# Predicting Loan Default Risk in P2P Lending Platforms: A Study of Lending Club Borrowers

#### Vinay Singh

Oracle fusion Lead, McGraw Hill, Columbus, OH Email: vinay.ocp[at]gmail.com

Abstract: The peer-to-peer lending industry has experienced rapid growth due to increasing demand from borrowers and lenders. These platforms have done well because of digital changes and the wider reach of the Internet, which connects people of all ages and backgrounds. Lending institutions encounter significant challenges in accurately predicting loan defaults. When large loan amounts are defaulted, it results in considerable business losses. This study focuses on loan defaults in online peer-to-peer lending. The dataset "BALANCED\_Data\_Predicting\_Default. csv" used for this research was sourced from Carmen—Ohio State University. This dataset contains 58 variables on 20,000 actual Lending Club loans issued in 2015. This dataset was loaded to Orange3, a data mining application. The loan status was selected as the dependent variable and categorized into two groups: "default" and "fully paid" loans. The dataset was preprocessed to remove any irrelevant data. We evaluated the variance and removed variables with little variation. Some attributes were excluded based on our judgment and business knowledge. Certain columns, such as "collection recovery fee" and "recoveries, " were considered irrelevant since they didn't provide useful insights into loan defaults. This research aims to apply AI and ML, specifically Decision Trees, logistic regression, Random Forests, SVM, Neural Networks, and gradient boosting, to predict the default probability of Lending Club borrowers. As part of this research, we will pick the best-performing Model and report its performance. If these models are used, Lending Clubs and loan companies can make data-driven decisions, enhance services, and predict customers' defaults. We have tried multiple machine learning models, including logistic regression, random forest, gradient boosting trees, support vector machine (SVM), and neural networks. We tuned the parameters of different models (e.g., the number of layers in neural networks). In this case, the gradient boosting tree performs well, as we achieved the best result, F1 0.883.

**Keywords:** P2P Lending, Lending Club, Orange3, Imbalanced dataset, Loan-default, Prediction, Logistic Regression, Random Forest, Gradient Boosting tree, Support Vector Machine (SVM) and Neural Networks

### 1. Introduction

Financial institutions lend capital as a key strategy to generate revenue and stay competitive. However, there's a risk of losing money if borrowers don't repay their loans.

In many developing countries, the lending risk is so high that it's almost like a lottery. Lack of reliable borrower information and old technology makes it hard to keep track of people who do not repay loans. Lending organizations need a good history of loan repayments to stay in business. One way they try to ensure this is by increasing interest rates to cover potential losses, but this isn't a smart economic choice.

Certain factors can increase the likelihood of loan defaults, making it crucial to develop effective predictive methods. Many studies have been carried out on predicting defaults, and here are a few summaries. One such study by Cheng et al. (2019) focused on predicting loan repayment patterns based on mobile phone usage behavior.

The default rate is likely to be much higher in a peer-to-peer lending (P2P) platform, which operates without a third party. According to Byanjankar et al. (2015), various methods have been used for predictions, but machine learning and data mining techniques have been the most successful. This study follows the booming trend of improving prediction accuracy. Therefore, given a set of loan defaulters  $\{11, 12, ..., ln\}$ , the study aims to preprocess and balance the dataset before creating a prediction model to determine whether each instance results in a loan default or is fully paid.

We aim to improve prediction performance using an imbalanced dataset of loan defaulters "BALANCED\_Data\_Predicting\_Default. csv. " The dataset used for this research was sourced from Carmen—Ohio State University.

We have observed significant variations in the results while using different models due to our imbalanced dataset. We could have balanced the data and improve predictions by utilizing various sampling strategies. However, time constraints prevented us from implementing these techniques at this stage.

This study will help financial institutions identify potential loan defaulters, allowing them to reduce anticipated losses or overhead costs.

# 2. Methodology

#### **Data Description**

The dataset obtained for the analysis was extracted from Carmen—Ohio State University, comprising loan default records from 2007-2015. The Lending Club is an online peerto-peer lending platform headquartered in San Francisco, California. A sample of the dataset is provided in Figure 1. The offspring or new feature sets generated or selected for modeling are the borrower's loan amount, interest rate, installment, and annual income, all of which have a numerical datatype. Note that these five are the independent features or variables. The dependent or target variable used for the analysis is the loan status, a categorical data type classified into two main categories: "Default" and "Fully Paid. " From

the figure, the classification identifies that 50% of loans are Fully paid, whereas 50% are defaulted.

This is an indication of sound risk management in the lending club. Though prediction accuracy may be very high, the Model's output will be inaccurate due to overfitting, which will happen in the training phase. The loan dataset's loan status was highly imbalanced. This calls for preprocessing the data by using practical approaches such as cleaning and selecting appropriate features for classification.

| oan_status | loan_amnt | int_rate | grade | sub_grade | home_ownership | annual_inc | verification_status | purpose            | zip_code | addr_state | dti   | delinq_2yrs | fico_range_high | inq_last_6mths | open_acc | pul |
|------------|-----------|----------|-------|-----------|----------------|------------|---------------------|--------------------|----------|------------|-------|-------------|-----------------|----------------|----------|-----|
| Default    | 5625      | 14.65    | С     | C5        | OWN            | 16000      | Verified            | credit_card        | 760xx    | ТХ         | 13.5  | 0           | 669             | 5              | 20       |     |
| )efault    | 5000      | 12.29    | C     | C1        | RENT           | 42000      | Not Verified        | debt_consolidation | 123xx    | NY         | 18.17 | 0           | 669             | 0              | 13       |     |
| )efault    | 5000      | 12.29    | C     | C1        | OWN            | 40000      | Verified            | credit_card        | 310xx    | GA         | 8.58  | 0           | 664             | 0              | 7        |     |
| Default    | 8000      | 14.65    | С     | C5        | MORTGAGE       | 48000      | Verified            | debt_consolidation | 219xx    | MD         | 14.13 | 0           | 704             | 3              | 11       |     |
| )efault    | 20000     | 9.99     | В     | B3        | MORTGAGE       | 48000      | Not Verified        | credit_card        | 720xx    | AR         | 13.2  | 0           | 709             | 2              | 7        |     |
| )efault    | 4200      | 14.65    | C     | C5        | RENT           | 52000      | Verified            | other              | 191xx    | PA         | 24.37 | 0           | 674             | 2              | 22       |     |
| )efault    | 2400      | 9.17     | В     | B2        | RENT           | 35000      | Not Verified        | debt_consolidation | 956xx    | CA         | 18.52 | 0           | 714             | 1              | 10       |     |
| )efault    | 10000     | 14.31    | С     | C4        | RENT           | 70000      | Verified            | other              | 914xx    | CA         | 13.44 | 0           | 704             | 3              | 7        |     |
| )efault    | 4025      | 15.61    | D     | D1        | RENT           | 40000      | Not Verified        | debt_consolidation | 604xx    | IL .       | 19.2  | 0           | 669             | 1              | 6        |     |
| )efault    | 13075     | 17.57    | D     | D4        | MORTGAGE       | 128000     | Verified            | debt_consolidation | 921xx    | CA         | 18.74 | 0           | 669             | 1              | 13       |     |
| )efault    | 27125     | 12.39    | С     | C1        | RENT           | 145000     | Verified            | credit_card        | 967xx    | HI         | 23.47 | 0           | 704             | 0              | 11       |     |
| )efault    | 12000     | 12.69    | С     | C2        | RENT           | 84000      | Verified            | moving             | 974xx    | OR         | 17.74 | 0           | 704             | 0              | 9        |     |
| )efault    | 14000     | 11.53    | В     | B5        | RENT           | 42500      | Verified            | credit_card        | 100xx    | NY         | 20.1  | 2           | 669             | 0              | 9        |     |
| )efault    | 12800     | 13.33    | С     | C3        | OWN            | 46000      | Verified            | debt_consolidation | 251xx    | WV         | 9.34  | 0           | 719             | 0              | 4        |     |
| )efault    | 9525      | 23.99    | F     | F3        | MORTGAGE       | 31800      | Verified            | debt_consolidation | 851xx    | AZ         | 26.92 | 0           | 664             | 0              | 7        |     |
| )efault    | 15000     | 9.99     | В     | B3        | RENT           | 75000      | Verified            | debt_consolidation | 770xx    | ТХ         | 5.71  | 0           | 669             | 1              | 10       |     |
| )efault    | 16000     | 12.05    | С     | C1        | RENT           | 62400      | Verified            | debt_consolidation | 900xx    | CA         | 33.67 | 0           | 684             | 1              | 22       |     |
| )efault    | 5125      | 17.57    | D     | D4        | RENT           | 16000      | Verified            | debt_consolidation | 928xx    | CA         | 14.85 | 0           | 689             | 0              | 4        |     |
| )efault    | 5525      | 19.99    | F     | F4        | RENT           | 28800      | Verified            | small business     | 324xx    | FI         | 22.92 | 0           | 679             | 0              | 7        |     |

Figure 1: Sample of dataset

#### **Data Preprocessing**

#### **Data Cleaning**

Any data with missing values were removed to prevent misclassifications. Orange provides various data cleaning tools, such as imputation, normalization, filtering, and outlier detection. Filtering was applied to eliminate irrelevant or redundant data, while outlier detection was used to identify and remove data points that significantly differed from the rest of the dataset.

When we loaded the data into Orange3, we defined the proper type and role for your variables of interest. The variables are defined below:-

- Discrete (Categorical)
- Continuous (Numerical)
- String
- Meta:-to Provide extra information.

#### **Feature selection**

The initial stage involves choosing the right column as the target for our Model. Our primary objective is to forecast loan repayment behavior, distinguishing between those who will fulfill their loans and those who will default. In the dataset

"BALANCED\_Data\_Predicting\_Default, " we identified the sole attribute representing the loan status. This attribute will serve as the target column. The data reveals an equal split, with approximately 50% categorized as non-defaulters (fully paid) and the remaining 50% as defaulters.

The non-informative predictors are removed to improve the prediction model's performance. The dependent feature is the loan status classified into default and fully paid loans; the remaining features are independent. Except for the member ID column, which was used as a unique identifier, all independent features chosen are numerical, whereas the dependent feature is categorical.

The dataset comprises default indicators, payment records, credit histories, and more. This dataset considers individuals classified as 'current' status as non-defaulters. Additionally, we've received a data dictionary offering detailed descriptions of the features included.

**Feature Statistics:** Figure 2 for instance shows Feature Statistics, Figure 3: without Imputing the data and without removing outliers & Figure 4: Impute the data and by removing outliers.

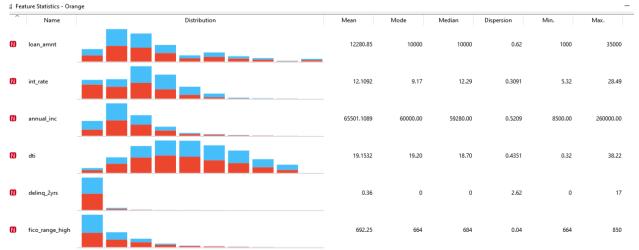


Figure 2: Feature Statistics

| Info                                                |      | loan_status | loan_amnt | int_rate | grade | sub_grade | home_ownership | annual_inc | verification_status | purpose        | 2     |
|-----------------------------------------------------|------|-------------|-----------|----------|-------|-----------|----------------|------------|---------------------|----------------|-------|
| 20000 instances<br>57 features (0.0 % missing data) | 1    | Default     | 5625      | 14.65    | С     | C5        | OWN            | 16000      | Verified            | credit_card    | 760xx |
| No target variable.<br>No meta attributes.          | 2    | Default     | 5000      | 12.29    | С     | C1        | RENT           | 42000      | Not Verified        | debt_consolida | 123xx |
|                                                     | 3    | Default     | 5000      | 12.29    | С     | C1        | OWN            | 40000      | Verified            | credit_card    | 310xx |
| Variables                                           | 4    | Default     | 8000      | 14.65    | С     | C5        | MORTGAGE       | 48000      | Verified            | debt_consolida | 219xx |
| Show variable labels (if present)                   | 5    | Default     | 20000     | 9.99     | В     | B3        | MORTGAGE       | 48000      | Not Verified        | credit_card    | 720xx |
| Visualize numeric values                            | 6    | Default     | 4200      | 14.65    | С     | C5        | RENT           | 52000      | Verified            | other          | 191xx |
| <ul> <li>Color by instance classes</li> </ul>       | 7    | Default     | 2400      | 9.17     | В     | B2        | RENT           | 35000      | Not Verified        | debt_consolida | 956xx |
| Selection                                           | 8    | Default     | 10000     | 14.31    | С     | C4        | RENT           | 70000      | Verified            | other          | 914xx |
| Select full rows                                    | 9    | Default     | 4025      | 15.61    | D     | D1        | RENT           | 40000      | Not Verified        | debt_consolida | 604xx |
|                                                     | 10   | Default     | 13075     | 17.57    | D     | D4        | MORTGAGE       | 128000     | Verified            | debt_consolida | 921xx |
|                                                     | 11   | Default     | 27125     | 12.39    | С     | C1        | RENT           | 145000     | Verified            | credit_card    | 967xx |
|                                                     | 12   | Default     | 12000     | 12.69    | C     | C2        | RENT           | 84000      | Verified            | moving         | 974xx |
|                                                     | 13   | Default     | 14000     | 11.53    | В     | B5        | RENT           | 42500      | Verified            | credit_card    | 100xx |
|                                                     | 14   | Default     | 12800     | 13.33    | C     | C3        | OWN            | 46000      | Verified            | debt_consolida | 251xx |
|                                                     | > 15 | Default     | 9525      | 23.99    | F     | F3        | MORTGAGE       | 31800      | Verified            | debt_consolida | 851xx |
|                                                     | 16   | Default     | 15000     | 9.99     | В     | B3        | RENT           | 75000      | Verified            | debt consolida | 770xx |

ure 3: Without Impute and removing outliers:-20000 instances & 57 features

| Info                                             |    | loan_status | zip_code | loan_amnt | int_rate | grade | sub_grade | home_ownership | annual_inc | verification_status | purpose         |
|--------------------------------------------------|----|-------------|----------|-----------|----------|-------|-----------|----------------|------------|---------------------|-----------------|
| 18039 instances (no missing data)<br>55 features | 1  | Default     | 123xx    | 5000      | 12.29    | с     | C1        | RENT           | 42000.00   | Not Verified        | debt_consolida  |
| Target with 2 values<br>1 meta attribute         | 2  | Default     | 310xx    | 5000      | 12.29    | C     | C1        | OWN            | 40000.00   | Verified            | credit_card     |
|                                                  | 3  | Default     | 219xx    | 8000      | 14.65    | C     | C5        | MORTGAGE       | 48000.00   | Verified            | debt_consolida. |
| Variables                                        | 4  | Default     | 720xx    | 20000     | 9.99     | В     | B3        | MORTGAGE       | 48000.00   | Not Verified        | credit_card     |
| Show variable labels (if present)                | 5  | Default     | 191xx    | 4200      | 14.65    | с     | C5        | RENT           | 52000.00   | Verified            | other           |
| Visualize numeric values                         | 6  | Default     | 956xx    | 2400      | 9.17     | В     | B2        | RENT           | 35000.00   | Not Verified        | debt_consolida  |
| Color by instance classes                        | 7  | Default     | 914xx    | 10000     | 14.31    | с     | C4        | RENT           | 70000.00   | Verified            | other           |
| Selection                                        | 8  | Default     | 604xx    | 4025      | 15.61    | D     | D1        | RENT           | 40000.00   | Not Verified        | debt_consolida. |
| Select full rows                                 | 9  | Default     | 921xx    | 13075     | 17.57    | D     | D4        | MORTGAGE       | 128000.00  | Verified            | debt_consolida. |
|                                                  | 10 | Default     | 967xx    | 27125     | 12.39    | С     | C1        | RENT           | 145000.00  | Verified            | credit_card     |
|                                                  | 11 | Default     | 974xx    | 12000     | 12.69    | С     | C2        | RENT           | 84000.00   | Verified            | moving          |
|                                                  | 12 | Default     | 100xx    | 14000     | 11.53    | В     | B5        | RENT           | 42500.00   | Verified            | credit_card     |
|                                                  | 13 | Default     | 851xx    | 9525      | 23.99    | F     | F3        | MORTGAGE       | 31800.00   | Verified            | debt_consolida. |
|                                                  | 14 | Default     | 770xx    | 15000     | 9.99     | В     | B3        | RENT           | 75000.00   | Verified            | debt_consolida  |
|                                                  | 15 | Default     | 900xx    | 16000     | 12.05    | С     | C1        | RENT           | 62400.00   | Verified            | debt_consolida  |
|                                                  | 16 | Default     | 928xx    | 5125      | 17.57    | D     | D4        | RENT           | 16000.00   | Verified            | debt_consolida. |
|                                                  | 17 | Default     | 324xx    | 5525      | 19.99    | E     | E4        | RENT           | 28800.00   | Verified            | small_business  |
|                                                  | 18 | Default     | 64бхх    | 8800      | 11.99    | с     | C1        | MORTGAGE       | 60000.00   | Verified            | debt_consolida  |
|                                                  | 19 | Default     | 604vv    | 12000     | 6.24     | Δ     | Δ2        | RENT           | 54000.00   | Not Verified        | credit card     |

Figure 4: With Impute and removing outliers:-18039 instances & 55 features

#### **Performance valuation**

Dete Table (1) Oregon

Analysis of loan default predictions using different methods.

#### **Regression Models**

#### **Random forest**

A random forest is a meta-estimator that fits several decision tree classifiers on various sub-samples of the dataset and uses

| Test and Score - Orange                         |                          |         |          |         |         |          |       |
|-------------------------------------------------|--------------------------|---------|----------|---------|---------|----------|-------|
| <u>File Edit View W</u> indow                   | <u>H</u> elp             |         |          |         |         |          |       |
| Cross validation                                | Evaluation results for t | arget ( | None, sł | now ave | rage ov | er dasse | s) ~  |
| Number of folds: 10 $$ $$ $$                    | Model                    | AUC     | CA       | F1      | Prec    | Recall   | мсс   |
| Stratified                                      | Random Forest            | 0.641   | 0.600    | 0.600   | 0.600   | 0.600    | 0.200 |
| <ul> <li>Cross validation by feature</li> </ul> | Logistic Regression      | 0.694   | 0.644    | 0.643   | 0.644   | 0.644    | 0.288 |

Figure 5: Test and Score

#### Logistic regression

Logistic regression predicts the likelihood of an event happening using an equation based on specific input features. The Model learns the connection between these features and the outcome and then uses this relationship to estimate the probability of the event occurring with new data.

The logistic Model shows favorable Accuracy and Precision scores. However, due to our imbalanced dataset, we observe significant variations in results among different models.

While employing diverse sampling techniques could balance the data and improve predictions, time constraints prevented us from implementing these techniques at this stage.

averaging to improve predictive accuracy and control

overfitting. The sub-sample size is always the same as the original input sample size, but the samples are drawn with replacement if bootstrap=True (default). With this Model, we

got an accuracy score of F1 (0.60), as shown in figure 5.

The Lending Club should prioritize "Grade" as a significant factor in their loan provision process. Additionally, the likelihood of default rises as annual income decreases, reaching a peak within the salary range of 0 to 25000. To address this, the Lending Club might consider commencing with lower principal loan amounts or conducting thorough

credibility checks for applicants falling within this income bracket. Moreover, as interest rates increase, the probability of default also rises. Lending clubs should consider narrowing their interest rate range for self-employed applicants with less than a year of experience, as they exhibit a higher probability of default. With this Model, we got an accuracy score of 64, as shown in figure 6.

| Test and Score - Orange                         |                          |         |          |         |         |          |       |
|-------------------------------------------------|--------------------------|---------|----------|---------|---------|----------|-------|
| <u>Eile Edit V</u> iew <u>W</u> indow           | <u>H</u> elp             |         |          |         |         |          |       |
| Cross validation                                | Evaluation results for t | arget ( | None, sh | now ave | rage ov | er dasse | s) ~  |
| Number of folds: 10 $\checkmark$                | Model                    | AUC     | CA       | F1      | Prec    | Recall   | мсс   |
| Stratified                                      | Random Forest            | 0.641   | 0.600    | 0.600   | 0.600   | 0.600    | 0.200 |
| <ul> <li>Cross validation by feature</li> </ul> | Logistic Regression      | 0.694   | 0.644    | 0.643   | 0.644   | 0.644    | 0.288 |
|                                                 | Figure 6: Test and       | d Score |          |         |         |          |       |

**Confusion Matrix:** We cannot conclude that this is the best Model. We will have to perform cross-validation tests to check the results, as shown in figure 7.

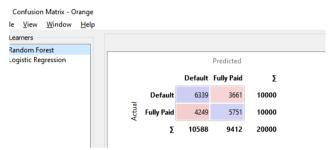


Figure 7: Confusion Matrix

To pick the best-performing Model and report its performance, we used the "Test and Score" widget and examined different performance metrics, such as the "F1" score.

In addition to logistic regression, SVM, Neural networks, and random forest, we tried gradient boosting, particularly extreme gradient boosting. We tuned the parameters for extreme gradient boosting, including the number of trees, learning rate, lambda, and tree depth. The best F1 we could get from gradient boosting is 0.883. The following table shows the parameter study and the corresponding performance, as seen in figure 8:

| extreme grad | lient bossting |        |       |                |               |               |                |       |       |       |       |        |       |
|--------------|----------------|--------|-------|----------------|---------------|---------------|----------------|-------|-------|-------|-------|--------|-------|
| #trees       | lr             | lambda | depth | training insta | tree features | level feature | split features | AUC   | CA    | F1    | Prec  | recall | MCC   |
| 200          | 0.3            | 1      | 6     | 1              | 1             | 1             | 1              | 0.917 | 0.872 | 0.872 | 0.882 | 0.872  | 0.754 |
| 300          | 0.3            | 1      | 6     | 1              | 1             | 1             | 1              | 0.916 | 0.873 | 0.872 | 0.882 | 0.873  | 0.755 |
| 100          | 0.3            | 1      | 6     | 1              | 1             | 1             | 1              | 0.918 | 0.878 | 0.877 | 0.891 | 0.878  | 0.769 |
| 50           | 0.3            | 1      | 6     | 1              | 1             | 1             | 1              | 0.921 | 0.833 | 0.882 | 0.898 | 0.883  | 0.781 |
| 20           | 0.3            | 1      | 6     | 1              | 1             | 1             | 1              | 0.923 | 0.884 | 0.883 | 0.903 | 0.884  | 0.786 |
| 20           | 0.1            | 1      | 6     | 1              | 1             | 1             | 1              | 0.923 | 0.885 | 0.883 | 0.906 | 0.885  | 0.791 |
| 20           | 0.5            | 1      | 6     | 1              | 1             | 1             | 1              | 0.921 | 0.880 | 0.879 | 0.893 | 0.880  | 0.773 |
| 20           | 0.1            | 5      | 6     | 1              | 1             | 1             | 1              | 0.918 | 0.880 | 0.879 | 0.895 | 0.880  | 0.775 |
| 20           | 0.1            | 0.1    | 6     | 1              | 1             | 1             | 1              | 0.919 | 0.878 | 0.877 | 0.891 | 0.878  | 0.769 |

Figure 8: Test and Score

We also tried some other strong models, including SVM and neural networks (with necessary parameter tunings such as several layers and hidden dimensions in neural networks), and the following table shows their performance, which is not as good as the gradient boosting tree, as seen in figure 9:

| Model             | AUC   | CA     | F1    | Prec   | Recall | MCC   |
|-------------------|-------|--------|-------|--------|--------|-------|
| Gradient Boosting | 0.924 | 0.885  | 0.883 | 0.906  | 0.885  | 0.791 |
| SVM               | 0.585 | 0.564  | 0.563 | 0.564  | 0.564  | 0.128 |
| Neural Network    | 0.873 | 0.799  | 0.799 | 0.801  | 0.799  | 0.600 |
|                   | Fig   | ure 9: | Perfo | rmance |        |       |

#### "Prediction" widget to generate predicted loan status:

The cross-validation scores suggest the gradient boosting tree is the best Model. Below is the prediction from gradient boosting model, shown in figures 10 & 11:

| loan_status | Gradient Boosting | ient Boosting (De | t Boosting (Ful 🗸 | Fold | loan_amnt | int_rate | grade | sub_grade | home_ownership | annual_inc |
|-------------|-------------------|-------------------|-------------------|------|-----------|----------|-------|-----------|----------------|------------|
| Fully Paid  | Fully Paid        | 0.103774          | 0.896226          | 1    | 16000     | 5.32     | Α     | A1        | MORTGAGE       | 150000     |
| Fully Paid  | Fully Paid        | 0.105689          | 0.894311          | 5    | 20000     | 6.24     | A     | A2        | MORTGAGE       | 87000      |
| Fully Paid  | Fully Paid        | 0.105689          | 0.894311          | 5    | 26500     | 5.32     | A     | A1        | MORTGAGE       | 88500      |
| Fully Paid  | Fully Paid        | 0.105689          | 0.894311          | 5    | 13000     | 5.32     | A     | A1        | MORTGAGE       | 70000      |
| Fully Paid  | Fully Paid        | 0.105689          | 0.894311          | 5    | 18100     | 6.03     | A     | A1        | MORTGAGE       | 105000     |
| Fully Paid  | Fully Paid        | 0.105689          | 0.894311          | 5    | 14000     | 5.32     | A     | A1        | MORTGAGE       | 122000     |
| Fully Paid  | Fully Paid        | 0.106213          | 0.893787          | 5    | 15000     | 5.32     | A     | A1        | MORTGAGE       | 85000      |
| Fully Paid  | Fully Paid        | 0.106722          | 0.893278          | 1    | 28000     | 5.93     | A     | A1        | MORTGAGE       | 136000     |
| Fully Paid  | Fully Paid        | 0.106722          | 0.893278          | 1    | 28000     | 5.32     | A     | A1        | MORTGAGE       | 250000     |
| Fully Paid  | Fully Paid        | 0.106722          | 0.893278          | 1    | 22000     | 5.32     | A     | A1        | MORTGAGE       | 190000     |
| Fully Paid  | Fully Paid        | 0.106722          | 0.893278          | 1    | 12000     | 6.89     | A     | A3        | MORTGAGE       | 100000     |
| Fully Paid  | Fully Paid        | 0.106722          | 0.893278          | 1    | 22150     | 6.24     | A     | A2        | OWN            | 123023     |
| Fully Paid  | Fully Paid        | 0.106722          | 0.893278          | 1    | 27600     | 5.32     | A     | A1        | MORTGAGE       | 125000     |
| Fully Paid  | Fully Paid        | 0.108255          | 0.891745          | 5    | 28000     | 6.68     | A     | A3        | MORTGAGE       | 115000     |
| Fully Paid  | Fully Paid        | 0.108255          | 0.891745          | 5    | 19500     | 6.24     | A     | A2        | MORTGAGE       | 95000      |
| Fully Paid  | Fully Paid        | 0.108255          | 0.891745          | 5    | 28000     | 6.92     | A     | A4        | MORTGAGE       | 160000     |
| Fully Paid  | Fully Paid        | 0.108285          | 0.891715          | 5    | 10000     | 6.24     | A     | A2        | MORTGAGE       | 80000      |
| Fully Paid  | Fully Paid        | 0.108285          | 0.891715          | 5    | 6500      | 5.32     | A     | A1        | MORTGAGE       | 70000      |
| Fully Paid  | Fully Paid        | 0.108285          | 0.891715          | 5    | 14000     | 6.89     | A     | A3        | MORTGAGE       | 70000      |
| Fully Paid  | Fully Paid        | 0.108285          | 0.891715          | 5    | 17500     | 5.32     | A     | A1        | MORTGAGE       | 95000      |
| Fully Paid  | Fully Paid        | 0.108285          | 0.891715          | 5    | 20000     | 5.32     | A     | A1        | MORTGAGE       | 100000     |
| Default     | Fully Paid        | 0.108285          | 0.891715          | 5    | 19600     | 5.32     | A     | A1        | MORTGAGE       | 125000     |
| Fully Paid  | Fully Paid        | 0.108374          | 0.891626          | 3    | 8000      | 7.26     | A     | A4        | MORTGAGE       | 80000      |
| Fully Paid  | Fully Paid        | 0.108374          | 0.891626          | 3    | 28000     | 5.32     | A     | A1        | MORTGAGE       | 163134     |

Figure 10: Prediction

| loan_status | Gradient Boosting | ient Boosting (De | t Boosting (Ful A | Fold | loan_amnt | int_rate | grade | sub_grade | home_ownership | annual_inc |
|-------------|-------------------|-------------------|-------------------|------|-----------|----------|-------|-----------|----------------|------------|
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 27125     | 12.39    | с     | C1        | RENT           | 145000     |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 17325     | 13.99    | с     | C4        | RENT           | 41302      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 32900     | 16.99    | D     | D3        | RENT           | 71000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 8000      | 12.59    | с     | C2        | OWN            | 35000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 2500      | 16.99    | D     | D3        | RENT           | 57283.2    |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 6000      | 13.33    | с     | C3        | RENT           | 35525      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 6400      | 13.99    | с     | C4        | RENT           | 63200      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 20000     | 13.67    | с     | C4        | MORTGAGE       | 65000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 8500      | 13.33    | с     | C3        | MORTGAGE       | 30000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 17025     | 18.99    | E     | E1        | OWN            | 62000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 15000     | 17.57    | D     | D4        | RENT           | 200000     |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 32000     | 13.99    | с     | C4        | RENT           | 67200      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 17475     | 17.86    | D     | D5        | RENT           | 35000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 8000      | 11.99    | В     | B5        | RENT           | 50000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 31825     | 14.65    | с     | C5        | RENT           | 75000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 20125     | 13.67    | с     | C4        | MORTGAGE       | 58000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 16000     | 11.53    | в     | B5        | RENT           | 145000     |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 8000      | 14.31    | с     | C4        | RENT           | 30189      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 15000     | 13.18    | с     | C3        | RENT           | 68471      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 8575      | 19.99    | E     | E4        | RENT           | 44000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 2875      | 17.57    | D     | D4        | RENT           | 24000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 8000      | 13.33    | с     | C3        | RENT           | 70000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 3700      | 23.99    | F     | F2        | RENT           | 77000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 20000     | 18.25    | E     | E1        | RENT           | 50000      |
| Default     | Default           | 0.934347          | 0.0656527         | 2    | 7200      | 12.69    | с     | C2        | RENT           | 41000      |
|             |                   |                   |                   |      |           |          |       |           |                |            |

Figure 11: Prediction

# 3. Conclusion

We have tried different models: logistic regression, random forests, gradient-boosting trees, support vector machines, and neural networks. In this case, the gradient-boosting tree performs well. The results indicate that the models used are effective in improving the accuracy of predicting loan defaults. However, the study only considers fully paid and default loans without accounting for loans that are considered risky.

# References

- Cheng, D., Zhang, Y., Yang, F., Tu, Y., Niu, Z., & Zhang, L. (2019, November). A dynamic default prediction framework for networked-guarantee loans. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp.2547-2555). doi: 10.1145/3357384.3357804
- Appendix

- [2] Byanjankar, A., Heikkilä, M., & Mezei, J. (2015, December). Predicting credit risk in peer-to-peer lending: A neural network approach. In 2015 IEEE Symposium Series on Computational Intelligence (pp.719-725). IEEE. doi: 10.1109/SSCI.2015.109
   [2] W. Li Li Chang, Chan
- [3] "Prediction of LendingClub loan defaulters." https: //www.kaggle. com/code/deepanshu08/prediction-oflendingclub-loan-defaulters/notebook.
- [4] "Orange Data Mining Library." https://orange3. readthedocs. io/projects/orange-data-mininglibrary/en/latest/.
- [5] "Making Predictions." https://orangedatamining. com/blog/making-predictions/.
- [6] "Predictions. " https: //orange3. readthedocs. io/en/3.4.0/widgets/evaluation/predictions. html.
- [7] "Test and Score" https://orange3. readthedocs. io/en/3.4.0/widgets/evaluation/predictions. html.
- [8] "Feature Statistics" https://orange3. readthedocs. io/projects/orange-visualprogramming/en/latest/widgets/data/featurestatistics. html

#### Lending Club variables with description:

| The number of accounts on which the borrower is now delinquent.                                      |
|------------------------------------------------------------------------------------------------------|
| Number of trades opened in past 24 months.                                                           |
| The state provided by the borrower in the loan application                                           |
| The self-reported annual income provided by the borrower during registration.                        |
| Indicates whether the loan is an individual application or a joint application with two co-borrowers |
| -                                                                                                    |

|                             | -                                                                                                                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| avg_cur_bal                 | Average current balance of all accounts                                                                                                                                                                  |
| bc_open_to_buy              | Total open to buy on revolving bankcards.                                                                                                                                                                |
| chargeoff_within_12_mths    | Number of charge-offs within 12 months                                                                                                                                                                   |
| collection_recovery_fee     | post charge off collection fee                                                                                                                                                                           |
| collections_12_mths_ex_med  | Number of collections in 12 months excluding medical collections                                                                                                                                         |
| delinq_2yrs                 | The number of 30+ days past-due incidences of delinquency in the borrower's credit file for the past 2 years                                                                                             |
| delinq_amnt                 | The past-due amount owed for the accounts on which the borrower is now delinquent.                                                                                                                       |
| dti                         | A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower's self-reported monthly income. |
| mths_since_earliest_cr_line | The month the borrower's earliest reported credit line was opened                                                                                                                                        |
| fico_range_high             | The upper boundary range the borrower's FICO at loan origination belongs to.                                                                                                                             |
| fico_range_low              | The lower boundary range the borrower's FICO at loan origination belongs to.                                                                                                                             |
| grade                       | LC assigned loan grade                                                                                                                                                                                   |
| grade                       | LC assigned loan grade                                                                                                                                                                                   |
|                             |                                                                                                                                                                                                          |
| inq_last_6mths              | The number of inquiries in past 6 months (excluding auto and mortgage inquiries)<br>Interest Rate on the loan                                                                                            |
| int_rate                    |                                                                                                                                                                                                          |
| issue_d                     | The month which the loan was funded                                                                                                                                                                      |
| loan_amnt                   | The listed amount of the loan applied for by the borrower. If at some point in time, the credit department                                                                                               |
| 1                           | reduces the loan amount, then it will be reflected in this value.                                                                                                                                        |
| loan_status                 | Current status of the loan                                                                                                                                                                               |
| mo_sin_old_rev_tl_op        | Months since oldest revolving account opened                                                                                                                                                             |
| mo_sin_rcnt_rev_tl_op       | Months since most recent revolving account opened                                                                                                                                                        |
| mo_sin_rcnt_tl              | Months since most recent account opened                                                                                                                                                                  |
| mort_acc                    | Number of mortgage accounts.                                                                                                                                                                             |
| mths_since_recent_bc        | Months since most recent bankcard account opened.                                                                                                                                                        |
| num_accts_ever_120_pd       | Number of accounts ever 120 or more days past due                                                                                                                                                        |
| num_actv_bc_tl              | Number of currently active bankcard accounts                                                                                                                                                             |
| num_actv_rev_tl             | Number of currently active revolving trades                                                                                                                                                              |
| num_bc_sats                 | Number of satisfactory bankcard accounts                                                                                                                                                                 |
| num_bc_tl                   | Number of bankcard accounts                                                                                                                                                                              |
| num_il_tl                   | Number of installment accounts                                                                                                                                                                           |
| num_op_rev_tl               | Number of open revolving accounts                                                                                                                                                                        |
| num_rev_accts               | Number of revolving accounts                                                                                                                                                                             |
| num_tl_30dpd                | Number of accounts currently 30 days past due (updated in past 2 months)                                                                                                                                 |
| num_tl_90g_dpd_24m          | Number of accounts 90 or more days past due in last 24 months                                                                                                                                            |
| num_tl_op_past_12m          | Number of accounts opened in past 12 months                                                                                                                                                              |
| open_acc                    | The number of open credit lines in the borrower's credit file.                                                                                                                                           |
| pct_tl_nvr_dlq              | Percent of trades never delinquent                                                                                                                                                                       |
| pub_rec                     | Number of derogatory public records                                                                                                                                                                      |
| pub_rec_bankruptcies        | Number of public record bankruptcies                                                                                                                                                                     |
| purpose                     | A category provided by the borrower for the loan request.                                                                                                                                                |
| recoveries                  | post charge off gross recovery                                                                                                                                                                           |
| revol_bal                   | Total credit revolving balance                                                                                                                                                                           |
| revol_util                  | Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.                                                                               |
| sub_grade                   | LC assigned loan subgrade                                                                                                                                                                                |
| tax_liens                   | Number of tax liens                                                                                                                                                                                      |
| tot_coll_amt                | Total collection amounts ever owed                                                                                                                                                                       |
|                             |                                                                                                                                                                                                          |
| tot_hi_cred_lim             | Total high credit/credit limit The total number of anglit lines currently in the horrower's gradit file                                                                                                  |
| total_acc                   | The total number of credit lines currently in the borrower's credit file                                                                                                                                 |
| total_bal_ex_mort           | Total credit balance excluding mortgage                                                                                                                                                                  |
| total_bc_limit              | Total bankcard high credit/credit limit                                                                                                                                                                  |
| total_il_high_credit_limit  | Total installment high credit/credit limit                                                                                                                                                               |
| total_rev_hi_lim            | Total revolving high credit/credit limit                                                                                                                                                                 |
| verification_status         | Indicates if income was verified by LC, not verified, or if the income source was verified                                                                                                               |
| zip_code                    | The first 3 numbers of the zip code provided by the borrower in the loan application.                                                                                                                    |

DATASET



BALANCED\_Data\_Pre dicting\_Default.csv