International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2022): 7.942

Complex Plane and Cartesian Plane

Understanding C and R^2

B. Tabsum

Assistant Professor, Department of Mathematics, Government College of Arts, Science and Commerce Quepem Goa, India

Abstract: *This study has been undertaken to understand the similarities and the differences between* ℂ *and* ℝ *. Here we study the properties of complex plane and Cartesian planes in detail and compare them.*

Keywords: field

1. Introduction

Complex numbers are the extension of real numbers and are defined be the set $\mathbb{C} = \{a + ib : a, b \in \mathbb{R}, i = \sqrt{-1}\}\$, any complex number can be denoted by $z = a + ib$

i is not a real number

Proof

Firstly, let's note that *i* is a solution of the equation x^2 + $1 = 0$ *i. e.* $x^2 + 1 = 0$ \Rightarrow $x^2 = -1 \Rightarrow x = \pm \sqrt{-1}$ if x is a real number, then by law of tricotomy x > 0 or $x < 0$ or $x = 0$ $i > 0 \Rightarrow \sqrt{-1} > 0 \Rightarrow (\sqrt{-1})^2 > 0 \Rightarrow -1 > 0 \Rightarrow \Leftarrow$ $i < 0 \Rightarrow \sqrt{-1} < 0 \Rightarrow (\sqrt{-1})^2 > 0 \Rightarrow -1 > 0 \Rightarrow \Leftarrow$ $i > 0 \implies \sqrt{-1} = 0 \implies (\sqrt{-1})^2 = 0 \implies -1 = 0 \implies$ Therefore in any case i fails to be a real numer $\mathbb{R}^2 = \{(a, b): a, b \in \mathbb{R}\}\$

Similarities between ℂ **and** ℝ

• $\mathbb C$ and $\mathbb R^2$ have same cardinality Consider the function $f: \mathbb{R}^2 \to \mathbb{C}$ defined by $f(a, b) =$ $a + ib$, clearly f is a bijection for $f(a_1, b_1) = f(a_2, b_2) \Rightarrow a_1 + ib_1 = a_2 + ib_2 \Rightarrow a_1 =$ a_2 and $b_1 = b_2 \implies (a_1, b_1) = (a_2, b_2)$ Hence f is one-one. Also for any $c + id$, $f(c, d) = c + id$ Thus f is a bijection and hence the result.

• $\mathbb C$ and $\mathbb R^2$ both are groups with respect to addition

We prove the statement for ℂ fiirst Let $z_1, z_2, z_3 \in \mathbb{C}$, where $z_1 = a_1 + ib_1, z_2 = a_2 +$ ib_2 and $z_3 = a_3 + ib_3$ and $a_1, b_1, a_2, b_2, a_3, b_3 \in \mathbb{R}$ $z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) +$ $i(b_1 + b_2) \in \mathbb{C} \cdots$ closure property

$$
(z_1 + z_2) + z_3 = [(a_1 + ib_1) + (a_2 + ib_2)] + (a_3 + ib_3)
$$

\n
$$
= [(a_1 + a_2) + i(b_1 + b_2)] + (a_3 + ib_3)
$$

\n
$$
= ((a_1 + a_2) + a_3) + i((b_1 + b_2) + b_3)
$$

\n
$$
= (a_1 + (a_2 + a_3)) + i(b_1 + (b_2 + b_3))
$$

\n
$$
= a_1 + ib_1 + ((a_2 + a_3) + i(b_2 + b_3))
$$

\n
$$
= a_1 + ib_1 + [(a_2 + ib_2) + (a_3 + ib_3)]
$$

\n
$$
= z_1 + (z_2 + z_3) \cdots
$$
associativity property

Let $w = u + iv$ Suppose $z + w = z \implies (a + ib) + (u + iv) = a + ib$ $\Rightarrow (a + u) + i(b + v) = a + ib$ \Rightarrow a + u = a and b + v = b \Rightarrow u = 0 and v = 0

Similarly,
$$
w + z = z \Rightarrow (u + iv) + (a + ib) = a + ib
$$

\n $\Rightarrow (u + a) + i(v + b) = a + ib$
\n $\Rightarrow u + a = a$ and $v + b = b$
\n $\Rightarrow u = 0$ and $v = 0$
\nThus for any $z \in \mathbb{C}$ there exists a unique $w = 0 + 0i =$
\n0 such that $z + w = z = w + z$... **identity**

property

Let
$$
W = U + iV
$$

\nSuppose $z + W = 0 \Rightarrow (a + ib) + (U + iV) = 0 + i0$
\n $\Rightarrow (a + U) + i(b + V) = 0 + i0$
\n $\Rightarrow a + U = 0$ and $b + V = 0$
\n $\Rightarrow U = -a$ and $V = -b$
\nSimilarly, $W + z = 0 \Rightarrow (U + iV) + (a + ib) = 0 + i0$
\n $\Rightarrow (U + a) + i(V + b) = 0 + i0$
\n $\Rightarrow U + a = 0$ and $V + b = 0$
\n $\Rightarrow U = -a$ and $V = -b$
\nThus for any $z \in \mathbb{C}$ there is a $W = -a + (-b)i = -z$ such that $z + W = 0 = W + z$... additive inverse
\nproperty

Now we prove that \mathbb{R}^2 is a group with respect to addition

Let
$$
(a_1, b_1), (a_2, b_2), (a_3, b_3) \in \mathbb{R}^2
$$

\n $(a_1, b_1) + (a_2, b_2) = ((a_1 + a_2), (b_1 + b_2)) \in \mathbb{R}^2$...
\nclosure property

$$
(z_1 + z_2) + z_3 = [(a_1, b_1) + (a_2, b_2)] + (a_3, b_3)
$$

\n
$$
= [(a_1 + a_2), (b_1 + b_2)] + (a_3, b_3)
$$

\n
$$
= ((a_1 + a_2) + a_3), ((b_1 + b_2) + b_3)
$$

\n
$$
= (a_1 + (a_2 + a_3)), (b_1 + (b_2 + b_3))
$$

\n
$$
= (a_1, b_1) + ((a_2 + a_3), (b_2 + b_3))
$$

\n
$$
= (a_1, b_1) + [(a_2, b_2) + (a_3, b_3)]
$$

⋯ **associativity property**

Let
$$
(u, v) \in \mathbb{R}^2
$$

\nSuppose $(a, b) + (u, v) = (a, b)$
\n $\Rightarrow ((a + u), (b + v)) = (a, b)$
\n $\Rightarrow a + u = a$ and $b + v = b$
\n $\Rightarrow u = 0$ and $v = 0$

Volume 11 Issue 9, September 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Similarly,
$$
\Rightarrow
$$
 $(u, v) + (a, b) = (a, b)$
\n $\Rightarrow (u + a) + i(v + b) = (a, b)$
\n $\Rightarrow u + a = a$ and $v + b = b$
\n $\Rightarrow u = 0$ and $v = 0$
\nThus for any $z \in \mathbb{C}$ there exists a unique (0,0) such that
\n $(a, b) + (u, v) = (a, b) = (u, v) + (a, b)$...
\nidentity property

Let $(U, V) \in \mathbb{R}^2$ Suppose $(a, b) + (U, V) = (0, 0)$ $\Rightarrow ((a + U), (b + V)) = (0,0)$ \Rightarrow a + U = 0 and b + V = 0 $\Rightarrow U = -a$ and $V = -b$

Similarly, \Rightarrow $(U, V) + (a, b) = (0, 0)$ $\Rightarrow ((U + a), (V + b)) = (0,0)$ $\Rightarrow U + a = 0$ and $V + b = 0$ $\Rightarrow U = -a$ and $V = -b$

Thus for any $z \in \mathbb{C}$ there is a $(-a, (-b))$ such that (a, b) + $(U, V) = (0, 0) = (U, V) + (a, b)$ **additive inverse property**

Difference between ℂ **and** ℝ

- You can add a real number to a complex number but you cannot add a real number to an element in \mathbb{R}^2 $let z = 3 + 5i$, then $z + 4 = 3 + 5i + 4 = 7 + 5i$
- where as for $(3,5) \in \mathbb{R}^2$, $(3,5) + 4$ is not defined • Multiplying two complex numbers gives a complex number, where as any two numbers in \mathbb{R}^2 can be treated as vectors that leads to either Dot product or Cross product

let $z_1 = a + ib$ and $z_2 = c + id$ then $z_1 z_2$ $= ac - bd + i(ad + bc)$

where as, if
$$
u = (a, b)
$$
 and $v = (c, d)$ in \mathbb{R}^2 , then $u \cdot v$
= $ac + bd$

and $u \times v =$ \hat{i} \hat{j} \hat{k} a *b* 0 c d 0 $= (ad - bc)\hat{k}$ a unit vector in

the direction perpendicular to $x - axis$ and $y - axis$

- A complex number is a scalar where as an element in \mathbb{R}^2 is referred to as a vector
- We can divide two complex numbers but division of two vectors is not defined
- Elements of R are called as vectors where as that of ℂ are scalars
- C is a field, whereas, R^2 is just a vector space

Acknowledgment

I thank Springer verlag and McGraw hill International publications And I thank the references mentioned.

References

- [1] Basic multivariable calculus by J.E Marsden, A .J Tromba and A Weinstein, Springer verlag. Indian print II Edition 2005.
- [2] Complex variables and applications by James Brown and Ruel Churchill, Eighth Edition, McGraw hill International Edition

www.ijsr.net