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Complex Plane and Cartesian Plane

Understanding C and R?
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Abstract: This study has been undertaken to understand the similarities and the differences between C and R2. Here we study the
properties of complex plane and Cartesian planes in detail and compare them.
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1. Introduction

Complex numbers are the extension of real numbers and are
defined be the set C={a+ib:a,b€R, i =+-1}, any
complex number can be denoted by z = a + ib

iis not areal number

Proof

Firstly, let’s note that i is a solution of the equation x2 +

1=0

iex?+1=0

= xt=-1=x=+/-1

if xis areal number ,then by law of tricotomy x
>0o0orx<0or x=0

i>0 =>V_1>0=(V=1) >0=-1>0 >
i<0=V1<0=(V-1) >0=-1>0=e

i>0 =>\/—1=0=(\/—1)2:0:_1:0=<=
Therefore in any case i fails to be a real numer
R? = {(a,b):a,b € R}

Similarities between C and R?

o C and R? have same cardinality
Consider the function f: R? — C defined by f(a,b) =
a + ib, clearly f is a bijection for
flay,by) = f(az, by) = ay +iby = a; + ib, = a; =
a and by = b, = (ay, b1) = (az, by)
Hence f is one-one. Also for any ¢ + id, f(c,d) = c + id
Thus f is a bijection and hence the result.

e C and R? both are groups with respect to addition

We prove the statement for C fiirst

Let z,z,,zz€C , where z =a;+ib,z, =a,+
ib, and zz; = a3 + ibs and a4, by ,a, ,by,a3,b3 €ER
21+ 2z, = (a; +ib) + (ay +iby) = (a1 + ay) +

i(by + b,) € C --- closure property

(Zl + Zz) + Z3 [(a1 + lbl) + (az + lbz)] + (a3 + lb3)
[(a; + az) + i(by + by)] + (a3 + ibs)
= ((a1 + az) + az) + i((by + by) + b3)
(a1 + (az + a3)) + i(by + (by + b3))
a, + lbl + ((az + a3) + l(bz + bg))
=a, +ib; + [(a, + ib,) + (a3 + ib3)]
z1 + (z, + z3) ---associativity property

Let w=u+iv

Supposez+w=z= (a+ib)+ (u+iv) =a+ib
= (a+u)+i(b+v)=a+ib
=at+u=aandb+v=>»
=u=0andv =0

Similarly w+z=z= (u+iv) + (a+ib) =a+ib

= w+a)+i(lv+b)=a+ib

= u+a=aandv+b=>»

= u=0andv=0
Thus for any z € C there exists a unique w =0+ 0i =
0 such that z+w=z=w+z identity

property

LetW =U+iV

Suppose z+W =0= (a+ib)+ (U +iV) =0+i0
= (a+U)+i(b+V)=0+i0
=a+U=0andb+V =0
=U=—-aandV =-b

Similarly, W +z=0= (U+iV) + (a + ib) = 0 + i0
= WU+a)+i(V+b)=0+i0
=U+a=0andV+b=0
=U=—-aandV =—-b

Thus for any z € Cthere isaW = —a + (—b)i = —z such

that z+ W =0=W+z additive inverse

property
Now we prove that R? is a group with respect to addition

Let (ay, by), (az , by), (as, b3) € R?
(a1, by) + (az,by) = ((a; + az), (by + by)) € R? -
closure property

(z1 + 23) + z3 = [(ay, b)) + (az, by)] + (as, b3)
= [(a; + ap), (by + by)] + (as, b3)
= ((a; + a2) + a3), ((by + by) + b3)
= (a1 + (ay + a3)), (by + (by + b3))
= (a1, by) + ((az + a3), (by + b3))
= (ay,by) + [(ay, by) + (az, bs)]

associativity property

Let (u,v) € R?

Suppose (a, b) + (u,v) = (a,b)
= ((a+w),(b+v))=(ab)
=at+u=aandb+v=>»
=u=0andv =0
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Similarly,= (u,v) + (a,b) = (a, b)
= (u+a)+i(v+b)=(ab)
=u+a=aandv+b=>b
= u=0andv =0
Thus for any z € C there exists a unique ( 0,0) such that
(a,b) + (u,v) = (a,b) = (w,v) + (a,b)
identity property

Let (U,V) € R?
Suppose (a, b) + (U,V) = (0,0)
= ((a+U),(b+V)) =(0,0)
=a+U=0andb+V =0
= U=—aandV =-b
Similarly, = (U,V) + (a, b) = (0,0)
= ((U+a),(V+b)) =(0,0)
=U+a=0andV+b=0
= U=—aandV =-b
Thus for any z € C there is a (- a, (—b)) such that (a, b) +
(u,v)=1(0,0)=(U,V) + (a,b) -« additive inverse
property

Difference between C and R?

e You can add a real nhumber to a complex number but you
cannot add a real number to an element in R?
letz=3+05i,thenz+4=3+5i+4=7+5i
where as for (3,5) € R?,(3,5) + 4 is not defined

e Multiplying two complex numbers gives a complex
number, where as any two numbers in R? can be treated
as vectors that leads to either Dot product or Cross
product
let zz =a+iband z, = c + id then z,z,

=ac — bd + i(ad + bc)
where as,if u = (a,b) and v = (c,d) in R?, thenu - v

=ac + bd
i j ok R
anduXxv= |qg p o0|=(ad— bc)k aunitvector in
c d o0

the direction perpendicular to x — axis and y — axis

A complex number is a scalar where as an element in R?
is referred to as a vector

We can divide two complex numbers but division of two
vectors is not defined

Elements of R are called as vectors where as that of C are
scalars

C is a field, whereas, R?is just a vector space
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