
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

V4L2 Mem-2-Mem as the Driver Framework for

Your Video Processing IP

Karthik Poduval

Abstract: V4L2 M2M or mem2mem is a kernel framework that enables the use of V4L2 API for drivers of IP devices that classify

themselves as memory-to-memory. This is different from the usual V4L2 output and capture devices which are memory-to-hardware or

hardware-to-memory. This paper aims to explain the fundamentals of V4L2 M2M using a QEMU based virtual scaler example.

Keywords: Video4Linux2, V4L2, mem-2-mem, M2M, Linux Device Drivers

1. Introduction

V4L2 [1] mem2mem [2] or M2M is a driver framework in

the Linux kernel specially designed for memory to memory

devices. The framework is a subset of the traditional V4L2

framework that applies to either capture or output devices.

Capture devices refer to those which generate video Figure 1

and the video content is captured by the device driver and

transferred by the V4L2 framework to the application. An

output device does the opposite where video content is

delivered from the application to V4L2 framework and via

driver to external video devices Figure 2. For M2M devices

the capture and output paths are to and from memory Figure

3.

Figure 1: Capture Device

Figure 2: Output Device

Figure 3: M2M Device

A typical V4L2 Application is typically done for either a

capture or output device. For both cases the application flow

is as shown in Figure 4 where application allocates a set of

buffer using V4L2 API and queues them over and dequeues

them from the V4L2 framework. The V4L2 framework uses

a buffer manager called VB2 that handles buffers and

interacts with the driver which passes the buffers to

hardware and back. For capture applications the buffers

returned by the hardware are used by the application while

for output devices the application fills the buffers before

queuing them in.

Figure 4: Typical V4L2 Application

In the case of V4L2 M2M devices, the application needs to

have 2 sets of buffer pools for the output and capture parts of

the M2M device as shown in Figure 5. Another interesting

Figure 5: Typical V4L2 M2M Application

feature of the V4L2 M2M framework is that it supports

multi context. Each time the video device node is opened, a

context gets created and multiple applications could share a

common hardware using the V4L2 M2M framework using

the multiple contexts i. e. each time the application opened

the device node and received a file descriptor, it can be used

to operate on the context associated with the file descriptor.

To explain this further, let us examine Figure 6. The light

green boxes represent individual contexts. Each contexts

contain a output and capture buffer pool. Application queues

buffers to output and capture VB2 queues using V4L2 API.

From the VB2 queue the buffers make it to V4L2 M2M

queue. Note that each context has its own VB2 and V4L2

M2M queues. Each hardware instance however has a single

V4L2 M2M job queue, so contexts themselves get queued to

the job queue. From this queue the contexts are picked up

one at a time and driver’s device run callback is invoked.

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1510

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The device run function pulls out the latest buffers from the

context and passes it to hardware. Once the hardware

finishes processing of the job i. e. reading from output

buffer, processing and writing to capture buffer, it may

trigger an interrupt and in the handler of that interrupt, the

driver can return the buffers back to VB2 and V4L2 M2M

queues. This is in a nutshell how the V4L2 M2M framework

functions. To better the understanding, let us study an

example scaler hardware in next section.

Figure 6: V4L2 M2M Architecture

I. Scaler Hardware

In this section we introduce a virtual M2M scaler hardware

that can both upscale and downscale an image. The

hardware itself is virtual but interfaces like a real hardware

to a guest Linux OS in QEMU [3]. Let us examine the data

sheet for this hardware in Figure 7.

We can also examine the programming sequence from

Figure 7 where to use the scaler the input/output width,

height and stride need to be programmed. Following it, the

DMA address registers need to be programmed. To start

operation, the start bit needs to be written. The virtual

hardware will trigger an interrupt to inform the driver when

the scaling has been completed.

II. V4L2 M2M LINUX DRIVER

Now we will attempt to write a device driver for this virtual

scaler hardware. We will write a Linux platform device

driver

Figure 7: Virtual M2M Scaler Data Sheet

for this hardware as it’s been connected to QEMU’s virt

hard-ware’s MMIO (Memory Mapped IO) at address

0x09010000. The QEMU machine already creates a device

tree entry for this and passes it to Linux guest OS as shown

in Figure 8.

Figure 8: Device Tree Entry

The platform driver entry point should look like the

following Figure 9. We can see that the same compatible

string as the device tree is placed which will make the Linux

platform driver framework find and match this driver to the

platform device.

Figure 9: Platform Driver Entry

Once Linux boots, the platform device framework of Linux

should now call the probe method after matching the

compatible string. Let us examine the probe method and its

key functionalities.

• grab resources like MMIO, IRQ

• use regmap library to do register manipulation

• register a threaded IRQ handler so that frame completion

can be signalled from the interrupt handler

• In the other parts of probe function Figure 11 the

following steps are taken.

• register V4L2 device

• initialize V4L2 M2M ops

• register video device

• write a register to enable the interrupt

An optional media controller registration is done in the final

parts of probe Figure 12. This registration is useful for using

media controller features such as discovery and media

request API. A media device graph for this

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1511

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 10: Platform Driver Probe

Figure 11: Platform Driver Probe contd.

device may look like Figure 13, generated with command

media-ctl-- print-dot-d <media device>. Now let us examine

the driver ops as shwon in Figure 14.

• m2m_media_ops: These ops are there to support media

request API

• m2m_ops: The V4L2 M2M driver ops, this driver im-

plement a device run which actually runs an M2M job on

the device

• m2m_scaler_fops: The File operations for this driver

needed for context creation.

• m2m_scaler_ioctl_ops: The File operations for the V4L2

APIs.

The driver file open Figure 15 m2m_scaler_open func-

Figure 12: Platform Driver Probe contd.

Figure 13: Media Graph

tion is where a new M2M context (Figure 16) gets created

and initialized and added to the V4L2 file handle (which will

be used by the other API to retrieve the context). This is the

mechanism used by V4L2 M2M framework to support multi

context, each time application opens the video device and

gets a file descriptor, a new context gets created and added

to the file handle.

The driver also initializes its own context variables as shown

in Figure 17. The driver it sets up default width, height and

pixel format for output and capture sides of V4L2 M2M.

When the application closes the file descriptor the driver’s

release function pointer gets invokes Figure 18. Here the

context is being released and freed.

As a part of context initialization in Figure 15 aqueue_init

method is passed, let us look into this Figure 19. In this

function driver initializes the output and capture queues for

V4L2 M2M. It also deices on what all types of io_modes

must be supported by the driver, most modern drivers would

support MMAP and DMABUF io_modes. The vb2_ops can

be seen in Figure 20. Let us examine the

m2m_scaler_queue_setup Figure 21. This is a callback to

VB2 layer as the driver needs to inform VB2 about the

number of planes in the format and the actual size of each

plane based on which VB2 will allocate memory for the

buffer. As this driver only supports an RGB888 format its a

single plane and size image is computer from the default or

changes made while trying to set the format. A driver helper

function names m2m_scaler_get_format is used to get the

format for output or capture side so that the same

m2m_scaler_buf_prepare can be used for output and capture

queue. The next interesting VB2 callback is buf_prepare

Figure 21.

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1512

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 14: Driver Ops

Figure 15: Driver File Open

This callback is used to prepare the buffer before queuing it

to this VB2 queue. The driver sets the plane payload size.

Some other important callbacks can be seen in Figure 23.

m2m_scaler_buf_queue is a driver wrapper that simply calls

v4l2_m2m_buf_queue after extracting the context data

structure. The m2m_scaler_start_streaming API initializes a

sequence number that the driver will populate for each

buffer returned after processing is complete by the hardware.

The m2m_scaler_stop_streaming performs cleanup and

returns all the queued buffers back to the frame-work as

error buffers as the intent to stream has ended and those

buffers aren’t actually processed by hardware and hence

must be marked as errors.

Figure 24 shows the V4L2 IOCTL callbacks. Most of them

point to V4L2 M2M framework’s APIs but some of them

driver overrides to local methods to set, get and enumerate

Figure 16: Context Data Structure

Figure 17: Driver Context Initialization

formats. The driver uses same callbacks between output and

capture sides.

Referring to Figures 25 and 26, the m2m_scaler_try_fmt

API checks to see if format can be supported and

accordingly corrects it to something supported if set wrongly

by the application. The m2m_sclaer_enum_fmt API

enumerates all the supported format which is only a 1 format

enumeration for this driver. The m2m_scaler_s_fmt API

actually sets the format and stores it into the context which

will be used later by the m2m_scaler_queue_setup and

m2m_scaler_buf_prepare VB2 callback API’s from Figures

21 and 22. The m2m_scaler_g_fmt API returns the current

set format to the application, it would return the default

value (if not set previously) that was initialled in the context

by the m2m_scaler_open Figure 17.

Figure 27 shows the function m2m_scaler_device_run

function where the actual hardware programming is

performed. The source and destination buffers are fetched

from the output and captures queue. By the time these

v4l2_m2m_next_src_buf and v4l2_m2m_next_dst_buf

methods are called, the V4L2 M2M framework has already

done enough validation to ensure that the driver device_run

callback is only invoked when there is at least one buffer

queued into the output and capture queues. Certain V4L2

M2M drives like video encoders can also decide to encode

several buffers into a single encoded buffer and in such

cases another device_ready optional callback can be used to

let V4L2 M2M framework know about any deviation from

default assumption of one output and one capture buffer to

be queued before invoking the device_run callback. The

next thing is to reset the hardware as different contexts

might use hardware very differently and it is important to

reset the hardware before device_run to be truly stateless.

From the context the input and output parameters like width,

height and stride are fetched and hardware is programmed

with such information. Next thing is to get the DMA

addresses using some VB2 API and program the hardware’s

DMA pointer registers. Finally the processing is started by

writing to the start_processing bit of the hardware. V4L2

M2M framework ensures that while device_run callback

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1513

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 18: Driver File Release

Figure 19: Queue Init

is invoked, a second invocation wouldn’t happen until the

v4m2_m2m_job_finish API is called for that context job.

We has configured the driver to register a threaded ISR. As

shown in Figure 28, the ISR would determine if hardware

successfully completed the scaling operation and call VB2

and V4L2 M2M to complete the job and return the buffers

back to VB2 and hence back to the application. As you can

notice the actual buffers are removed from the queues only

in the ISR as device_ run needn’t do that as it only needs to

get the addresses at that stage and the actual buffers can be

removed from queues at the time of buffer completion in the

ISR. The call to v4m2_m2m_job_finish signals V4L2 M2M

framework to now schedule another context to the same

driver.

Figure 20:VB2 Ops

Figure 21: VB2 Queue Setup

2. Test Application

In order to test the driver, we need an application that can

interact with the M2M scaler using V4L2 API. It needs to

open a output and capture sides, setup formats, queue

buffers and start streaming all using the opened file

descriptor (context). To abstract the V4L2, let us use

libcamera’s powerful abstraction of V4L2 in C++. The basic

application C++ class is shown in Figure 29. The

enumerator_ is used to find the scaler using media controller

discovery API via the libcamera class Device Enumerator.

m2mScaler_ class handles the V4L2 M2M device APIs.

Capture and output buffers are handled in vectors capture

Buffers_ and output Buffers. The input Size_ and output

Size_ are the scaling parameters. Input MappedBuffer_and

output Mapped Buffer help to memory map the buffers. The

buffers themselves are DMABUF file descriptors as V4L2 is

configured to export its memory as DMABUF file

descriptors that are memory mapped for use.

The application main should look as shown in Figure 30

which demonstrates a 640x480 to 320x240 downscale

operation. The application enumeration can be seen as

shown in Figure 31 and this uses the media controller name

set by the driver. Now let us look at the run method of the

M2MScaler test class Figure 33. We first find the media

entity and grab pointers to output and captures sides of the

M2M Scaler. We then use the input and output size

parameters and set them to input and output side formats.

Next, we connect callbacks to handle output buffer

completion and receive capture buffer, callbacks sown in

Figure 32. Then the buffers are allocated using the driver

and the allocated buffers are also queued into the driver

while also copying the contents of the input image to the

output side buffers. The image is itself an RGB 24 bit format

and stored as an array into a header file using xxd program.

The output callback is supposed to queue the next input

buffer into the driver, but our simple application queues the

same

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1514

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 22: VB2 Buf Prepare

Figure 23: Other Callback API

buffer. Then the streamOn API is called for both the output

and capture sides. The capture buffer callback has an

optional step where contents are compared to a ground truth

vector to verify if the M2M Scaler has performed scaling

correctly or not. The application waits for desired number of

frames to complete and then exits.

3. Build This System

The system can be built using the following steps.

git clone-- recurse-submodules-j8

-b elc-2022 https: //github. com/karthikpoduval

/yoe-distro. git m2m cd m2m

source qemuarm64-envsetup. sh bitbake v4l2-m2m-

example-image runqemu nographic slirp #inside QEMU

m2m-scaler-test

• M2M Scaler driver https: //github.

com/karthikpoduval/v4l2-m2m-scaler-driver/blob/elc-

2022/v4l2-m2m-scaler. c

Figure 24: IOCTLs

Figure 25: Try and Enum Formats

• M2M Scaler Test Application https: //github.

com/karthikpoduval/meta-v4l2-m2m-example/blob/elc-

2022/recipes-multimedia/m2m-scaler-test/src/m2m-

example. cpp

• M2M Scaler Datasheet https: //github.

com/karthikpoduval/meta-v4l2-m2m-example/blob/elc-

2022/m2m-scaler-datasheet. pdf

4. Conclusion

Using the above driver and virtual hardware, one can

understand how to write a driver for their video processing

IP using the V4L2 M2M framework. The driver can serve as

a starting point driver while creating a new driver for a video

processing IP and/or serve as a useful reference.

References

[1] “Linux kernel v4l2 documentaion. ” [Online].

Available: https: //www. kernel.

org/doc/html/v4.19/media/uapi/v4l/v4l2. html

[2] P. Osciak, “Mem-to-mem device framework, ” 12 2009.

[Online].

[3] Available: https: //lwn. net/Articles/367881/

[4] F. Bellard, “Qemu, a fast and portable dynamic

translator. ” in USENIX annual technical conference,

FREENIX Track, vol.41. Califor-nia, USA, 2005, p.46.

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1515

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.kernel.org/doc/html/v4.19/media/uapi/v4l/v4l2.html
http://www.kernel.org/doc/html/v4.19/media/uapi/v4l/v4l2.html
http://www.kernel.org/doc/html/v4.19/media/uapi/v4l/v4l2.html

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 26: Get and Set Format

Figure 27: Device Run

Figure 28: ISR

Figure 29: Application Class

Figure 30: Application Main

Figure 31: Application Enumeration

Figure 32: Application Callbacks

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1516

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 8, August 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 33: Application Run

Paper ID: SR24509172314 DOI: https://dx.doi.org/10.21275/SR24509172314 1517

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

