive capture buffer, callbacks sown in 

Figure 32. Then the buffers are allocated using the driver 

and the allocated buffers are also queued into the driver 

while also copying the contents of the input image to the 

output side buffers. The image is itself an RGB 24 bit format 

and stored as an array into a header file using xxd program. 

The output callback is supposed to queue the next input 

buffer into the driver, but our simple application queues the 

same 
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Figure 22: VB2 Buf Prepare 

 

 
Figure 23: Other Callback API 

 

buffer. Then the streamOn API is called for both the output 

and capture sides. The capture buffer callback has an 

optional step where contents are compared to a ground truth 

vector to verify if the M2M Scaler has performed scaling 

correctly or not. The application waits for desired number of 

frames to complete and then exits.  

 

3. Build This System 
 

The system can be built using the following steps.  

git clone-- recurse-submodules-j8 

-b elc-2022 https: //github. com/karthikpoduval 

/yoe-distro. git m2m cd m2m 

source qemuarm64-envsetup. sh bitbake v4l2-m2m-

example-image runqemu nographic slirp #inside QEMU 

m2m-scaler-test 

• M2M Scaler driver https: //github. 

com/karthikpoduval/v4l2-m2m-scaler-driver/blob/elc-

2022/v4l2-m2m-scaler. c 

 
Figure 24: IOCTLs 

 

 
Figure 25: Try and Enum Formats 

 

• M2M Scaler Test Application https: //github. 

com/karthikpoduval/meta-v4l2-m2m-example/blob/elc-

2022/recipes-multimedia/m2m-scaler-test/src/m2m-

example. cpp 

• M2M Scaler Datasheet https: //github. 

com/karthikpoduval/meta-v4l2-m2m-example/blob/elc-

2022/m2m-scaler-datasheet. pdf 

 

4. Conclusion 
 

Using the above driver and virtual hardware, one can 

understand how to write a driver for their video processing 

IP using the V4L2 M2M framework. The driver can serve as 

a starting point driver while creating a new driver for a video 

processing IP and/or serve as a useful reference.  
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Figure 26: Get and Set Format 

 

 
Figure 27: Device Run 

 

 
Figure 28: ISR 

 
Figure 29: Application Class 

 

 
Figure 30: Application Main 

 

 
Figure 31: Application Enumeration 

 

 
Figure 32: Application Callbacks 
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Figure 33: Application Run 
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