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Abstract: The national capital recorded a 17 per cent rise in crimes against women in the first six-and-half months of this year as 

compared to the corresponding period last year, with an average of six rapes being reported daily, according to Delhi Police data. Cases 

of assault on women increased by almost 19 per cent, while instances of cruelty by husbands and in-laws rose by 29 per cent during the 

period. According to the data, Delhi recorded 6,747 cases of crimes against women between January 1 and July 15 in 2021 and the 

number went up to 7,887 in 2022.Till July 15 this year, the city reported 1,100 rape cases as compared to 1,033 in the same period last 

year. Cases of assault on women with intent to outrage her modesty have also gone up and a total of 1,480 such cases have been 

reported. The number was 1,244 last year. Cases of insult to the modesty of women have marginally gone down from 229 in 2021 to 225 

in 2022, the data showed. Cases of kidnapping of women increased by around 17 per cent, while cases of abduction of women went 

down by almost 43 per cent. A total of 2,197 cases of kidnapping of women have been reported this year, 317 more than last year, it 

stated. The number of cases of abduction of women was 105 in 2022 and 184 in 2021.A total of 2,704 cases of cruelty by husbands and 

in-laws were reported in the national capital in 2022 and the figure was 2,096 in 2021, it said, adding that 69 cases of dowry death and 

seven under the Dowry Prohibition Act have also been reported. A senior police officer said awareness among women has increased. 

Police are regularly sensitising women in colleges, schools and colonies. In most rape cases, the accused is known to the victim. Earlier, 

women were not much aware about laws, but now they are coming forward to report the incidents happening against them, the officer 

said. 
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1. Introduction 
 

Of all the crimes, sex related crimes are the most barbarous 

and humiliating, women and children are the most 

vulnerable group for such type of crimes. The alarming rise 

in cases of sexual assaults in Delhi and worldwide represents 

a major public health problem. 

 

Table 1: Statistics of various crimes in Delhi during last ten years 
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2011 33 543 386 562 50 25 572 1476 1946 1419 14668 1918 6313 657 3767 2047 5233 

2012 28 521 439 608 79 21 706 1440 1747 1715 14391 1746 5895 727 3949 1822 5115 

2013 33 517 585 1245 113 30 1636 3638 1768 2835 14916 3216 11992 3515 6294 1778 5788 

2014 82 586 770 6464 160 38 2166 7350 2077 10309 23384 12735 42634 4322 7105 1629 6994 

2015 75 570 770 7407 130 36 2199 9896 1898 12848 32729 15318 56385 5367 7694 1582 6503 

2016 46 528 646 4761 79 23 2155 9571 1489 14307 38644 14721 77563 4165 6596 1548 5827 

2017 36 487 645 3147 50 16 2146 8231 1352 9819 40972 10739 114054 3422 6079 1565 5105 

2018 25 513 529 2444 23 19 2135 6932 1508 4117 46433 3727 138596 3314 6032 1657 4858 

2019 15 521 487 1956 23 15 2168 6266 1312 3026 46215 2630 190874 2921 5886 1433 4177 

2020 9 472 570 1963 689 11 1699 7965 1064 2199 35019 2036 132419 2186 4051 1163 3015 

2021 26 459 761 2333 68 17 2076 9383 1360 2637 37910 2485 150203 2551 5510 1206 3514 

 

The primary objective of this study to earmark the 

geographical areas of Delhi with respect to type of crimes so 

that a foolproof framework can be prepared and required 

measures placed depending upon the type of crime, area of 

crime and methods/tactics adopted by criminals in executing 

the crime successfully. 

 

In this study, a particular methodology using Principal 

Component Analysis along with various algorithms has been 

followed. 

Variance Decomposition 

Consider a linear statistical system -- a random matrix 

(multidimensional set of random variables) X of 

size n×m where the first dimension denotes observations and 

the second variables. Moreover, if we recall that linear 

statistical systems are characterized by two inefficiencies: 1) 

noise and 2) redundancy. The former is commonly measured 

through the signal(desirable information) to noisepublic 

health problem. (undesirable information) ratio 

SNR=σ
2
signal/ σ

2
noise, and implies that systems with larger 

signal variances σ
2
signal relative to their noise counterpart, 
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are more informative. Assuming that noise is a nuisance 

equally present in observing each of the m variables of our 

system, it stands to reason that variables with larger 

variances have larger SNRs, therefore carry relatively richer 

signals, and are in this regard relatively more important, 

or principal. 

 

Whereas relative importance reduces to relative variances 

across system variables, redundancy, or 

relative uniqueness of information, is captured by system 

covariances. Again we recall that covariances (or normalized 

covariances called correlations) are measures of variable 

dependency or co-movement (direction and magnitude of 

joint variability). In other words, variables with overlapping 

(redundant) information will typically move in the same 

direction with similar magnitudes, and will therefore have 

non-zero covariances. Conversely, when variables share 

little to no overlapping information, they exhibit small to 

zero linear dependency, although statistical dependence 

could still manifest nonlinearly. 

 

Together, system variances and covariances quantify the 

amount of information afforded by each variable, and how 

much of that information is truly unique. In fact, the two are 

typically derived together using the familiar variance-

covariance matrix formula: 

ΣX = E (X ⊤ X) = (⊤) 

 

where ΣX is an m×m square symmetric matrix with (off-) 

diagonal elements as (co)variances, and where we have a 

priori assumed that all variables in X have been demeaned. 

Thus, systems where all variables are unique will result in a 

diagonal ΣX, whereas those exhibiting redundancy will have 

non-zero off-diagonal elements. In this regard, systems with 

zero redundancy have a particularly convenient feature 

known as variance decomposition. Since covariance terms in 

these systems are zero, total system variation (and therefore 

information) is the sum of all variance terms, and the 

proportion of total system information contributed by a 

variable is the ratio of its variance to total system variation. 

 

Although the variance-covariance matrix is typically not 

diagonal, suppose there exists a way to diagonalize ΣX, and 

by extension transform X, while simultaneously preserving 

information. If such transformation exists, one is guaranteed 

a new set of at most m variables (some variables may be 

perfectly correlated with others) which are uncorrelated, and 

therefore linearly independent. Accordingly, discarding any 

one of those new variables would have no linear statistical 

impact on the m−1 remaining variables, and would reduce 

dimensionality at the cost of losing information to the extent 

contained in the discarded variables. In this regard, if one 

could also quantify the amount of information captured by 

each of the new variables, order the latter in descending 

order of information quantity, one could discard variables 

from the back until sufficient dimensionality reduction is 

achieved, while maintaining the maximum amount of 

information within the preserved variables. We summarize 

these objectives below: 

1) Diagonalize ΣX. 

2) Preserve information. 

3) Identify principal (important) information. 

4) Reduce dimensionality. 

So how does one realize these objectives? It is precisely this 

question which motivates the subject of this entry. 

 

Principal Component Analysis 

Recall that associated with every matrix X is a basis -- a set 

(matrix) of linearly independent vectors such that every row 

vector in X is a linear combination of the vectors in the 

basis. In other words, the row vectors are projections onto 

the column vectors in B. Since the covariance matrix 

contains all noise and redundancy information associated 

with a matrix, the idea driving principal component 

analysis is to re-express the original covariance matrix using 

a basis that results in a new, diagonal covariance matrix -- in 

other words, off-diagonal elements in the original covariance 

matrix are driven to zero and redundancy is eliminated. 

 

Change of Basis 

The starting point of PCA is the change of 

basis relationship. In particular, if B is an m×p matrix of 

geometric transformations with p≤m, the n×p matrix Q=XB 

is a projection of the n×m matrix X=[X⊤1,…, X⊤n] onto B. 

In other words, the rows of X are linear combinations of the 

column vectors in B=[B1,…,Bp], Formally, 

 

 

𝑄 =   
𝑋1
𝑋2

        [B1 … … … . B2] 

 

=  
X1B1 … X2Bp

XnB1 … … . . XnBp
  

 

More importantly, if the column vectors {B1,…, Bp} are 

also linearly independent, then B, by definition, 

characterizes a matrix of basis vectors for X. Furthermore, 

the covariance matrix of this transformation formalizes as: 

 

ΣQ= E(Q⊤Q)=E(B⊤X⊤XB)=B⊤ΣXB 

 

It is important to reflect here on the dimensionality of ΣQ, 

which, unlike ΣX, is of dimension p×p where p≤m. In other 

words, the covariance matrix under the transformation B is 

at most the size of the original covariance matrix, and 

possibly smaller. Since dimensionality reduction is clearly 

one of our objectives, the transformation above is certainly 

poised to do so. However, if the objective is simply 

dimensionality reduction, then any matrix B of 

size m×p with p≤m will suffice; so question arises here why 

especially does B have to characterize basis. 

 

The answer is simple: dimensionality reduction is not the 

only objective, but one among preservation of information 

and importance of information. As to the former, we recall 

that what makes a set of basis vectors special is that they 

characterize entirely the space on which an associated matrix 

takes values and therefore span the multidimensional space 

on which that matrix resides. Accordingly, if B characterizes 

a basis, then information contained in X is never lost during 

the transformation to Q. Furthermore, that the channel for 

dimensionality reduction that motivated our discussion 

earlier was never intended to go through a sparser basis. 

Rather, the mechanism of interest was a diagonalization of 

the covariance matrix followed by variable exclusion. 

Accordingly, any dimension reduction that reflects basis 
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sparsity via p≤m, is a consequence of perfect co-linearity 

(correlation) among some of the original system variables. 

In other words, p=rk(X), where rk(⋅) denotes the matrix 

rank, or the number of its linearly independent columns (or 

rows). 

 

Diagonalization 

We argued earlier that any transformation from X to Q that 

preserves information must operate through a basis 

transformation B. Suppose momentarily that we have in fact 

found such B. Our next objective would be to ensure 

that B also produces a diagonal ΣQ. In this regard, Two 

famous results in linear algebra are very important: 

1) [Thm. 1:] A matrix is symmetric if and only if it is 

orthogonally diagonalizable. 

 In other words, if a matrix A is symmetric, there exists a 

diagonal matrix D and a matrix E which diagonalizes A, 

such that A=EDE⊤⊤. The converse statement holds as 

well. 

 [Thm. 2:] A symmetric matrix is diagonalized by a 

matrix of its orthonormal eigenvectors. 

 Extending the result above, if a q×q matrix A is 

symmetric, the diagonalizing matrix E= [E1,…,Eq] = 

[1,…,], the diagonal matrix D=diag[λ1,…,λq], and Ei 

and λi are respectively the ith eigenvector and 

associated eigenvalue of A. 

 Note that a set of vectors is orthonormal if each vector 

is of length unity and orthogonal to all other vectors in 

the set. Accordingly, if V=[V1,…,Vq] is orthonormal, 

then V⊤
jVj=1 and V⊤

jVk=0 for all j≠k. Furthermore, 

V⊤V=Iq⊤= where Iq is the identity matrix of size q, and 

therefore, V⊤=V
−1

. 

 Further that eigenvectors of a linear transformation are 

those vectors which only change magnitude but not 

direction when subject to said transformation. Since any 

matrix is effectively a linear transformation, if v is an 

eigenvector of some matrix A, it satisfies the 

relationship Av=λv. Here, associated with each 

eigenvector is the eigenvalue λ quantifying the resulting 

change in magnitude. 

 Finally, observe that matrix rank determines the 

maximum number of eigenvectors (eigenvalues) one 

can extract for said matrix. In particular, if rk(A)=r≤q, 

there are in fact only r orthonormal eigenvectors 

associated with A. To see this, use a geometric 

interpretation to note that q−dimensional objects reside 

in spaces with q orthogonal directions. Since 

any n×q matrix is effectively a q−dimensional object of 

vectors, the maximum number of orthogonal directions 

that characterize these vectors is q. Nevertheless, if the 

(column) rank of this matrix is in fact r≤q, then q−r of 

the q orthogonal directions are never used. For instance, 

think of 2d drawings in 3d spaces. It makes no 

difference whether the drawing is characterized in 

the xy, the xz, or the yz plane -- the drawing still has 2 

dimensions and in any of those configurations, the 

dimension left out is a linear combination of the others. 

In particular, if the xz plane is used, then the z−direction 

is a linear combination of the y−direction since the 

drawing can be equivalently characterized in the xy 

plane, and so on. In other words, one of the three 

dimensions is never used, although it exists and can be 

characterized if necessary. Along the same lines, 

if A indeed has rank r≤q, we can construct q−r 

additional orthogonal eigenvectors to ensure 

dimensional equality in the diagonalization A=EDET, 

although their associated eigenvalues will in fact be 0, 

essentially negating their presence. 

 

By extension of the previous point, since A is a q− 

dimensional object of q−dimensional column vectors, it can 

afford at most q orthogonal directions to characterize its 

space. Since all q such vectors are collected in E, we are 

guaranteed that E is a spanning set and therefore constitutes 

an eigenbasis. 

 

Since Cov(X)) is a symmetric matrix by construction, 

the 1st result above affords a re-express of equation (1) as 

follows: 

 

ΣQ=B⊤ΣXB=B⊤EXDXE⊤
XB                   (2) 

 

where EX=[E1,…,Em]=[1,…,] is the orthonormal matrix of 

eigenvectors of ΣX and DX=diag[λ1,…,λq] is the diagonal 

matrix of associated eigenvalues. 

 

Now, since we require ΣQ to be diagonal, we can 

set B⊤=E
1
 in order to reduce Cov(Q) to the diagonal 

matrix DX. Since the 2nd linear algebra result above 

guarantees that EX is orthonormal, we know that E
−1

=E⊤.  

 

Accordingly ΣQ =DX if and only if B=EX 

 

The entire idea is visualized below in Figures 1 and 2. In 

particular, Figure 1 demonstrates the ``data perspective'' 

view of the system in relation to an alternate basis. That is, 

two alternate basis axes, labelled as ``Principal Direction 1'' 

and ``Principal Direction 2'' are superimposed on the 

familiar x and y axes. Since the vectors of a basis are 

mutually orthogonal, the principal direction axes are 

naturally drawn at 90
0
 angles. Alternatively, Figure 2 

demonstrates the view of the system when the perspective 

uses the principal directions as the reference axes. 
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Consistency 

In practice, ΣX, and by extension ΣQ, E
X
, and D

X
, are 

typically not observed. Nevertheless, we can apply the 

analysis above using sample covariance matrices: 

                     

SQ=1/nQ⊤Q 
𝑝
   ΣQ 

 

n→∞ 

 

and SX=1/nX
T
X 

𝑝
  ∞ΣX    

 

n→∞ 

𝑊ℎ𝑒𝑟𝑒 
𝑝

𝑛  ∞
 

 

indicates weak convergence to asymptotic counterparts. In 

this regard, the result analogous to equation (2) for 

estimated 2nd moment matrices states that 

SQ=ˆE⊤
XSXˆEX=ˆE⊤

X=E
T

X(ˆEXˆDXˆE⊤
X)ˆEX=ˆDXW, 

Where ˆEX and ˆDX now represent the eigen basis and 

respective eigen values associated with the square 

symmetric matrix SX. It is important to understand here that 

while ˆEX≠EX^≠ and ˆDX≠DX^, there is a long-standing 

literature far beyond the scope of this entry which 

guarantees that ˆEX^ and ˆDX^ are both consistent estimators 

of EX and DX, provided m/n→0 as n→∞. In other words, as 

in classical regression paradigms, consistency of PCA holds 

only under the usual ``large n and small m '' framework. 

There are modern results which address cases for m/n→c>0, 

however, they too are beyond the scope of this text. In 

proceeding however, in order to contain notational 

complexity, unless otherwise stated, we will maintain 

that EX and DX now represent the eigenbasis and respective 

eigenvalues associated with the square symmetric matrix SX. 

 

Preservation of Information 

In addition to diagonalizing SQ, we also require preservation 

of information. For this we need to guarantee that B is a 

basis. Here, we recall the final remark under the 2nd linear 

algebra result above, which argues that SQ affords at 

most m orthonormal eigenvectors and associated 

eigenvalues, with the former also forming an eigenbasis. 

Since all m eigenvectors are collected in EX=B, we are 

guaranteed that B is indeed a basis. In this regard, we 

transform X into m statistically uncorrelated, but 

exhaustive directions. We are careful not to use the 

word variables (although technically they are), since the 

transformation Q=XEX does not preserve variable 

interpretation. That is, the jth column of Q no longer retains 

the interpretation of the jth variable (column) in X. In fact, 

the jth column of Q is a projection (linear combination) 

of all m variables in X, in the direction of 

the jth eigenvector Ej. Accordingly, we can 

interpret XEX as m orthogonal weighted averages of 

the m variables in X. Furthermore, since EX is an eigenbasis, 

the total variation (information) of the original system X, 

namely SX, is preserved in the transformation to Q. 

Unlike SX however, SQ=DX is diagonal, and total variation 

in X is now distributed across Q without redundancy. 

 

Principal Directions 

Since preservation of information is guaranteed under the 

transformation Q=XEX, the proportion of information 

in SX associated with the jth column of SQ is in fact λj. By 

extension, each column in Q has standard deviation √λj or 

variance λj. Moreover, since SQ is diagonal and information 

redundancy is not an issue, it stands to reason that the total 

amount of system variation is the sum of variations due to 

each column in Q. In other words, total system variation 

is tr(SQ)=λ1+…+λm, where tr(⋅) denotes the matrix trace 

operator, and the jth orthogonalized direction contributes to : 

Λj/(λ1+…+λm)×100% of total system variation 

(information). 

 

If we now arrange the columns of Q, or equivalently those 

of EX, according to the order λ(1)≥λ(2)≥…≥λ(m), where λ(j) 

are ordered versions of their counterparts λj, we are 

guaranteed to have the directions arranged from most 

principal to least, measured as the proportion of total system 

variation contributed by that direction. 

 

Another useful feature of the vectors in EX is that they 

quantify the proportion of directionality each original 

variable contributes toward the overall direction of that 

vector. In particular, let ei,j denote the ith element 

in Ej=[e1,j,…,em,j]=[1,…,], where i∈1,…,m, and observe 

that since Ej are the eigenvectors of SX, each element ei,j is 

in fact associated with the ith variable (column) of X. 

Furthermore, since the vectors Ej each have unit length due 

to (ortho)normality, we know that they must lie inside the 
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unit circle and that e
2
i,j×100%of the direction Ej is due to 

variable i. In other words, we can quantify how principal 

each variable is in each direction. 

 

Principal Components 

Principal directions, the eigenvectors in EX, are often 

mistakenly called principal components. Nevertheless, 

correct literature reserves the term principal components for 

the projections of the original system variables onto the 

principal directions. That is, principal components refer to 

the column vectors in Q=[Q1,…,Qm]=XEX, and are 

sometimes also referred to as scores. Like their principal 

direction counterparts, principal components contain several 

important properties worth observing. 

 

As a direct consequence of the diagonalization properties 

discussed earlier, the variance of each principal component 

is in fact the eigenvalue associated with the underlying 

principal direction, and principal components are mutually 

uncorrelated. To see this formally, let Cj=[0,…,0,1,0,…,0]⊤ 
denote the canonical basis vector in the jth dimension. Then, 

using the result in equation (4), the correlation between 

the jth and kth principal components Qj=QCj and Qk=QCk, 

respectively, is obviously: 

sQj,Qk=1/nQ⊤jQk=C⊤j(1/nQ⊤Q)Ck=C⊤jSQCk=C⊤jDXCk 

which equals λj when j=k= and 0 otherwise. 

 

Moreover, we can quantify how (co)related the original 

variables are with the principal directions. In particular, 

consider the covariance between the ith variable Xi=XCiand 

the jth principal component Qj, formalized as: 

SXiQj=1/nX⊤iQj=C⊤i(1nX⊤Q)Cj=C⊤i(1nX⊤XEX)Cj=C⊤i

SXEXCj=C⊤iEXDXE⊤XEXCj=C⊤iEXDXCj=ei,jλj(5)wher

e the antepenultimate line invokes Theorem 1 to SX, and the 

cancelation to identity in the penultimate line follows by 

Theorem 2 and orthonormality of EX, and the ultimate line 

is the product of the jth element of the principal 

direction Ej and the jth principal eigenvalue. 

 

Dimension Reduction 

At last, we arrive at the issue of dimensionality reduction. 

Assuming that the columns of Q are arranged in decreasing 

order of importance (more principal columns come first), we 

can discard the g<m least principal columns of Q until 

sufficient dimension reduction is achieved, and rest assured 

that the remaining (first) m−g columns are in fact most 

principal. In other words, the m−g directions which are 

retained, contribute to 

 

 𝜆 (𝑗)/ 𝜆1 + ⋯ +  𝜆𝑚 × 100%

𝑚−𝑔

𝑗 =1

 

of the original variation in X. Since directions are ordered in 

decreasing order of importance, the first few directions will 

capture the majority of variation, leaving the less principal 

directions to contribute information only marginally. 

Accordingly, one can significantly reduce dimensionality 

whilst retaining the majority of information. This is 

particularly important when we want to measure the 

complexity of our data set. In particular, if the r most 

principal directions account for the majority of variance, it 

stands to reason that our underlying data set is in fact 

only r−dimensional, with the remaining m−r dimensions 

being noise. In other words, dimensionality reduction 

naturally leads to data denoising. 

 

So how does one select how many principal directions to 

retain? There are several approaches, but we list only several 

below: 

1) A very popular approach is to use a scree plot -- a plot 

of the ordered eigenvalues from most to least principal. 

The idea here is to look for a sharp drop in the function, 

and select the bend or elbow as the cutoff value, 

retaining all eigenvalues (and by extension principal 

directions) to the left of this value. 

2) Another popular alternative is to use the cumulative 

proportion of variation explained by the first r principal 

directions. In other words, select the first r principal 

directions such that 

 𝜆 (𝑗) 𝜆1 + ⋯ + 𝜆𝑚 ≥ 1 −  𝛼

𝑟

𝑗 =1

 

where α ∈ [0, 1] ∈ [0, 1]. Typical uses set α = 0.1 in 

order to retain r most principal directions that capture at 

least 90% of the system variation. 

3) A more data driven result is known as the Guttman-

Kaiser (Guttman (1954), Kaiser (1960), Kaiser (1961)) 

criterion. This criterion advocates the retention of all 

eigenvalues, and by extension, the associated principal 

directions, that exceed the average of all eigenvalues. In 

other words, select the first r principal directions such 

that λ (1) +…+ λ (k) ≥ r¯ λ, 

𝑊ℎ𝑒𝑟𝑒  –𝜆 = 1/𝑚  𝜆𝑗

𝑚

𝑗 =1

 

4) An entirely data-driven approach akin to classical 

information criteria selection methods borrows the Bai 

and Ng (2002) paper on factor models. In this regard, 

consider Xj=β1Q1+…+βrQr+U(j,r), as the regression of 

the jth variable in X on the first r principal components 

of SX, and let ˆU(j,r) denote the corresponding residual 

vector. Furthermore, define SSR(j,r)=1/nˆU(j,r)⊤ˆU(j,r), 

as the sum of squared residuals from said regression, 

and define  

 

𝑆𝑆𝑅  𝑟 = 1/ 𝑚  𝑆𝑆𝑅 (𝑗, 𝑟)

𝑚

𝑗 =1

 

as the average of all SSR (j, r) (,) across all variables j for a 

given r. We can then select r as the one that minimizes a 

particular penalty function. In other words, the problem 

reduces to: 

 

min {ln (SSR (r)) + rg (n, m)} 

r 

 

where g (n, m) is a penalty term which leads to one of 

several criteria proposed in Bai and Ng (2002). For instance 

when n>m, one such option is the ICp2(r) criterion, and the 

problem above formalizes as: 

 

min{ln(SSR(r))+r(n+m/nm)ln(m)} 

r 
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Of course, it goes without saying that discarding information 

comes at its own cost, although, if dimensionality reduction 

is desired, it may well be a price worth paying. 

 
Loading Plots 

A powerful inferential tool unique to PCA is element-wise 

comparison of two principal directions. In particular, 

consider two principal directions Ej=[e1, j,…, em, 

j] and Ek=[e1, k,…, em, k], and let {V1, j, k,…,Vm, j, 

k} denote the set of vectors from the origin (0,0) to (ei, j, ei, 

k) for i∈1, In other words, Vi, j, k= (ei, j, ei, k)⊤. Then, for 

any (j, k) principal direction pairs, a plot of all m vectors Vi, 

j, k, for i∈1,…, m, on a single plot, is called a loading plot. 

 

There is an important connection between the vectors Vi, j, 

k and original variable covariances. In particular, 

consider SXi, Xs-- the finite sample covariance 

between Xi and Xs -- and, assuming we have ordered 

eigenvalues from most principal to least, note that: 

 

SXi,Xs=C⊤
iSXCs=C⊤iEXDXE⊤

XCs=λ(1)ei,es.1+λ(2)ei,2es.2+

…+λ(m)ei,es.m=V⊤i,1,2L1,2Vs,1,2+…+V⊤i,m−1,mLm,m−1Vs,m−1,

mwhere Lj,k=diag[λ(j),λ(k)] denotes the appropriate scaling 

matrix. In other words, for any (j,k) principal direction 

pairs, V⊤
i,j,kLj,kVs,j,k explains a proportion of the 

covariance SXi,Xs. Accordingly, when Xi and Xs are highly 

correlated, we can expect V⊤
i,j,kLj,kVs,j,k to be larger values. 

In this regard, let θi,s,j,k denote the angle between any two 

vectors Vi,j,kand Vs,j,k and recall that 

cosθi,s,j,k=V
T

i,j,kVs,j,k∥Vi,j,k∥∥Vs,j,k∥.To accommodate the use of 

the scaling matrices Lj,k, observe that we can modify this 

result as 

follows:V⊤
i,j,kLj,kVs,j,k=V⊤

i,j,kLj,k(Vi,j,kV⊤
i,j,k)

−1
Vi,j,k∥Vi,j,k∥∥Vs,j,

k∥cosθi,s,j,k(6)Now, when θi,s,j,k is small, say 

between 0 and π/2, we can expect V⊤
i,j,kLj,kVs,j,k to be large, 

and by extension, Xi and Xs to be more correlated. In other 

words, vectors that are close to one another in a loading plot 

indicate stronger correlations of their underlying variables. 

Figure 3 below gives a visual representation. 

 
 

It is important to realize here that since θi, s, j, k is in fact 

the angle between Vi, j, k and Vs, j, k, the interpretation of 

how exhibitive θi,s,j,k is of the underlying correlation SXi, 

Xs is made more complicated by the presence of Lj, k in 

equation (6). Accordingly, to ease interpretation, the 

vectors Vi,j, k are sometimes scaled appropriately, or loaded 

with scaling information, leading to the term loadings. In 

this regard, consider the vectors ˜Vi,j,k=Vi,j,kL
1/2

j,k. Here, 

loading is done via L
1/2

j, k, and we have: 

 

SXi,Xs=˜V⊤i,1,2˜Vs,1,2+…+˜V⊤i,m−1,m˜Vs,m−1,mand˜V

⊤i,j,k˜Vs,j,k=∥˜Vi,j,k∥∥˜Vs,j,k∥cos˜θi,s,j, kAs 

such, ˜θi,s,j,k more closely exhibits the true angle 

between Xi and Xs than θi, s, j, k, and loading plots 

using ˜Vi,j,k tend to be more exhibitive of the underlying 

correlations SXi, Xs than those based on Vi, j, k. Of course, 

one does not have to resort to the use of L1/2j,k as the 

loading matrix. In principle, one can use Lαj, k for 

some 0≤α≤1, although the underlying interpretation of what 

such a loading means ought to be understood first. 

 

Of course, it is not difficult to see that ˜Vi,j, k=Vi,j, kL
α
j, k 

is in fact the ith "XY"-pair between Ejλ
αj

 and Ekλ
α
k. In other 

words, it is the ith "XY"-pair using the 

"loaded" jth and kth principal directions. Accordingly, the 

term loading vector is sometimes used to denote a loaded 

principal direction. In particular, the entire matrix of loading 

vectors ˜EX can be obtained as follows: 
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˜EX=EXD
α
X 

 

Figure 4 below demonstrates the impact of using a loading 

weight. In particular, the vectors in Figure 3 are 

superimposed on the set of loaded vectors where the loading 

factor is D
1/2

X. Clearly, the loaded vectors are much more 

correlated with the general shape of the data as represented 

by the ellipse. 

 

 
 

Scores Plots 

A score plot across principal direction pairs (j, k) is 

essentially a scatter plot of the principal component 

vector Qi vs. Qj. In fact, it is the analogous version of the 

loading plot, but for observations as opposed to variables. In 

this regard, whereas the angle between two loading vectors 

is exhibitive of the underlying correlation between some 

variables, the distance between observations in a score plot 

exhibits homogeneity across observations. Accordingly, 

observations which tend to cluster together tend to move 

together, and one typically looks to identify important 

clusters when conducting inference. 

 

Recall also the expression derived in the last line of 5, 

namely, SXiQj=ei,jλj=(ei,jλ
1/2

j)λ
1/2

j. Notice that the latter 

expression states that the correlation between the ith variable 

and the jth score vector is in fact a product of the jth element 

of a loaded ith principal direction (ith loading vector), 

and λ1/2j. Accordingly, in order to achieve a more natural 

interpretation, one can proceed in a manner analogous the 

creation of loading vectors, and either scale or entirely 

remove the remaining scaling factor. This leads to the idea 

of loaded score vectors. In particular, using the context 

above, if one wishes to interpret the correlation between 

the ith variable and the jth score vector as just a loaded 

principal direction without the additional factor λ1/2j, then 

doing so is as simple as computing SXiQjλ−1/2j=ei,jλ1/2j 

where we now interpret Qjλ−1/2j as a loaded score vector. 

Of course, an infinite array of such scaling options is 

achievable using Qjλ−αj, although, as before, their 

interpretation ought to be understood first. 

 

Outlier Detection 

An important application of PCA is to outlier detection. The 

general principle exploits the first few principal directions to 

explain the majority of variation in the original system, and 

uses data reconstruction to generate an approximation of the 

original system using the first few principal components. 

 

Formally, if we start from the matrix of all principal 

components Q, it is trivial to reconstruct the original 

system X using the inverse: QE⊤
X=XEXE⊤

X=X, On the other 

hand, if we restrict our principal components to the 

first r≪m most principal directions, then ˜Q˜E⊤X=˜X≈X, 

where ˜Q~ and ˜EX~ are respectively the 

matrix Q and EX with the last m−r− columns removed, 

and ≈≈ denotes an approximation. Then, the difference 

ξ=˜X−X is known as the reconstruction error, and if the 

first r principal directions explain the original variation well, 

we can expect ∥ξ∥2
 where ∥⋅∥D denotes some measure of 

distance. 

 

We would now like to define a statistic associated with 

outlier identification, and as in usual regression analysis, the 

reconstruction error (residuals) plays a key role. In 

particular, we follow the contributions of Jackson and 

Mudholkar (1979) and define SPE=ξξ⊤ as the squared 

prediction error most resembling the usual sum of squared 

residuals. Moreover, Jackson and Mudholkar (1979) show 

that if observations (row vectors) in X are independent and 

identically distributed, Gaussian random variables, SPE has 

the following distribution 
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where χ2p denotes the χ2distribution with p degrees of 

freedom, and Zj are independent χ21 variables. Noting that 

the ith diagonal element of SPE, namely 

SPEii=C⊤i(SPE)Ci=⊤ is associated with the itervation, we 

can now derive a rule for outlier detection. In particular, 

should SPEii, for any i, fall into some critical region defined 

by the upper (1−α) percentile of Ψ(k), that observation 

would be considered an outlier. 

 

Data Source 

Secondary data from official website of Delhi Police, Govt. 

open data base. 

 

The requirement of complete data to conduct PCA was 

available for only 2014, hence the base of study is data of 

year 2014. A descriptive statistics of data is shown below: 

 
Date: 10/04/23   Time: 10:29 

Sample: 1 10 

 Assault_ on Women Murder Rape 

 Mean  887.4000  126.0000  400.4000 

 Median  949.5000  141.0000  471.0000 

 Maximum  1855.000  194.0000  560.0000 

 Minimum  115.0000  14.00000  40.00000 

 Std. Dev.  453.6749  54.90396  180.7240 

 Skewness  0.377959 -0.870593 -1.176003 

 Kurtosis  3.816601  2.816592  2.822309 

    

 Jarque-Bera  0.515937  1.277236  2.318126 

 Probability  0.772620  0.528022  0.313780 

    

 Sum  8874.000  1260.000  4004.000 

 Sum Sq. Dev.  1852388.  27130.00  293950.4 

    

 Observations  10  10  10 
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A graphical representation of assault, rape and murders on 

women is shown above 

 
Covariance Analysis: Ordinary 

Date: 10/04/23   Time: 10:30 

Sample: 1 10 

Included observations: 10 

Correlation Assault on Women Murder Rape 

Assault on Women 1.000000   

Murder 0.486901 1.000000  

Rape 0.850994 0.813933 1.000000 

 
A quick interpretation of the correlation structure indicates 

that assault on women is highly correlated with rape and 

moderately correlated with murder of women with intention 

to outrage her modesty. 

 

Principle component analysis of crime data: 

 
Principal Components Analysis 

Date: 10/04/23   Time: 10:31 

Sample: 1 10 

Included observations: 10 

Computed using: Ordinary correlations 

Extracting 3 of 3 possible components 

Eigenvalues: (Sum = 3, Average = 1) 

    Cumulative Cumulative 

Number Value Difference Proportion Value Proportion 

1 2.445782 1.931951 0.8153 2.445782 0.8153 

2 0.513831 0.473443 0.1713 2.959613 0.9865 

3 0.040387 --- 0.0135 3.000000 1.0000 

Eigenvectors (loadings): 
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Variable PC 1 PC 2 PC 3   

Assault on Women 0.554296 -0.682555 0.476313   

Murder 0.542187 0.730302 0.415563   

Rape 0.631497 -0.027906 -0.774876   

Ordinary correlations: 

 Assault on Women Murder Rape   

Assault on Women 1.000000     

Murder 0.486901 1.000000    

Rape 0.850994 0.813933 1.000000   

 
The first table summarizes the information on eigenvalues. 

The later are sorted in order of principality (importance), 

measured as the proportion of information explained by each 

principal direction. Here, we see that the first principal 

direction explains roughly 81% of the information contained 

in the underlying correlation matrix, the second roughly 9%. 

The cumulative proportion of information explained by first 

two is roughly 91%. 

 

The second (middle) table summarizes the eigenvectors 

associated with each of the principal eigenvalues., the 

eigenvectors are also arranged in order of principality. 

Furthermore, whereas the eigenvalues highlight how much 

of the overall information is extracted in each principal 

direction, the eigenvectors reveal how much weight each 

variable has in each direction. 

 

Accordingly, the relative importance of any variable in a 

given principal direction is effectively the proportion of the 

eigenvector length (unity) attributed to that variable. As 

shown here as under: 

 

 

PC1 account for PC2 account for 

Assault on women 0.554296 0.307244056 -0.682555 

 Murder 0.542187 0.293966743 0.730302 0.533341011 

Rape 0.631497 0.398788461 -0.027906 

  
Eigenvalue plots and dimensionality: 

 

 

 
 

The first is the scree plot-a line graph of eigenvalues 

arranged in order of principality. Superimposed on this a red 

dotted horizontal line with a value equal to the average of 

the eigenvalues. The idea here is to look for a kink point, or 

an elbow, and retain all eigenvalues, and by extension their 

associated eigenvectors, that from the first portion of the 

kink, and discard the rest. From the plot, it is evident that a 

kink occurs at the 2
nd

 eigenvalue, indicating that we should 

retain the first two eigenvalues. 

 

A slightly more numeric approach discards all eigenvalues 

significantly below the eigenvalue average. We see that the 

average of the eigenvalues is 1.00, and the second 

eigenvalue is just below cut off. Since the 2
nd

 value is close 

to this average, it would be safe to conclude that the scree 

plot analysis indicates that only first two eigenvalues ought 

to be retained. 

 

The second graph plots a line graph of the differences 

between successive eigenvalues. Superimposed on this 

graph is another horizontal line, this time with a value equal 

to the average of the differences of successive eigenvalues. 

Which is 0.80. The idea here is to retain all eigenvalues 

whose differences are above this threshold. Clearly, only the 

first two eigenvalues satisfy this criterion. 

 

The final graph is a line graph of the cumulative proportion 

of information explained by successive principal 

eigenvalues. Superimposed on this graph is line with a slope 

to the average of the eigenvalues namely 1, the idea here is 

to retain those eigenvalues that form segments of the  

cumulative curve whose slopes are at least as steep as the 

line with slope 1.In our case, only two eigenvalues seem to 

form such a segment: eigenvalues1 and 2. 
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All three graphical approaches indicate that one ought to 

retain the first two eigenvalues and their associated 

eigenvectors. 

 

 

 

 

Principal Direction Analysis: 

 

Variable Loading Plot: 

We plot variable loading graph that produces ―X Y‖ pair 

plots of loading vectors. Here, we will plot the true 

eigenvectors since scaling is unity. 

 

 
 

In this plot, the angle between the vectors in a loading plot is 

related to the correlation between the original variables to 

which the loading vectors are associated. Accordingly, we 

see that Assault on women with intent to outrage and 

modesty and rape of women, are strongly positively 

correlated with rape. Further, we also conclude that Assault 

on women with intent to outrage and modesty and murder of 

women is nearly uncorrelated since they form a near 90 

degree angle. 

 

Component Score Plot and Bi-plot: 

 

 
 
Now, from Score plot as shown above, We conclude that if 

we refer east of the zero vertical axis, a state is located 

comprising NE, Outer, SE and SW  part of Delhi which is 

positively dominated by the crimes of Assault on women 

with intent to outrage and modesty , rape of women and 

murder. Conversely, North, North Delhi  part of Delhi are 

typically less associated with above said crimes. 

 

Further, the north of the zero horizontal axis a state is 

located, the more positively correlated it is with the second 

principal direction. Since the latter is dominated positively 

(north of the zero horizontal axis) by the variable murder. 

We conclude that such states are positively correlated with 

said crimes in area of NW Delhi. Conversely, the area of 

South Delhi is typically less dominated by these crimes. 
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2. Conclusion 
 

Concluded that area of NE, SE, SW and outer part of Delhi 

is highly dominated by the crimes of Assault, Rape and 

Murder. The north-east district is turning out to be the crime 

underbelly of Delhi. This area reported the largest number of 

heinous crimes among the 11 police districts—about 40% of 

16,273 last year. These include cases of murder and attempt 

to murder, rape, molestation, riots and kidnappings. Outer 

district was the second most crime-infested area,,,,,,,,, with a 

30% share. This has been highlighted in a white paper on 

―State of Policing and Law and order in Delhi‖, released by 

NGO Praja and the data obtained through RTI. 

 

The north-east district is an amalgamation of resettlement 

and unauthorised colonies and has easy access of Uttar 

Pradesh. The colonies include Seemapuri, Gokulpuri, 

Bhajanpura, Shahdara, Seelampur and Khajuri Khas besides 

some middle class areas like Mansarovar Park. On the other 

side is outer which has a mix of rural areas and unauthorised 

colonies, bordering Haryana, besides the middle class 

Rohini and other similar pockets. The areas include Narela, 

Alipur, Bawana, Khanjawla, Shahbad Dairy, Mangolpuri, 

Sultanpuri and SamaipurBadli. 

 

According to the police, most of these areas have a huge 

migrant population from across the country. Poverty, lack of 

amenities, vulnerability to exploitation, minority and 

majority communities living cheek by jowl, out of school 

children lrft to fend for themselves at home as their parents 

toil to eke out their daily existance and social factors like 

alcoholism and propensity for violence make these areas ripe 

for crime. The rural areas are caught between an agricultural 

past and an urban present. 

 

North-West Delhi has earned the dubious distinction of 

being the most crime prone district in the city. The latest 

official statistics released by the Delhi Police reveals that the 

North-West District tops the crime figures among all the 

nine districts in Delhi. 

 

About 500 cases of heinous crimes in NorthWest Delhi last 

year have not been unexpected and all-together surprising 

for the police. Indeed, as police officials in the district 

testify, the staggering crime figures for North-West Delhi 

have been along the expected lines and in keeping with the 

recent trends. 

 

For instance, the 135 cases of homicide last year in the 

region have been only slightly higher than the 128 such 

cases in the preceding year. Till the first week of November 

this year, the region had so far witnessed 118 cases of killing 

and the final count at the end of the current year is also 

expected to hover in the vicinity of last year''s figures. 

Similarly, the police had till the first week of November 

recorded 80 cases pertaining to attempted murders, which is 

again close to the heels of such 107 total cases reported for 

the whole of last year in the northwest district. 

 

The North-West District remains the most susceptible region 

in terms of public safety and from the point of view of 

security perceptions. Police officials maintain that the 

notoriety stems largely as a result of the wanton 

mushrooming of new slum clusters in the area in addition to 

the already large proliferation of slums and unauthorised 

colonies spreadout in this region, second only to East Delhi 

in terms of size and population. 

 

"The region has an unusually high percentage of migrants 

from other states besides the disturbing presence of a large 

number of illegal nationals from Bangladesh, Nepal and 

Afghanistan," "People hailing from outside Delhi but living 

within the city have almost no stake in keeping the city safe 

and secure, and are wont to opportunistic adventures that are 

prejudicial to law and order,"  

 

While the police have been devising strategies and game 

plans to be one up on criminals, they face some serious 

drawbacks of their own in effectively tackling crime. Police 

stations in places like Maurice Nagar, Timarpur, Pratap 

Nagar and Mukherji Nagar have all through been operating 

without custody cells, while some police stations operate 

from ramshackle buildings. There is a shortage of sufficient 

number of police personnel and police stations in many of 

the big areas like Rohini, where people have been 

demanding setting up of more police stations for several 

years now. 

 

Further, there is a scope for an early predicting the crimes in 

identified hot spot areas using advanced algoriths. Machine 
learning ensemble-based algorithms can handle well 
such problems. Various methods like Weighted Moving 

Average, Functional Coefficient Regression and Arithmetic-

Geometric Progression based prediction of the crime in 

coming years 

 

References 
 

[1] DL Weisburd, T McEwen - Available at SSRN 

2629850, 2015 - papers.ssrn.com 

[2] S Khalid, F Shoaib, T Qian, Y Rui, AI Bari… - 

Applied Spatial Analysis …, 2018 – Springer 

[3] B Van Schaack - 2016 - papers.ssrn.com 

[4] J Ratcliffe - Handbook of quantitative criminology, 

2010 - Springer 

[5] N Levine - Geographical analysis, 2006 - Wiley Online 

Library 

[6] JH Ratcliffe - European Journal on Criminal policy 

and research, 2004 – Springer 

[7] J Eck, S Chainey, J Cameron, R Wilson - 2005 - 

discovery.ucl.ac.uk 

[8] R Paynich, B Hill - 2013 - books.google.com 

[9] T Lorenc, S Clayton, D Neary, M Whitehead… - 

Health & place, 2012 – Elsevier 

[10] S Chainey, L Tompson, S Uhlig - Security journal, 

2008 – Springer 

[11] P Kedia - International Institute of Information 

Technology, 2016 - researchgate.net 

[12] SD Johnson, DJ Birks, L McLaughlin… - London: 

Home …, 2007 - researchgate.net 

Paper ID: SR231010120234 DOI: 10.21275/SR231010120234 893 

https://scholar.google.com/citations?user=QtXbGTEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=00d_YbkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=BOJIm0QAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cfw3AbcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=BOJIm0QAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=faCwm_oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=R7HZfk8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=tv2TKuMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=y6bFmpEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=hWHqJngAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=faCwm_oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=kPkWZG4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=-5KzNN0AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=8GeZQkgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=08BtycAAAAAJ&hl=en&oi=sra



